2,354
Views
105
CrossRef citations to date
0
Altmetric
Original Articles

Ecodesign in Consumer Electronics: Past, Present, and Future

, &
Pages 840-860 | Published online: 31 Dec 2014

REFERENCES

  • Williams, E., Kahhat, R., Allenby, B., Kavazanjian, E., Kim, J., and Xu, M. (2008). Environmental, social, and economic implications of global reuse and recycling of personal computers. Environ. Sci. Technol. 42(17), 6446–6454.
  • Kahhat, R., and Williams, E. (2009). Product or waste? Importation and end-of-life processing of computers in Peru. Environ. Sci. Technol. 43(15), 6010–6016.
  • Realff, M.J., Raymond, M., and Ammons, J.C. (2004). E-waste: An opportunity. Mater. Today 7(1), 40–45.
  • Roberts, I., and Rush, A. (2011). Understanding China's demand for resource imports. China Econ. Rev. 3, 566–579.
  • Robinson, B.H. (2009). E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191.
  • Premalatha, M., Abbasi, T., Abbasi, T., and Abbasi, S.A. (2014). The generation, impact, and management of E-waste: State-of-the-art. Crit. Rev. Environ. Sci. Technol. 44, 1577–1678.
  • StEP. (2010). Solving the E-Waste Problem (StEP) initiative – Towards sustainable solutions. Retrieved from http://siree.portodigital.org/siree2011/downloads/apresentacoes/john_dickenson.pdf
  • Berglund, B., Carlsson, A., Frändegård, P., Krook, J., and Svanström, S. (2013). To prospect an urban mine—assessing the metal recovery potential of infrastructure “cold spots” in Norrköping, Sweden. J. Clean. Prod. 55, 103–111.
  • Graedel, T. (2011). The prospects for urban mining. Bridge 41(1), 43–50.
  • Ogunseitan, O.A., Schoenung, J.M., Saphores, J.-D. M., and Shapiro, A.A. (2009). The electronics revolution: From e-wonderland to e-wasteland. Science 326, 670–671.
  • Pokhrel, L.R., and Dubey, B. (2013). Global scenarios of metal mining, environmental repercussions, public policies, and sustainability: A review. Crit. Rev. Environ. Sci. Technol. 43(21), 2352–2388.
  • Williams, E. (2011). Environmental effects of information and communications technologies. Nature 479(7373), 354–358.
  • Li, J., Tian, B., Liu, T., Liu, H., Wen, X., and Honda, S. (2006). Status quo of e-waste management in mainland China. J. Mater. Cycles Waste Manage. 8(1), 13–20.
  • Brezet, H., Van Hemel, C., Böttcher, H., and Clarke, R. (1998). Ecodesign: A promising approach to sustainable production and consumption. Geneva: United Nations Pubns. ISBN 928071631X.
  • Charter, M. (1997). Managing eco-design. Ind. Environ. 1–2, 29–31.
  • Hauschild, M., Jeswiet, J., and Alting, L. (2005). From life cycle assessment to sustainable production: Status and perspectives. Ann. CIRP 2, 1–21.
  • Karlsson, R., and Luttropp, C. (2006). EcoDesign: What's happening? An overview of the subject area of EcoDesign and of the papers in this special issue. J. Clean. Prod. 15–16, 1291–1298.
  • Van Hemel, C., and Cramer, J. (2002). Barriers and stimuli for ecodesign in SMEs. J. Clean. Prod. 5, 439–453.
  • Bonvoisin, J., Lelah, A., Mathieux, F., and Brissaud, D. (2014). An integrated method for environmental assessment and ecodesign of ICT-based optimization services. J. Clean. Prod. 68(0), 144–154.
  • Navajas, A., Bernarte, A., Arzamendi, G., and Gandía, L. (2014). Ecodesign of PVC packing tape using life cycle assessment. Int. J. Life Cycle Assess. 19, 218–230.
  • Spangenberg, J.H., Fuad-Luke, A., and Blincoe, K. (2010). Design for sustainability (DfS): The interface of sustainable production and consumption. J. Clean. Prod. 15, 1483–1491.
  • Luttropp, C., and Lagerstedt, J. (2006). EcoDesign and The Ten Golden Rules: Generic advice for merging environmental aspects into product development. J. Clean. Prod. 15, 1396–1408.
  • Choi, J.-K., and Ramani, K.A. (2009). Quest for sustainable product design: A systematic methodology for integrated assessment of environmentally benign and economically feasible product design. Saarbrücken: VDM Verlag. ISBN 978-3639115987.
  • Charter, M., and Chick, A. (1997). Editorial. J. Sustainable Prod. Des. 1, 5–6.
  • Brezet, J.C., and van Hemel, C.G. (1997). Promise, a promising approach to sustainable production and consumption. Paris: UNEP. ISBN 92–807–1631-X.
  • Meinders, H., and Meuffels, M. (2001). Product chain responsibility—An industry perspective. Corp. Environ. Strat. 8(4), 348–354.
