1,018
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review

, , , , , , & show all
Pages 1947-1998 | Published online: 18 Jun 2015

REFERENCES

  • Abass, K., Reponen, P., Turpeinen, M., Jalonen, J., and Pelkonen, O. (2007). Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes. Drug Metab. Dispos., 35, 1634–1641.
  • Abbot, J., and Marohasy, J. (2011). Has the herbicide Diuron caused mangrove dieback?: A re-examination of the evidence. Human Ecol Risk Assess., 17, 1077–1094.
  • Acero, J.L., Real, F.J., Benitez, F.J., and Gonzalez, M. (2007). Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. J. Chem. Technol. Biotechnol., 82, 214–222.
  • Ahangar, A.G., Smernik, R.J., Kookana, R.S., and Chittleborough, D.J. (2008). Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere, 70, 1153–1160.
  • Ahangar, A.G., Smernik, R.J., Kookana, R.S., and Chittleborough, D.J. (2008). Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere, 72, 886–890.
  • Aislabie, J., and Lloydjones, G. (1995). A review of bacterial-degradation of pesticides. Aust. J. Soil Res., 33, 925–942.
  • Akcha, F., Spagnol, C., and Rouxel, J. (2012). Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquat. Toxicol., 106, 104–113.
  • Al-Bahri, M., Calvo, L., Polo, A.M., Gilarranz, M.A., Mohedano, A.F., and Rodriguez, J.J. (2013). Identification of by-products and toxicity assessment in aqueous-phase hydrodechlorination of diuron with palladium on activated carbon catalysts. Chemosphere, 91, 1317–1323.
  • Albers, C.N., Banta, G.T., Hansen, P.E., and Jacobsen, O.S. (2009). The influence of organic matter on sorption and fate of glyphosate in soil-comparing different soils and humic substances. Environ. Pollut., 157, 2865–2870.
  • Alletto, L., Coquet, Y., Benoit, P., and Bergheaud, V. (2006). Effects of temperature and water content on degradation of isoproturon in three soil profiles. Chemosphere, 64, 1053–1061.
  • Amita, B., Anjali, S., Srivastava, A., Bali, R., Srivastava, P.C., and Govindra, S. (2005). Effect of temperature on adsorption-desorption of isoproturon on a clay soil. Indian J. Weed Sci., 37, 247–250.
  • Andrea, M.M., Peres, T.B., Luchini, L.C., and Pettinelli, A. (2000). Impact of long-term pesticide applications on some soil biological parameters. J. Environ. Sci. Health Part B-Pesticides Food Contam. Agri. Wastes, 35, 297–307.
  • Attaway, H.H., Camper, N.D., and Paynter, M.J.B. (1982). Anaerobic microbial degradation of diuron by pond sediment. Pestic. Biochem. Physiol., 17, 96–101.
  • Badawi, N., Ronhede, S., Olsson, S., Kragelund, B.B., Johnsen, A.H., Jacobsen, O.S., and Aamand, J. (2009). Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ. Pollut., 157, 2806–2812.
  • Barra Caracciolo, A., Giuliano, G., Grenni, P., Guzzella, L., Pozzoni, F., Bottoni, P., Fava, L., Crobe, A., Orru, M., and Funari, E. (2005). Degradation and leaching of the herbicides metolachlor and diuron: a case study in an area of Northern Italy. Environ. Pollut., 134, 525–534.
  • Barriuso, E., Benoit, P., and Dubus, I.G. (2008). Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environ. Sci. Technol., 42, 1845–1854.
  • Baskeyfield, D.E., Davis, F., Magan, N., and Tothill, I.E. (2011). A membrane-based immunosensor for the analysis of the herbicide isoproturon. Anal. Chim. Acta, 699, 223–231.
  • Batisson, I., Pesce, S., Besse-Hoggan, P., Sancelme, M., and Bohatier, J. (2007). Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microbial Ecol., 54, 761–770.
  • Bazot, S., and Lebeau, T. (2008). Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations. Appl, Microbiol. Biotechnol., 77, 1351–1358.
  • Bazot, S., Bois, P., Joyeux, C., and Lebeau, T. (2007). Mineralization of diuron [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] by co-immobilized Arthrobacter sp. and Delftia acidovorans. Biotechnol. Lett., 29, 749–754.
  • Bending, G.D., and Rodriguez-Cruz, M.S. (2007). Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Chemosphere, 66, 664–671.
  • Bending, G.D., Lincoln, S.D., and Edmondson, R.N. (2006). Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ. Pollut., 139, 279–287.
  • Bending, G.D., Lincoln, S.D., Sørensen, S.R., Morgan, J.A.W., Aamand, J., and Walker, A. (2003). In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl. Environ. Microbiol., 69, 827–834.
  • Bending, G.D., Shaw, E., and Walker, A. (2001). Spatial heterogeneity in the metabolism and dynamics of isoproturon degrading microbial communities in soil. Biol. Fertility Soils, 33, 484–489.
  • Berger, B.M. (1999). Factors influencing transformation rates and formation of products of phenylurea herbicides in soil. J. Agric. Food Chem., 47, 3389–3396.
  • Bers, K., Batisson, I., Proost, P., Wattiez, R., De-Mot, R., and Springael, D. (2013). HylA, an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains. Appl. Environ. Microbiol., 79(17), 5258–5263.
  • Bers, K., Sniegowski, K., Albers, P., Breugelmans, P., Hendrickx, L., De Mot, R., and Springael, D. (2011). A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol. Ecol., 76, 14–25.
  • Beulke, S., Brown, C.D., Dubus, I.G., Fryer, C.J., and Walker, A. (2004). Evaluation of probabilistic modelling approaches against data on leaching of isoproturon through undisturbed lysimeters. Ecol. Model., 179, 131–144.
  • Bottcher, T., and Schroll, R. (2007). The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism. Chemosphere, 66, 684–689.
  • Breugelmans, P., Barken, K.B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., and Springael, D. (2008). Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol, Ecol., 64, 271–282.
  • Breugelmans, P., D’Huys, P.J., De Mot, R., and Springael, D. (2007). Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils. FEMS Microbiol. Ecol., 62, 374–385.
  • Breugelmans, P., Horemans, B., Hofkens, J., and Springael, D. (2010). Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Res. Microbiol., 161, 660–666.
  • Breugelmans, P., Leroy, B., Bers, K., Dejonghe, W., Wattiez, R., De Mot, R., and Springael, D. (2010). Proteomic study of linuron and 3,4-dichloroaniline degradation by Variovorax sp. WDL1: evidence for the involvement of an aniline dioxygenase-related multicomponent protein. Res. Microbiol., 161, 208–218.
  • Brown, C.D., Fryer, C.J., and Walker, A. (2001). Influence of topsoil tilth and soil moisture status on losses of pesticide to drains from a heavy clay soil. Pest Manage. Sci., 57, 1127–1134.
  • Cabrera, A., Cox, L., Velarde, P., Koskinen, W.C., and Cornejo, J. (2007). Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste. J. Agric. Food Chem., 55, 4828–4834.
  • Cabrera, D., Lopez-Pineiro, A., Albarran, A., and Pena, D. (2010). Direct and residual effects on diuron behaviour and persistence following two-phase olive mill waste addition to soil: field and laboratory experiments. Geoderma, 157, 133–141.
  • Cardone, A., Comitato, R., and Angelini, F. (2008). Spermatogenesis, epididymis morphology and plasma sex steroid secretion in the male lizard Podarcis sicula exposed to diuron. Environ. Res., 108, 214–223.
  • Cardoso, R.A., Pires, L.T., Zucchi, T.D., Zucchi, F.D., and Zucchi, T.M. (2010). Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. Genet. Mol. Res., 9, 231–238.
  • Castillo, M.D.P., Wiren-Lehr, S.V., Scheunert, I., and Torstensson, L. (2001). Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol. Fertility Soils, 33, 521–528.