  • Stevels, A. (1999). Integration of ecodesign into business, a new challenge. In Proceedings of first international symposium on environmentally conscious design and inverse manufacturing, EcoDesign’99 Feb., 1–3, 1999 (pp. 27–32). Tokyo: IEEE.
  • Jansen, A., and Stevels, A. (2006). Combining eco-design and user benefits from human-powered energy systems, a win–win situation. J. Clean. Prod. 15, 1299–1306.
  • Pfahl, R.C. (2011). Journey to a sustainable world. In Proceedings of second international symposium on environmentally conscious design and inverse manufacturing, EcoDesign’01 Dec., 11–15, 2001 (pp. 895–899). Tokyo: IEEE.
  • Park, P.-J., and Lee, K.-M. (2003). Development of ecodesign method for electronics products. In Proceedings of 3rd international symposium on environmentally conscious design and inverse manufacturing, EcoDesign’03 Dec., 8–11, 2003 (pp. 381–382). Tokyo: IEEE.
  • Stevels, A. (2009). Adventures in ecodesign of electronic products: 1993–2007. Enschede: Print Partner Ipskamp.
  • Stevels, A. (2001). Application of EcoDesign: Ten years of dynamic development. In Proceedings of second international symposium on environmentally conscious design and inverse manufacturing, EcoDesign’01 Dec., 11–15, 2001 (pp. 905–915). Tokyo: IEEE.
  • Baumann, H., Boons, F., and Bragd, A. (2002). Mapping the green product development field: Engineering, policy and business perspectives. J. Clean. Prod. 10(5), 409–425.
  • Low, J.S. C., Lu, W.F., and Song, B. (2014). Methodology for an integrated life cycle approach to design for environment. Key Eng. Mater. 572, 20–23.
  • Ashby, M.F. (2005). Materials selection in mechanical design ( 3rd ed.) (pp. 1–8). Oxford: Elsevier Butterworth-Heinemann.
  • Lam, C.W., Aguirre, M.P., Schischke, K., Nissen, N.F., Ogunseitan, O.A., and Schoenung, J.M. (2012). International harmonization of models for selecting less toxic chemical alternatives: Effect of regulatory disparities in the United States and Europe. Integr. Environ. Assess. Manage. 8(4), 723–730.
  • Ogunseitan, O.A., and Schoenung, J.M. (2012). Human health and ecotoxicological considerations in materials selection for sustainable product development. MRS Bull. 37(04), 356–363.
  • Jośko, I., and Oleszczuk, P. (2012). Manufactured nanomaterials: The connection between environmental fate and toxicity. Crit. Rev. Environ. Sci. Technol. 43(23), 2581–2616.
  • Bourzac, K. (2012). Photonic chips made easier. Nature 483, 388.
  • Li, Y., Moon, K.S., and Wong, C.P. (2005). Electronics without lead. Science 308, 1419–1420.
  • Li, Y., and Wong, C.P. (2006). Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mat. Sci. Eng. R51, 1–35.
  • McElroy, J., and Pfahl, R. (2008). Environmentally friendly electronics for high reliability. In Proceedings of international conference on electronic packaging technology and high density packaging, ICEPT-HDP’08 July 28–31, 2008 (pp. 1–3). Shanghai: IEEE.
  • Zhang, R., Agar, J.C., and Wong, C.P. (2010). Recent advances on electrically conductive adhesives. In Proceedings of 12th electronics packaging technology conference, EPTC’10 Dec., 8–10, 2010 (pp. 696–704). Singapore: IEEE.
  • Avouris, P., Appenzeller, J., Martel, R., and Wind, S.J. (2003). Carbon nanotube electronics. Proc. IEEE 91, 1772–1784.
  • Saito, S. (1997). Carbon nanotubes for next-generation electronics devices. Science 278, 77–78.
  • Manzetti, S., and Andersen, O. (2012). Toxicological aspects of nanomaterials used in energy harvesting consumer electronics. Renewable Sustainable Energy Rev. 16, 2102–2110.
  • Kanungo, M., Lu, H., Malliaras, G.G., and Blanchet, G.B. (2009). Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 5911, 234–237.
  • Faramarzi, V., Niess, F., Moulin, E., Maaloum, M., Dayen, J.-F., Beaufrand, J.-B., Zanettini, S., Doudin, B., and Giuseppone, N. (2012). Light triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nat. Chem. 4, 485–490.
  • Kreupl, F. (2012). Electronics: Carbon nanotubes finally deliver. Nature 484, 321–322.
  • Xiong, F., Liao, A.D., Estrada, D., and Pop, E. (2011). Low-power switching of phase-change materials with carbon nanotube electrodes. Science 6029, 568–570.
  • Boks, C., Wever, R., and Stevels, A. (2011). State-of-the-art ecodesign on the electronics shop shelves? A quantitative analysis of developments in ecodesign of TV sets. In J. Hesselbach and C. Herrmann (Eds.), Glocalized solutions for sustainability in manufacturing (pp. 167–172). Berlin: Springer.