  • Castillo, M.A., Felis, N., Aragon, P., Cuesta, G., and Sabater, C. (2006). Biodegradation of the herbicide diuron by streptomycetes isolated from soil. Int. Biodeterior. Biodegrad., 58, 196–202.
  • Caux, P.Y., Kent, R.A., Fan, G.T., and Grande, C. (1998). Canadian water quality guidelines for linuron. Environ. Toxicol. Water Qual., 13, 1–41.
  • Celis, R., De Jonge, H., De Jonge, L.W., Real, M., Hermosin, M.C., and Cornejo, J. (2006). The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil. Eur. J. Soil Sci., 57, 308–319.
  • Chaara, D., Bruna, F., Draoui, K., Ulibarri, M.A., Barriga, C., and Pavlovic, I. (2012). Study of key parameters affecting adsorption of the herbicide Linuron on organohydrotalcites. Appl. Clay Sci., 58, 34–38.
  • Chevre, N., Edder, P., Ortelli, D., Tatti, E., Erkman, S., and Rapin, F. (2008). Risk assessment of herbicide mixtures in a large European lake. Environ. Toxicol., 23, 269–277.
  • Chhokar, R.S., and Malik, R.K. (2002). Isoproturon-resistant littleseed canarygrass (Phalaris minor) and its response to alternate herbicides1. Weed Technol., 16, 116–123.
  • Chhokar, R.S., Singh, S., and Sharma, R.K. (2008). Herbicides for control of isoproturon-resistant Littleseed Canarygrass (Phalaris minor) in wheat. Crop Prot., 27, 719–726.
  • Claver, A., Ormad, P., Rodriguez, L., and Ovelleiro, J.L. (2006). Study of the presence of pesticides in surface waters in the Ebro river basin (Spain). Chemosphere, 64, 1437–1443.
  • Cooke, C.M., Shaw, G., and Collins, C.D. (2004). Determination of solid-liquid partition coefficients (K-d) for the herbicides isoproturon and trifluralin in five UK agricultural soils. Environ. Pollut., 132, 541–552.
  • Coppola, L., Pilar Castillo, M.D., and Vischetti, C. (2011). Degradation of isoproturon and bentazone in peat- and compost-based biomixtures. Pest Manage. Sci., 67, 107–113.
  • Coquet, Y. (2003). Sorption of pesticides atrazine, isoproturon, and metamitron in the vadose zone. Vadose Zone J., 2, 40–51.
  • Coquet, Y., and Barriuso, E. (2002). Spatial variability of pesticide adsorption within the topsoil of a small agricultural catchment. Agronomie, 22, 389–398.
  • Coquet, Y., Ribiere, C., and Vachier, P. (2004). Pesticide adsorption in the vadose zone: a case study on eocene and quaternary materials in northern France. Pest Manage. Sci., 60, 992–1000.
  • Cox, L., and Walker, A. (1999). Studies of time-dependent sorption of linuron and isoproturon in soils. Chemosphere, 38, 2707–2718.
  • Cox, L., Walker, A., and Welch, S.J. (1996). Evidence for the accelerated degradation of isoproturon in soils. Pestic. Sci., 48, 253–260.
  • Cullington, J.E., and Walker, A. (1999). Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol. Biochem., 31, 677–686.
  • Cycon, M., Piotrowska-Seget, Z., and Kozdroj, J. (2010). Linuron effects on microbiological characteristics of sandy soils as determined in a pot study. Ann. Microbiol., 60, 439–449.
  • Da-Rocha, M.S., Arnold, L.L., Dodmane, P.R., Pennington, K.L., Qiu, F., De Camargo, J.L., and Cohen, S.M. (2013). Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches. Toxicology, 314, 238–246.
  • Da-Rocha, M.S., Nascimento, M.G., Cardoso, A.P., de Lima, P.L., Zelandi, E.A., de Camargo, J.L., and de Oliveira, M.L. (2010). Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat. Toxicol. Sci., 113, 37–44.
  • Da-Silva-Coelho, J., de Oliveira, A.L., Marques de Souza, C.G., Bracht, A., and Peralta, R.M. (2010). Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum. Int. Biodeterior. Biodegrad., 64, 156–161.
  • Daam, M.A., Rodrigues, A.M., Van den Brink, P.J., and Nogueira, A.J. (2009). Ecological effects of the herbicide linuron in tropical freshwater microcosms. Ecotoxicol. Environ. Safety, 72, 410–423.
  • Dahl, B.R., and Blanck, H. (1996). Toxic effects of the antifouling agent irgarol 1051 on periphyton communities in coastal water microcosms. Mar. Pollut. Bull., 32, 342–350.
  • De-Almeida-Azevedo, D., Lacorte, S., Vinhas, T., Viana, P., and Barcelo, D. (2000). Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A, 879, 13–26.
  • De-Lima, F., Gozzi, F., Fiorucci, A.R., Cardoso, C.A., Arruda, G.J., and Ferreira, V.S. (2011). Determination of linuron in water and vegetable samples using stripping voltammetry with a carbon paste electrode. Talanta, 83, 1763–1768.
  • De-Moura, N.A., Grassi, T.F., Rodrigues, M.A., and Barbisan, L.F. (2010). Potential effects of the herbicide diuron on mammary and urinary bladder two-stage carcinogenesis in a female Swiss mouse model. Archives Toxicol., 84, 165–173.
  • Dejonghe, W., Berteloot, E., Goris, J., Boon, N., Crul, K., Maertens, S., Hofte, M., De Vos, P., Verstraete, W., and Top, E.M. (2003). Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain. Appl. Environ. Microbiol., 69, 1532–1541.
  • Dejonghe, W., Goris, J., Dierickx, A., De Dobbeleer, V., Crul, K., De Vos, P., Verstraete, W., and Top, E.M. (2002). Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol. Ecol., 42, 315–325.
  • Devers, M., Henry, S., Hartmann, A., and Martin-Laurent, F. (2005). Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 pADP1 : Tn5 to bacteria of maize-cultivated soil. Pest Manage. Sci., 61, 870–880.
  • Devers-Lamrani M, Pesce S, Rouard N, Martin-Laurent F (2014). Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. Chemosphere, doi: 10.1016/j.chemosphere.2014.06.080
  • Dewez, D., Didur, O., Vincent-Heroux, J., and Popovic, R. (2008). Validation of photo synthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus. Environ. Pollut. 151, 93–100.
  • Di-Landa, G., Parrella, L., Avagliano, S., Ansanelli, G., Maiello, E., and Cremisini, C. (2009). Assessment of the potential ecological risks posed by antifouling booster biocides to the marine ecosystem of the gulf of Napoli (Italy). Water Air Soil Pollut., 200, 305–321.
  • Ding, Q., Wu, H.L., Xu, Y., Guo, L.J., Liu, K., Gao, H.M., and Yang, H. (2011). Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils. J. Hazard. Mater., 190, 823–832.
  • Djebbar, K.E., Zertal, A., Debbache, N., and Sehili, T. (2008). Comparison of Diuron degradation by direct UV photolysis and advanced oxidation processes. J. Environ. Manage., 88, 1505–1512.
  • Domingues, A., Barbisan, L.F., Martins, P.R., and Spinardi-Barbisan, A.L. (2011). Diuron exposure induces systemic and organ-specific toxicity following acute and sub-chronic exposure in male Wistar rats. Environ. Toxicol. Pharmacol. 31, 387–396.
  • Dores, E.G. C., Spadotto, C.U., Weber, O.S., Carbo, L., Vecchiato, A., and Pinto, A. (2009). Environmental behaviour of metolachlor and diuron in a tropical soil in the central region of Brazil. Water Air Soil Pollut., 197, 175–183.
  • Dorfler, U., Cao, G., Grundmann, S., and Schroll, R. (2006). Influence of a heavy rainfall event on the leaching of [14C] isoproturon and its degradation products in outdoor lysimeters. Environ. Pollut., 144, 695–702.
  • Dosnon-Olette, R., Couderchet, M., Oturan, M.A., Oturan, N., and Eullaffroy, P. (2011). Potential use of Lemna Minor for the phytoremediation of isoproturon and glyphosate. Int. J. Phytorem., 13, 601–612.
  • Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M., and Eullaffroy, P. (2010). Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere, 79, 117–123.
  • Dousset, S., Thevenot, M., Pot, V., Simunek, J., and Andreux, F. (2007). Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. J. Contam. Hydrol., 94, 261–276.
  • Ducruet, J.M. (1991). Les inhibiteurs du photosysteeme II. In: Scalla, R. (Ed.), Les herbicides: Mode d’Action et Principes d’Utilisation. INRA, Paris, France, pp. 79–114.
  • Dwivedi, S., Singh, B.R., Al-Khedhairy, A.A., and Musarrat, J. (2011). Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance. J. Hazard. Mater., 185, 938–944.
  • Edelahi, M., Oturan, N., Oturan, M., Padellec, Y., Bermond, A., and El-Kacemi, K. (2004). Degradation of diuron by the electro-Fenton process. Environ. Chem. Lett., 1, 233–236.
  • El-Arfaoui, A., Boudesocque, S., Sayen, S., and Guillon, E. (2010). Terbumeton and isoproturon adsorption by soils: influence of Ca2+ and K+ cations. J. Pestic. Sci., 2, 131–133.
  • El-Deeb, B.A., Soltan, S.M., Ali, A.M., and Ali, K.A. (2000). Detoxication of the herbicide diuron by Pseudomonas sp. Folia Microbiol., 45, 211–216.
  • El-Fantroussi, S. (2000). Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol., 66, 5110–5115.
  • El-Fantroussi, S., Verschuere, L., Verstraete, W., and Top, E.M. (1999). Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol., 65, 982–988.
  • El-Imache, A., Dahchour, A., Elamrani, B., Dousset, S., Pozzonni, F., and Guzzella, L. (2009). Leaching of diuron, linuron and their main metabolites in undisturbed field lysimeters. J. Environ. Sci. Health Part B, 44, 31–37.
  • El-Khattabi, K., Bouhaouss, A., Scrano, L., Lelario, F., and Bufo, S.A. (2007). Influence of humic fractions on retention of isoproturon residues in two Moroccan soils. J. Environ. Sci. Health Part B, 42, 851–856.
  • Ellegaard-Jensen, L., Aamand, J., Kragelund, B.B., Johnsen, A.H., and Rosendahl, S. (2013). Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation, 24, 765–774.
  • Ellegaard-Jensen, L., Knudsen, B.E., Johansen, A., Albers, C.N., Aamand, J., and Rosendahl, S. (2014). Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. Sci. Total Environ., 466–467, 699–705.
  • El-Nahhal, Y., Abadsa, M., and Affifi, S. (2013). Adsorption of diuron and linuron in Gaza soils. Am. J. Anal. Chem., 4, 94–99.
  • El-Sebai, T., Devers, M., Lagacherie, B., Rouard, N., Soulas, G., and Martin-Laurent, F. (2010). Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature. Pest Manage. Sci., 66, 988–995.
  • El-Sebai, T., Devers-Lamrani, M., Lagacherie, B., Rouard, N., Soulas, G., and Martin-Laurent, F. (2011). Isoproturon mineralization in an agricultural soil: impact of temperature and moisture content. Biol. Fertility Soils, 47, 427–435.
  • El-Sebai, T., Lagacherie, B., Cooper, J.F., Soulas, G., and Martin-Laurent, F. (2005). Enhanced isoproturon mineralisation in a clay silt loam agricultural soil. Agronomy Sustain. Develop., 25, 271–277.
  • El-Sebai, T., Lagacherie, B., Soulas, G., and Martin-Laurent, F. (2004). Isolation and characterisation of an isoproturon-mineralising Methylopila sp TES from French agricultural soil. FEMS Microbiol. Lett., 239, 103–110.
  • El-Sebai, T., Lagacherie, B., Soulas, G., and Martin-Laurent, F. (2007). Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters. Environ. Pollut., 145, 680–690.
  • Engelhardt, G., Wallnofer, P.R., and Plapp, R. (1973). Purification and properties of an aryl acylamidase of Bacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides. Appl. Microbiol., 26, 709–718.
  • Eriksson, E., Baun, A., Mikkelsen, P.S., and Ledin, A. (2007). Risk assessment of xenobiotics in stormwater discharged to Harrestrup Ã, Denmark. Desalination, 215, 187–197.
  • Ertli, T., Marton, A., and Foldenyi, R. (2004). Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere, 57, 771–779.
  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 32 October 2000 establishing a framework for Community action in the field of water policy (EU WFD 200/60/EC). Official J. Eur. Commun., L327, 1–72.
  • Fedtke, C., and Duke, S.O. (2005). Herbicides. In B. Hock, and E.F. Elstner (Eds.), Plant toxicology (pp. 247–330), New York, NY: Marcel Dekker.
  • Feng, J., Zheng, Z., Luan, J., Li, K., Wang, L., and Feng, J. (2009). Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution. J. Hazard. Mater., 164, 838–846.
  • Fenlon, K.A., Jones, K.C., and Semple, K.T. (2011). The effect of soil:water ratios on the induction of isoproturon, cypermethrin and diazinon mineralisation. Chemosphere, 82, 163–168.
  • Fernandes, G.S., Arena, A.C., Fernandez, C.D., Mercadante, A., Barbisan, L.F., and Kempinas, W.G. (2007). Reproductive effects in male rats exposed to diuron. Reproductive Toxicol., 23, 106–112.
  • Fernandez-Bayo, J.D., Nogales, R., and Romero, E. (2008). Evaluation of the sorption process for imidacloprid and diuron in eight agricultural soils from southern Europe using various kinetic models. J. Agric. Food Chem., 56, 5266–5272.
  • Fernandez-Bayo, J.D., Nogales, R., and Romero, E. (2009). Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur. J. Soil Sci., 60, 935–944.
  • Fernandez-Bayo, J.D., Nogales, R., and Romero, E. (2009). Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. J. Agric. Food Chem. 57, 5435–5442.
  • Ferrucio, B., Franchi, C.A., Boldrin, N.F., de Oliveira, M.L., and de Camargo, J.L. (2010). Evaluation of diuron (3-[3,4-dichlorophenyl]-1,1-dimethyl urea) in a two-stage mouse skin carcinogenesis assay. Toxicol. Pathol., 38, 756–764.
  • Fomsgaard, I.S., Spliid, N.H., and Felding, G. (2003). Leaching of pesticides through normal-tillage and low-tillage soil-a lysimeter study. I. Isoproturon. J. Environ. Sci. Health Part B, 38, 1–18.
  • Fredrickson, J.K., Balkwill, D.L., Romine, M.F., and Shi, T. (1999). Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. J. Ind. Microbiol. Biotechnol., 23, 273–283.
  • Gangwar, S.K., and Rafiquee, M.Z. A. (2007b). Kinetics of the alkaline hydrolysis of isoproturon in CTAB and NaLS micelles. Int. J. Chem. Kinetics, 39, 39–45.
  • Gangwar, S., and Rafiquee, M. (2007a). Kinetics of the acid hydrolysis of isoproturon in the absence and presence of sodium lauryl sulfate micelles. Colloid Polym. Sci., 285, 587–592.
  • Garcinuno, R.M., Fernandez Hernando, P., and Camara, C. (2006). Removal of carbaryl, linuron, and permethrin by Lupinus angustifolius under hydroponic conditions. J. Agric. Food Chem., 54, 5034–5039.
  • Gatidou, G., Kotrikla, A., Thomaidis, N.S., and Lekkas, T.D. (2004). Determination of two antifouling booster biocides and their degradation products in marine sediments by high performance liquid chromatography-diode array detection. Anal. Chim. Acta, 505, 153–159.
  • Gatidou, G., Thomaidis, N.S., and Zhou, J.L. (2007). Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int., 33, 70–77.
  • Geissbuhler, H. (1973). The substituted ureas. In P.C. Kearney,, D.D. Kaufman (Eds.), Degradation of Herbicides (pp. 79–111). New York, NY: Marcel Dekker.
  • Geoffroy, L., Teisseire, H., Couderchet, M., and Vernet, G. (2002). Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic. Biochem. Physiol., 72, 178–185.
  • Gerecke, A.C., Canonica, S., Muller, S.R., Scharer, M., and Schwarzenbach, R.P. (2001). Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes. Environ. Sci. Technol., 35, 3915–3923.
  • Ghalwa, N.A., Hamada, M., Abu Shawish, H.M., and Shubair, O. (2011). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian J. Chem., doi: 10.1016/j.arabjc.2011.08.006
  • Giacomazzi, S. (2002). Mise au point et validation des techniques d’_evaluation des communaut_es microbiennes dans les milieux complexes de type sol, Thesis, Universite de Technologie de Compiegne, France.
  • Giacomazzi, S., and Cochet, N. (2004). Environmental impact of diuron transformation: a review. Chemosphere, 56, 1021–1032.
  • Gooddy, D.C., Chilton, P.J., and Harrison, I. (2002). A field study to assess the degradation and transport of diuron and its metabolites in a calcareous soil. Sci. Total Environ. 297, 67–83.
  • Gooddy, D.C., Mathias, S.A., Harrison, I., Lapworth, D.J., and Kim, A.W. (2007). The significance of colloids in the transport of pesticides through Chalk. Sci. Total Environ., 385, 262–271.
  • Grassi, T.F., Rodrigues, M.A., de Camargo, J.L., and Barbisan, L.F. (2011). Evaluation of carcinogenic potential of diuron in a rat mammary two-stage carcinogenesis model. Toxicol. Pathol., 39, 486–495.
  • Green, P.G., and Young, T.M. (2006). Loading of the herbicide diuron into the California water system. Environ. Eng. Sci., 23, 545–551.
  • Greulich, K., Hoque, E., and Pflugmacher, S. (2002). Uptake, metabolism, and effects on detoxication enzymes of isoproturon in spawn and tadpoles of amphibians. Ecotoxicol. Environ. Safety 52, 256–266.
  • Grundmann, S., Doerfler, U., Munch, J.C., Ruth, B., and Schroll, R. (2011). Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types. Chemosphere, 82, 1461–1467.
  • Gu, T., Zhou, C., Sørensen, S.R., Zhang, J., He, J., Yu, P., Yan, X., and Li, S. (2013). The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl. Environ. Microbiol., 79, 7846–7856.
  • Guzzella, L., Capri, E., Di Corcia, A., Barra Caracciolo, A., and Giuliano, G. (2006). Fate of diuron and linuron in a field lysimeter experiment. J. Environ. Qual., 35, 312–323.
  • Hangler, M., Jensen, B., Ronhede, S., and Sørensen, S.R. (2007). Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiol. Lett., 268, 254–260.
  • Haque, M.M., and Muneer, M. (2003). Heterogeneous photocatalysed degradation of a herbicide derivative, isoproturon in aqueous suspension of titanium dioxide. J. Environ. Manage., 69, 169–176.
  • Harino, H., Arai, T., Ohji, M., Ismail, A.B., and Miyazaki, N. (2009). Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Archives Environ. Contam. Toxicol., 56, 468–478.
  • Harrington, L., Fabricius, K., Eaglesham, G., and Negri, A. (2005). Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Mar. Pollut. Bull., 51, 415–427.
  • Harris, G.L., Nicholls, P.H., Bailey, S.W., Howse, K.R., and Mason, D.J. (1994). Factors influencing the loss of pesticides in drainage from a cracking clay soil. J. Hydrol., 159, 235–253.
  • Hassan, N., and Nemat-Alla, M. (2005). Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiologiae Plant., 27, 429–438.
  • Heppell, C.M., Burt, T.P., Williams, R.J., and Haria, A.H. (1999). The influence of hydrological pathways on the transport of the herbicide, isoproturon, through an underdrained clay soil. Water Sci. Technol., 39, 77–84.
  • Hill, G.D., McGahen, J.W., Baker, H.M., Finnerty, D.W., and Bingeman, C.W. (1955). The fate of substituted urea herbicides in agricultural soils. Agronomy J., 47, 93–104.
  • Hongsawat, P., and Vangnai, A.S. (2011). Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J. Hazard. Mater., 186, 1300–1307.
  • Horemans, B., Vandermaesen, J., Vanhaecke, L., Smolders, E., and Springael, D. (2013). Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Appl. Microbiol. Biotechnol., 97, 9837–9846.
  • Houot, S., Topp, E., Yassir, A., and Soulas, G. (2000). Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol. Biochem., 32, 615–625.
  • Hundt, K., Wagner, M., Becher, D., Hammer, E., and Schauer, F. (1998). Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia picketii in soil and compost. Chemosphere, 36, 2321–2335.
  • Hussain, S., Devers-Lamrani, M., El-Azhari, N., and Martin-Laurent, F. (2011). Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 22, 637–650.
  • Hussain, S., Devers-Lamrani, M., Spor, A., Rouard, N., Porcherot, M., Beguet, J., and Martin-Laurent, F. (2013). Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. Chemosphere, 90, 2499–2511.
  • Hussain, S., Sørensen, S.R., Devers-Lamrani, M., El-Sebai, T., and Martin-Laurent, F. (2009). Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere, 77, 1052–1059.
  • INERIS (2007). Données technico-économiques sur les substances chimiques en France: ISOPROTURON. 27p (http://rsde.ineris.fr/).
  • Inoue, M.H., Oliveira, R.S. Jr., Regitano, J.B., Tormena, C.A., Constantin, J., and Tornisielo, V.L. (2006). Sorption-desorption of atrazine and diuron in soils from southern Brazil. J. Environ. Sci. Health Part B, 41, 605–621.
  • Issa, S., and Wood, M. (2005). Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions. Pest Manage. Sci., 61, 126–132.
  • Johannesen, H., Sørensen, S.R., and Aamand, J. (2003). Mineralization of soil-aged isoproturon and isoproturon metabolites by Sphingomonas sp. strain SRS2. J. Environ. Qual., 32, 1250–1257.
  • Johnson, A.C., Besien, T.J., Bhardwaj, C.L., Dixon, A., Gooddy, D.C., Haria, A.H., and White, C. (2001). Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications. J. Contam. Hydrol., 53, 101–117.
  • Johnson, A.C., Hughes, C.D., Williams, R.J., and Chilton, P.J. (1998). Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer. J. Contam. Hydrol. 30, 281–297.
  • Juhler, R.K., Sørensen, S.R., and Larsen, L. (2001). Analysing transformation products of herbicide residues in environmental samples. Water Res., 35, 1371–1378.
  • Jung, C.M., Crocker, F.H., Eberly, J.O., and Indest, K.J. (2011). Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J. Appl. Microbiol., 110, 1449–1459.
  • Katsumata, H., Sada, M., Nakaoka, Y., Kaneco, S., Suzuki, T., and Ohta, K. (2009). Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J. Hazard. Mater., 171, 1081–1087.
  • Khadrani, A., Seigle-Murandi, F., Steiman, R., and Vroumsia, T. (1999). Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere, 38, 3041–3050.
  • Khurana, J.L., Jackson, C.J., Scott, C., Pandey, G., Horne, I., Russell, R.J., Herlt, A., Easton, C.J., and Oakeshott, J.G. (2009). Characterization of the phenylurea hydrolases A and B: founding members of a novel amidohydrolase subgroup. Biochem. J., 418, 431–441.
  • Kim, Y.M., Park, K., Kim, W.C., Shin, J.H., Kim, J.E., Park, H.D., and Rhee, I.K. (2007). Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J. Agric. Food Chem., 55, 4722–4727.
  • Knauert, S., Escher, B., Singer, H., Hollender, J., and Knauer, K. (2008). Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environ. Sci. Technol., 42, 6424–6430.
  • Knauert, S., Singer, H., Hollender, J., and Knauer, K. (2010). Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environ. Pollut., 158, 167–174.
  • Kotrikla, A., Gatidou, G., and Lekkas, T.D. (2006). Monitoring of triazine and phenylurea herbicides in the surface waters of Greece. J. Environ. Sci. Health Part B, 41, 135–144.
  • Kristensen, K.E., Jacobsen, C.S., Hansen, L.H., Aamand, J., Morgan, J.A., Sternberg, C., and Sørensen, S.R. (2006). Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere. Lett. Appl. Microbiol., 43, 280–286.
  • Kumar, S. (2010). Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L. Cytol. Genet., 44, 79–87.
  • Lamoree, M.H., Swart, C.P., van der Horst, A., and van Hattum, B. (2002). Determination of diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. J. Chromatogr. A, 970, 183–190.
  • Landry, D., Dousset, S., and Andreux, F. (2006). Leaching of oryzalin and diuron through undisturbed vineyard soil columns under outdoor conditions. Chemosphere, 62, 1736–1747.
  • Lapworth, D.J., and Gooddy, D.C. (2006). Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environ. Pollut., 144, 1031–1044.
  • Laviale, M., Morin, S., and Creach, A. (2011). Short term recovery of periphyton photosynthesis after pulse exposition to the photosystem II inhibitors atrazine and isoproturon. Chemosphere, 84, 731–734.
  • Laviale, M., Prygiel, J., and Creach, A. (2010). Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions. Aquat. Toxicol., 97, 334–342.
  • Lee, Y.K., Eom, S.H., Hwang, H.J., Lim, K.S., Yang, J.Y., Chung, Y.H., Kim, D.M., Lee, M.S., Rhee, I.K., and Kim, Y.M. (2009). Cloning and mutational analysis of catechol 2,3-dioxygenase from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J. Korean Soc. Appl. Biol. Chem., 52, 258–263.
  • Lehr, S., Glassgen, W.E., Sandermann, H., Beese, F., and Scheunert, I. (1996). Metabolism of isoproturon in soils originating from different agricultural management systems and in cultures of isolated soil bacteria. Int. J. Environ. Anal. Chem., 65, 231–243.
  • Lewis, S.E., Brodie, J.E., Bainbridge, Z.T., Rohde, K.W., Davis, A.M., Masters, B.L., Maughan, M., Devlin, M.J., Mueller, J.F., and Schaffelke, B. (2009). Herbicides: a new threat to the Great Barrier Reef. Environ. Pollut., 157, 2470–2484.
  • Liang, L., Lu, Y.L., and Yang, H. (2012). Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ. Sci. Pollut. Res., 19, 2044–2054.
  • Lopez-Doval, J.C., Ricart, M., Guasch, H., Romani, A.M., Sabater, S., and Munoz, I. (2010). Does grazing pressure modify diuron toxicity in a biofilm community? Archives Environ. Contam. Toxicol., 58, 955–962.
  • Lopez-Munoz, M.J., Revilla, A., and Aguado, J. (2013). Heterogeneous photocatalytic degradation of isoproturon in aqueous solution: experimental design and intermediate products analysis. Catal. Today, 209, 99–107.
  • Lopez-Pineiro, A., Cabrera, D., Albarran, A., and Pena, D. (2010). Cumulative and residual effects of de-oiled two-phase olive mill waste application to soil on diuron sorption, leaching, degradation, and persistence. Chemosphere, 78, 139–146.
  • Mahalakshmi, M., Vishnu Priya, S., Arabindoo, B., Palanichamy, M., and Murugesan, V. (2009). Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2. J. Hazard. Mater., 161, 336–343.
  • Maly, J., Klem, K., Lukavska, A., and Masojidek, J. (2005). Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor. J. Environ. Qual., 34, 1780–1788.
  • Mamy, L., Vrignaud, P., Cheviron, N., Perreau, F.O., Belkacem, M., Brault, A., Breuil, S.B., Delarue, G., Petraud, J.P., Touton, I., Mougin, C., and Chaplain, V.R. (2011). No evidence for effect of soil compaction on the degradation and impact of isoproturon. Environ. Chem. Lett., 9, 145–150.
  • Martinez, K., and Barcelo, D. (2001). Determination of antifouling pesticides and their degradation products in marine sediments by means of ultrasonic extraction and HPLC-APCI-MS. Fresenius’ J. Anal. Chem., 370, 940–945.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405–410.
  • Mosleh, Y.Y. (2009). Assessing the toxicity of herbicide isoproturon on Aporrectodea caliginosa (Oligochaeta) and its fate in soil ecosystem. Environ. Toxicol., 24, 396–403.
  • Muller, K., Bach, M., Hartmann, H., Spiteller, M., and Frede, H.G. (2002). Point and non-point source pesticide contamination in the Zwester Ohm catchment, Germany. J. Environ. Qual., 31, 309–318.
  • Muud, P.J., Hance, R.J., and Wright, S.J. L. (1983). The persistence and metabolism of isoproturon in soil. Weed Res., 23, 239–246.
  • Navarro, S., Bermejo, S., Vela, N., and Hernandez, J. (2009). Rate of Loss of Simazine, Terbuthylazine, Isoproturon, and Methabenzthiazuron during soil solarization. J. Agric. Food Chem., 57, 6375–6382.
  • Negroni, A., Zanaroli, G., Ruzzi, M., and Fava, F. (2010). Biological fate of Diuron and Sea-nine 211 and their effect on primary microbial activities in slurries of a contaminated sediment from Venice Lagoon. Ann. Microbiol., 60, 321–327.
  • Nelieu, S., Bonnemoy, F., Bonnet, J.L., Lefeuvre, L., Baudiffier, D., Heydorff, M., Quemeneur, A., Azam, D., Ducrot, P.H., Lagadic, L., Bohatier, J., and Einhorn, J. (2010). Ecotoxicological effects of diuron and chlorotoluron nitrate-induced photodegradation products: monospecific and aquatic mesocosm-integrated studies. Environ. Toxicol. Chem., 29, 2644–2652.
  • Nemat-Alla, M., and Hassan, N. (2007). Changes of antioxidants and GSH-associated enzymes in isoproturon-treated maize. Acta Physiol. Plant., 29, 247–258.
  • Nestorovska-Krsteska, A., Mirceska, M., Aaron, J.J., and Zdravkovski, Z. (2008). Determination of dimethoate, 2,4-dichlorophenoxy acetic acid, mecoprop and linuron pesticides in environmental waters in Republic of Macedonia by high performance liquid chromatography. Macedonian J. Chem. Chem. Eng., 27, 25–33.
  • Ngigi, A., Getenga, Z., Boga, H., and Ndalut, P. (2011). Biodegradation of phenylurea herbicide diuron by microorganisms from long-term-treated sugarcane-cultivated soils in Kenya. Toxicol. Environ. Chem., 93, 1623–1635.
  • Nolan, B.T., Dubus, I.G., Surdyk, N., Fowler, H.J., Burton, A., Hollis, J.M., Reichenberger, S., and Jarvis, N.J. (2008). Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Pest Manage. Sci., 64, 933–944.
  • Okamura, H., Aoyama, I., Ono, Y., and Nishida, T. (2003). Antifouling herbicides in the coastal waters of western Japan. Mar. Pollut. Bull., 47, 59–67.
  • Oturan, M.A., Edelahi, M.C., Oturan, N., El-Kacemi, K., and Aaron, J.J. (2010). Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl. Catal. B: Environ., 97, 82–89.
  • Oturan, M.A., Oturan, N., Edelahi, M.C., Podvorica, F.I., and Kacemi, K.E. (2011). Oxidative degradation of herbicide diuron in aqueous medium by Fenton's reaction based advanced oxidation processes. Chem. Eng. J., 171, 127–135.
  • Oturan, N., Trajkovska, S., Oturan, M.A., Couderchet, M., and Aaron, J.J. (2008). Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”. Chemosphere, 73, 1550–1556.
  • Paris-Palacios, S., Mosleh, Y.Y., Almohamad, M., Delahaut, L., Conrad, A., Arnoult, F., and Biagianti-Risbourg, S. (2010). Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): a study of significance of autotomy and its utility as a biomarker. Aquat. Toxicol., 98, 8–14.
  • Parra, S., Sarria, V., Malato, S., Peringer, P., and Pulgarin, C. (2000). Photochemical versus coupled photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Appl. Catal. B: Environ., 27, 153–168.
  • Parris, G.E. (1980). Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Rev., 76, 1–30.
  • Pascal-Lorber, S., Alsayeda, H., Jouanin, I., Debrauwer, L., Canlet, C., and Laurent, F.O. (2010). Metabolic Fate of [14C]Diuron and [14C]Linuron in Wheat (Triticum aestivum) and Radish (Raphanus sativus). J. Agric. Food Chem., 58, 10935–10944.
  • Paterlini, W.C., and Nogueira, R.F. (2005). Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D. Chemosphere, 58, 1107–1116.
  • Penning, H., Sørensen, S.R., Meyer, A.H., Aamand, J., and Elsner, M. (2010). C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways. Environ. Sci. Technol., 44, 2372–2378.
  • Perrin-Ganier, C., Schiavon, F., Morel, J.L., and Schiavon, M. (2001). Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere, 44, 887–892.
  • Pesce, S.P., Bardot, C., Lehours, A.C., Batisson, I., Bohatier, J., and Fajon, C.l. (2008). Effects of diuron in microcosms on natural riverine bacterial community composition: new insight into phylogenetic approaches using PCR-TTGE analysis. Aquat. Sci., 70, 410–418.
  • Pesce, S.P., Fajon, C.l., Bardot, C., Bonnemoy, F.D. R., Portelli, C., and Bohatier, J. (2006). Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat. Toxicol., 78, 303–314.
  • Pesce, S.P., Margoum, C., Rouard, N., Foulquier, A., and Martin-Laurent, F. (2013). Freshwater sediment pesticide biodegradation potential as an ecological indicator of microbial recovery following a decrease in chronic pesticide exposure: a case study with the herbicide diuron. Ecol. Indicators, 29, 18–25.
  • Pesce, S., Beguet, J., Rouard, N., Devers-Lamrani, M., and Martin-Laurent, F. (2013). Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes. Appl. Microbiol. Biotechnol., 97, 1661–1668.
  • Pesce, S., Margoum, C., and Montuelle, B. (2010). In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res., 44, 1941–1949.
  • Pesce, S., Martin-Laurent, F., Rouard, N., and Montuelle, B. (2009). Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. Pest Manage. Sci., 65, 651–657.
  • Pieuchot, M., PerrinGanier, C., Portal, J.M., and Schiavon, M. (1996). Study on the mineralization and degradation of isoproturon in three soils. Chemosphere, 33, 467–478.
  • Piutti, S., Hallet, S., Rousseaux, S., Philippot, L., Soulas, G., and Martin-Laurent, F. (2002). Accelerated mineralisation of atrazine in maize rhizosphere soil. Biol. Fertility Soils, 36, 434–441.
  • Pot, V., Benoit, P., Etievant, V., Bernet, N., Labat, C., Coquet, Y., and Houot, S. (2011). Effects of tillage practice and repeated urban compost application on bromide and isoproturon transport in a loamy Albeluvisol. Eur. J. Soil Sci., 62, 797–810.
  • Racke, K.D., and Coats, J.R. E. (1990). Enhanced Biodegradation of Pesticides in the Environment. Am. Chem. Soc., Washington, DC.
  • Radianingtyas, H., Robinson, G.K., and Bull, A.T. (2003). Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiol., 149, 3279–3287.
  • Rao, Y.F., and Chu, W. (2009). A new approach to quantify the degradation kinetics of linuron with UV, ozonation and UV/O3 processes. Chemosphere, 74, 1444–1449.
  • Rao, Y.F., and Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes-effect of anions and reaction mechanism. J. Hazard. Mater., 180, 514–523.
  • Rao, Y.F., and Chu, W. (2010). Linuron decomposition in aqueous semiconductor suspension under visible light irradiation with and without H2O2. Chem. Eng. J., 158, 181–187.
  • Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O.S., and Sørensen, S.R. (2005). Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters. Pest Manage. Sci., 61, 829–837.
  • Reddy, P.A. K., Reddy, P.V. L., Sharma, V.M., Kumari, V.D., and Subrahmanyam, M. (2010). Photocatalytic degradation of isoproturon pesticide on C, N and S Doped TiO2. J. Water Resour. Protect., 2, 235–244.
  • Reddy, P.A. K., Srinivas, B., Durgakumari, V., and Subrahmanyam, M. (2012). Solar photocatalytic degradation of the herbicide isoproturon on a Bi-TiO2/zeolite photocatalyst. Toxicol. Environ. Chem., 94, 512–524.
  • Reddy, P.A. K., Srinivas, B., Kala, P., Kumari, V.D., and Subrahmanyam, M. (2011). Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater. Res. Bull., 46, 1766–1771.
  • Reid, B.J., Papanikolaou, N.D., and Wilcox, R.K. (2005). Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use. Environ. Pollut., 133, 447–454.
  • Reid, B.J., Pickering, F.L., Freddo, A., Whelan, M.J., and Coulon, F. (2013). Influence of biochar on isoproturon partitioning and bioaccessibility in soil. Environ. Pollut., 181, 44–50.
  • Rigaud J.P., and Lebreton, J.C. (2004). Points de repère - Blé : désherbage de post-levée. Chambre d’Agriculture de Mayenne. <http://www.mayenne.chambagri.fr/ services/documentation/ ble_desherbage_post_levee.pdf>, denier accès octobre 2007.
  • Roberts, S.J., Walker, A., Parekh, N.R., Welch, S.J., and Waddington, M.J. (1993). Studies on a mixed bacterial culture from soil which degrades the herbicide linuron. Pestic. Sci., 39, 71–78.
  • Roberts, S.J., Walker, A., Cox, L., and Welch, S.J. (1998). Isolation of isoproturon-degrading bacteria from treated soil via three different routes. J. Appl. Microbiol., 85, 309–316.
  • Rodriguez-Cruz, M.S., Jones, J.E., and Bending, G.D. (2006). Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics. Soil Biol. Biochem., 38, 2910–2918.
  • Romero, A., Santos, A., Vicente, F., and Gonzalez, C. (2010). Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage. Chem. Eng. J., 162, 257–265.
  • Ronhede, S., Jensen, B., Rosendahl, S., Kragelund, B.B., Juhler, R.K., and Aamand, J. (2005). Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil. Appl. Environ. Microbiol., 71, 7927–7932.
  • Ronhede, S., Sørensen, S.R., Jensen, B., and Aamand, J. (2007). Mineralization of hydroxylated isoproturon metabolites produced by fung. Soil Biol. Biochem., 39, 1751–1758.
  • Rosal, R., Gonzalo, M.S., Rodriguez, A., Perdigon-Melon, J.A., and Garcia-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chem. Eng. J., 165, 806–812.
  • Roubeix, V., Mazzella, N., Schouler, L., Fauvelle, V., Morin, S., Coste, M., Delmas, F., and Margoum, C. (2011). Variations of periphytic diatom sensitivity to the herbicide diuron and relation to species distribution in a contamination gradient: implications for biomonitoring. J. Environ. Monit., 13, 1768–1774.
  • Rousk, J., Brookes, P.C., and Baath, E. (2009). Contrasting Soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol., 75, 1589–1596.
  • Rubio, M.I. M., Gernjak, W., Alberola, O., Galvez, J.B., Fernandez-Ibanez, P., and Rodriguez, S. (2006). Photo-Fenton degradation of alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol at solar pilot plant. Int. J. Environ. Pollut., 27, 135–146.
  • Ruggieri, F., Antonio D’Archivio, A., Fanelli, M., and Santucci, S. (2011). Photocatalytic degradation of linuron in aqueous suspensions of TiO2. RSC Adv., 1, 611–618.
  • Russell, J.B., and Dombrowski, D.B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol., 39, 604–610.
  • Rutherford, A.W., and Krieger-Liszkay, A. (2001). Herbicide-induced oxidative stress in photosystem II. Trends in Biochem. Sci., 26, 648–653.
  • Safi, J., Awad, Y., and El_Nahhal, Y. (2014). Bioremediation of diuron in soil environment: influence of Cyanobacterial mat. American J. Plant Sci., 5. 1081–1089.
  • Salvestrini, S., Di Cerbo, P., and Capasso, S. (2002). Kinetics of the chemical degradation of diuron. Chemosphere, 48, 69–73.
  • Sapozhnikova, Y., Wirth, E., Singhasemanon, N., Bacey, J., and Fulton, M. (2008). Distribution of antifouling biocides in California marinas. J. Environ. Monit., 10, 1069–1075.
  • Satsuma, K. (2010). Mineralisation of the herbicide linuron by Variovorax sp. strain RA8 isolated from Japanese river sediment using an ecosystem model (microcosm). Pest Manage. Sci., 66, 847–852.
  • Scheunert, I., and Reuter, S. (2000). Formation and release of residues of the C-14-labelled herbicide isoproturon and its metabolites bound in model polymers and in soil. Environ. Pollut., 108, 61–68.
  • Schroll, R., Becher, H.H., Dorfler, U., Gayler, S., Hartmann, H.P., and Ruoss, J. (2006). Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ. Sci. Technol., 40, 3305–3312.
  • Schuelein, J., Glaessgen, W.E., Hertkorn, N., Schroeder, P., Jr, H.S., and Kettrup, A. (1996). Detection and identification of the herbicide isoproturon and its metabolites in field samples after a heavy rainfall event. Int. J. Environ. Anal. Chem., 65, 193–202.
  • Sharma, M.V. P., Durgakumari, V., and Subrahmanyam, M. (2008). Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems. J. Hazard. Mater., 160, 568–575.
  • Sharma, M.V. P., Kumari, V.D., and Subrahmanyam, A. (2008). Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere, 72, 644–651.
  • Sharma, M.V. P., Kumari, V.D., and Subrahmanyam, M. (2010). TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion. J. Hazard. Mater., 175, 1101–1105.
  • Sharma, P.M. V., Sadanandam, G., Ratnamala, A., Kumari, V.D., and Subrahmanyam, M. (2009). An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J. Hazard. Mater., 171, 626–633.
  • Sharma, P., Chopra, A., Cameotra, S.S., and Suri, C.R. (2010). Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1. Biodegradation, 21, 979–987.
  • Shaw, M., Furnas, M.J., Fabricius, K., Haynes, D., Carter, S., Eaglesham, G., and Mueller, J.F. (2010). Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull., 60, 113–122.
  • Shi, S.J., and Bending, G.D. (2007). Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil. FEMS Microbiol. Lett., 269, 110–116.
  • Si, Y.B., Zhang, J., Wang, S.Q., Zhang, L.G., and Zhou, D.M. (2006). Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma, 130, 66–76.
  • Si, Y., Wang, M., Tian, C., Zhou, J., and Zhou, D. (2011). Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils. J. Contam. Hydrol., 123, 75–81.
  • Sikkema, P.H., Hekmat, S., Shropshire, C., and Soltani, N. (2009). Response of black, cranberry, kidney, and white bean to linuron. Weed Biol. Manage., 9, 173–178.
  • Silkina, A., Bazes, A., Vouve, F., Le Tilly, V., Douzenel, P., Mouget, J.L., and Bourgougnon, N. (2009). Antifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariophyceae): a comparison with diuron. Aquatic Toxicol., 94, 245–254
  • Smith, E.A., Prues, S.L., and Oehme, F.W. (1997). Environmental degradation of polyacrylamides.II. Effects of environmental (outdoor) exposure. Ecotoxicol. Environ. Safety, 37, 76–91.
  • Sniegowski, K., Bers, K., Ryckeboer, J., Jaeken, P., Spanoghe, P., Springael, D. (2011). Robust linuron degradation in on-farm biopurification systems exposed to sequential environmental changes. Appl. Environ. Microbiol., 77, 6614–6621.
  • Song, N.H., Yang, Z.M., Zhou, L.X., Wu, X., and Yang, H. (2006). Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum. J. Environ. Sci., 18, 101–108.
  • Sørensen, S.R., Albers, C.N., and Aamand, J. (2008). Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl. Environ. Microbiol., 74, 2332–2340.
  • Sørensen, S.R., and Aamand, J. (2001). Biodegradation of the phenylurea herbicide isoproturon and its metabolites in agricultural soils. Biodegradation, 12, 69–77.
  • Sørensen, S.R., and Aamand, J. (2003). Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field. Pest Manage. Sci., 59, 1118–1124.
  • Sørensen, S.R., Bending, G.D., Jacobsen, C.S., Walker, A., and Aamand, J. (2003). Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol. Ecol., 45, 1–11.
  • Sørensen, S.R., Juhler, R.K., and Aamand, J. (2013). Degradation and mineralisation of diuron by Sphingomonas sp. SRS2 and its potential for remediating at a realistic μg L−1 diuron concentration. Pest Manage. Sci., 69, 1239–1244.
  • Sørensen, S.R., Rasmussen, J., Jacobsen, C.S., Jacobsen, O.S., Juhler, R.K., and Aamand, J. (2005). Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation. Appl. Environ. Microbiol., 71, 4144–4148.
  • Sørensen, S.R., Ronen, Z., and Aamand, J. (2002). Growth in co-culture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp strain SRS2. Appl. Environ. Microbiol., 68, 3478–3485.
  • Sørensen, S.R., Ronen, Z., and Aamand, J. (2001). Isolation from agricultural soil and characterization of a Sphingomonas sp able to mineralize the phenylurea herbicide isoproturon. Appl. Environ. Microbiol., 67, 5403–5409.
  • Sørensen, S.R., Simonsen, A., and Aamand, J. (2009). Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol. Lett., 292, 291–296.
  • Soulas, G. (1993). Evidence for the existence of different physiological groups in the microbial community responsible for 2,4-D mineralization in soil. Soil Biol. Biochem., 25, 443–449.
  • Stasinakis, A.S., Kotsifa, S., Gatidou, G., and Mamais, D. (2009). Diuron biodegradation in activated sludge batch reactors under aerobic and anoxic conditions. Water Res., 43, 1471–1479.
  • Suhadolc, M., Schroll, R., Gattinger, A., Schloter, M., Munch, J.C., and Lestan, D. (2004). Effects of modified Pb, Zn, and Cd availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biol. Biochem., 36, 1943–1954.
  • Sun, C.Q., O’Connor, C.J., Turner, S.J., Lewis, G.D., Stanley, R.A., and Roberton, A.M. (1998). The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonates fed on suckled milk. Chem. Biol. Interact., 113, 117–131.
  • Sun, J.Q., Huang, X., Chen, Q.L., Liang, B., Qiu, J.G., Ali, S.W., and Li, S.P. (2009). Isolation and characterization of three Sphingobium sp strains capable of degrading isoproturon and cloning of the catechol 1,2-dioxygenase gene from these strains. World J. Microbiol. Biotechnol., 25, 259–268.
  • Tahmasseb, L.A., Nelieu, S., Kerhoas, L., and Einhorn, J. (2002). Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways. Sci. Total Environ., 291, 33–44.
  • Thevenot, M., Dousset, S., Hertkorn, N., Schmitt-Kopplin, P., and Andreux, F. (2009). Interactions of diuron with dissolved organic matter from organic amendments. Sci. Total Environ., 407, 4297–4302.
  • Thevenot, M., Dousset, S., Rousseaux, S., and Andreux, F. (2008). Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters. Environ. Pollut., 153, 148–156.
  • Thurman, E.M., Bastian, K.C., and Mollhagen, T. (2000). Occurrence of cotton herbicides and insecticides in playa lakes of the high plains of west Texas. Sci. Total Environ., 248, 189–200.
  • Tian, C., Wang, M.D., and Si, Y.B. (2010). Influences of charcoal amendment on adsorption-desorption of isoproturon in soils. Agric. Sci. China, 9, 257–265.
  • Tixier, C., Bogaerts, P., Sancelme, M., Bonnemoy, F., Twagilimana, L., Cuer, A., Bohatier, J., and Veschambre, H. (2000). Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manage. Sci., 56, 455–462.
  • Tixier, C., Sancelme, M., Ait-Aissa, S., Widehem, P., Bonnemoy, F., Cuer, A., Truffaut, N., and Veschambre, H. (2002). Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere, 46, 519–526.
  • Tixier, C., Sancelme, M., Bonnemoy, F., Cuer, A., and Veschambre, H. (2001). Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ. Toxicol. Chem., 20, 1381–1389.
  • Travkin, V.M., Solyanikova, I.P., Rietjens, I.M., Vervoort, J., van Berkel, W.J., and Golovleva, L.A. (2003). Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J. Environ. Sci. Health, Part B., 38, 121–132.
  • Travkin, V., Baskunov, B.P., Golovlev, E.L., Boersma, M.G., Boeren, S., Vervoort, J., van Berkel, W.J., Rietjens, I.M., and Golovleva, L.A. (2002). Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol. Lett., 209, 307–312.
  • Turnbull, G.A., Ousley, M., Walker, A., Shaw, E., and Morgan, J.A. W. (2001). Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl. Environ. Microbiol., 67, 2270–2275.
  • Turnbull, G., Cullington, J., Walker, A., and Morgan, J. (2001). Identification and characterisation of a diuron-degrading bacterium. Biol. Fertility Soils, 33, 472–476.
  • Uno, T., Kaji, S., Goto, T., Imaishi, H., Nakamura, M., Kanamaru, K., Yamagata, H., Kaminishi, Y., and Itakura, T. (2011). Metabolism of the herbicides chlorotoluron, diuron, linuron, simazine, and atrazine by CYP1A9 and CYP1C1 from Japanese eel (Anguilla japonica). Pesticide Biochem. Physiol., 101, 93–102.
  • US-EPA (1995). R.E.D. Facts Linuron (EPA-738-F-95-003). Environment Protection Agency, USA, p. 1–11.
  • Vercraene-Eairmal, M., Lauga, B., Saint-Laurent, S., Mazzella, N., Boutry, S., Simon, M., Karama, S., Delmas, F., and Duran, R. (2010). Diuron biotransformation and its effects on biofilm bacterial community structure. Chemosphere, 81, 837–843.
  • Vicente, F., Santos, A., Romero, A., and Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chem. Eng. J., 170, 127–135.
  • Vieuble-Gonod, L., Benoit, P., Cohen, N., and Houot, S. (2009). Spatial and temporal heterogeneity of soil microorganisms and isoproturon degrading activity in a tilled soil amended with urban waste composts. Soil Biol. Biochem., 41, 2558–2567.
  • Vroumsia, T., Steiman, R., Seigle-Murandi, F., Benoit-Guyod, J.L., and Khadrani, A. (1996). Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere, 33, 2045–2056.
  • Walker, A., and Welch, S.J. (1991). Enhanced degradation of some soil-applied herbicides. Weed Res., 31, 49–57.
  • Walker, A., and Zimdahl, R.L. (1981). Simulation of the persistence of atrazin, linuron and metolachlor in soil at different sites in the USA. Weed Res., 21, 255–265.
  • Walker, A., Bromilow, R.H., Nicholls, P.H., Evans, A.A., and Smith, V.J. R. (2002). Spatial variability in the degradation rates of isoproturon and chlorotoluron in a clay soil. Weed Res., 42, 39–44.
  • Walker, A., Jurado-Exposito, M., Bending, G.D., and Smith, V.J. R. (2001). Spatial variability in the degradation rate of isoproturon in soil. Environ. Pollut., 111, 407–415.
  • Walker, A., Moon, Y.H., and Welch, S.J. (1992). Influence of temperature, soil-moisture and soil characteristics on the persistence of alachlor. Pestic. Sci., 35, 109–116.
  • Walker, A., Turner, I.J., Cullington, J.E., and Welch, S.J. (1999). Aspects of the adsorption and degradation of isoproturon in a heavy clay soil. Soil Use Manage., 15, 9–13.
  • Wallnofer, P. (1969). The decomposition of urea herbicides by bacillus sphaericus, isolated from soil. Weed Res., 9, 333–339.
  • Wauchope, R.D., Yeh, S., Linders, J.B., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kordel, W., Gerstl, Z., Lane, M., and Unsworth, J.B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manage. Sci., 58, 419–445.
  • Welp, G., and Brummer, G.W. (1999). Adsorption and solubility of ten metals in soil samples of different composition. J. Plant Nutrition Soil Sci., 162, 155–161.
  • White, D.C., Sutton, S.D., and Ringelberg, D.B. (1996). The genus Sphingomonas: physiology and ecology. Curr. Opin. Biotechnol., 7, 301–306.
  • Widehem, P., Ait-Aissa, S., Tixier, C., Sancelme, M., Veschambre, H., and Truffaut, N. (2002). Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere, 46, 527–534.
  • Widenfalk, A., Bertilsson, S., Sundh, I., and Goedkoop, W. (2008). Effects of pesticides on community composition and activity of sediment microbes-responses at various levels of microbial community organization. Environ. Pollut., 152, 576–584.
  • Williams, S., Carranza, A., Kunzelman, J., Datta, S., and Kuivila, K. (2009). Effects of the herbicide diuron on cordgrass (Spartina foliosa) reflectance and photosynthetic parameters. Estuaries Coasts, 32, 146–157.
  • Wilson, V.S., Lambright, C.R., Furr, J.R., Howdeshell, K.L., and Earl, G.L. Jr. (2009). The herbicide linuron reduces testosterone production from the fetal rat testis during both in utero and in vitro exposures. Toxicol. Lett., 186, 73–77.
  • Yang, Y., Sheng, G., and Huang, M. (2006). Bioavailability of diuron in soil containing wheat-straw-derived char. Sci. Total Environ., 354, 170–178.
  • Yao, X.F., Khan, F., Pandey, R., Pandey, J., Mourant, R.G., Jain, R.K., Guo, J.H., Russell, R.J., Oakeshott, J.G., and Pandey, G. (2011). Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiol., 157, 721–726.
  • Yebra, D.M., Kiil, S.R., and Dam-Johansen, K. (2004). Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 50, 75–104.
  • Yin, X.L., Jiang, L., Song, N.H., and Yang, H. (2008). Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J. Agric. Food Chem., 56, 4825–4831.
  • You, I.S., and Bartha, R. (1982). Metabolism of 3,4-dichloroaniline by Pseudomonas putida. J. Agric. Food Chem., 30, 274–277.
  • Yu, X.Y., Ying, G.G., and Kookana, R.S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem., 54, 8545–8550.
  • Zablotowicz, R.M., Locke, M.A., Gaston, L.A., and Bryson, C.T. (2000). Interactions of tillage and soil depth on fluometuron degradation in a Dundee silt loam soil. Soil Tillage Res., 57, 61–68.
  • Zehe, E., and Fluhler, H. (2001). Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. J. Hydrol. 247, 100–115.
  • Zeyer, J., Wasserfallen, A., and Timmis, K.N. (1985). Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol., 50, 447–453.
  • Zhang, J., Hong, Q., Li, Q., Li, C., Cao, L., Sun, J.Q., Yan, X., and Li, S.P. (2012). Characterization of isoproturon biodegradation pathway in Sphingobium sp. YBL2. Int. Biodeterior. Biodegrad., 70, 8–13.
  • Zhang, W., Wang, J.J., Zhang, Z.M., and Qin, Z. (2007). Adsorption-desorption characteristics of chlorimuron-ethyl in soils. Agric. Sci. China, 6, 1359–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.