  • Zeng, X.L., Li, J.H., and Singh, N. (2014). Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 44(10), 1129–1165.
  • Tong, H.-M. (1995). Microelectronics packaging: Present and future. Mat. Chem. Phys. 40(3), 147–161.
  • Tummala, R.R. (2005). Packaging: Past, present and future. In Proceedings of 6th international conference on electronic packaging technology, Aug. 30-Sept. 2, 2005 (pp. 3–7). Shenzhen: IEEE.
  • Tong, H.-M. (1995). Microelectronics packaging: Present and future. Mat. Chem. Phys. 3, 147–161.
  • Wong, C.P., Luo, S.J., and Zhang, Z.Q. (2000). Flip the chip. Science 5500, 2269–2270.
  • Chang, N.-B., Pires, A., and Martinho, G. (2011). Empowering systems analysis for solid waste management: Challenges, trends, and perspectives. Crit. Rev. Environ. Sci. Technol. 41(16), 1449–1530.
  • Reck, B.K., and Graedel, T.E. (2012). Challenges in metal recycling. Science 6095, 690–695.
  • Xanthos, M. (2012). Recycling of the #5 polymer. Science 6095, 700–702.
  • Duan, H.B., Li, J.H., Liu, Y., Yamazaki, N., and Jiang, W. (2011). Characterization and inventory of PCDD/Fs and PBDD/Fs emissions from the incineration of waste printed circuit board. Environ. Sci. Technol. 45, 6322–6328.
  • Shingkuma, T., and Managi, S. (2010). On the effectiveness of a license scheme for E-waste recycling: The challenge of China and India. Environ. Impact Assess. Rev. 4, 262–267.
  • Andreola, F., Barbieri, L., Corradi, A., and Lancellotti, I. (2007). CRT glass state of the art. J. Eur. Ceram. Soc. 27(2–3), 1623–1629.
  • Wu, J., Li, J., and Xu, Z. (2008). Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: Problems and improvements. Environ. Sci. Technol. 42(14), 5272–5276.
  • Li, J.H., and Zeng, X.L. (2012). Recycling printed circuit boards. In V. Goodship and A. Stevels (Eds.), Waste electrical and electronic equipment (WEEE) handbook. Cambridge: Woodhead Publishing Ltd.
  • Zhou, Y., Wu, W., and Qiu, K. (2010). Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Manage. 30(11), 2299–2304.
  • Yuan, W.Y., Li, J.H., Zhang, Q.W., and Saito, F. (2012). Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass. Environ. Sci. Technol. 46, 4109–4114.
  • Zhan, L., and Xu, Z. (2011). Separating and recovering Pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation. Environ. Sci. Technol. 45, 5359–5365.
  • Xue, M., Li, J., and Xu, Z. (2012). Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles. Environ. Sci. Technol. 46(5), 2661–2667.
  • Zeng, X.L., Li, J.H., Xie, H., and Liu, L. (2013). A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid. Chemosphere 93, 1288–1294.
  • Rose, C.M. (2000). Design for environment: A method for formulating product end-of-life strategies. California: Stanford University.
  • Rose, C.M., and Ishii, K. (1999). Product end-of-life strategy categorization design tool. J. Electron. Manuf. 9(1), 41–51.
  • Rose, C.M., Stevels, A., and Ishii, K. (2002). Method for formulating product end-of-life strategies for electronics industry. J. Electron. Manuf. 11(2), 185–196.
  • Zeng, X.L., Sun, Q., Huo, B., Wan, H., and Jing, C. (2010). Integrated solid waste management under global warming. Open Waste Manage. J. 3, 13–17.
  • Pigosso, D.C. A., Zanette, E.T., Filho, A.G., Ometto, A.R., and Rozenfeld, H. (2010). Ecodesign methods focused on remanufacturing. J. Clean. Prod. 18(1), 21–31.
  • Georgiadis, P., and Besiou, M. (2008). Sustainability in electrical and electronic equipment closed-loop supply chains: A system dynamics approach. J. Clean. Prod. 16(15), 1665–1678.
  • Li, J.H., and Duan, H.B. (2008). Study on best available technology of WEEE treatment for less-developed countries. In Proceedings of the international conference on waste engineering and management, ICWEM’08 May 28–30, 2008 (pp. 1–14). Hong Kong, China.
  • Duan, H.B., Hou, K., Li, J.H., and Zhu, X. (2011). Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J. Environ. Manage. 92(3), 392–399.
  • Li, J.H., Shi, P., Wang, Z., Chen, Y., and Chang, C.C. A. (2009). Combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77(8), 1132–1136.
  • Zeng, X.L., Zheng, L., Xie, H., Lu, B., Xia, K., Chao, K., Li, W., Yang, J., Lin, S., and Li, J.H. (2012). Current status and future perspective of waste printed circuit boards recycling. Procedia Environ. Sci. 16, 590–597.
  • Verschaeve, L. (2014). Environmental impact of radiofrequency fields from mobile phone base stations. Crit. Rev. Environ. Sci. Technol. 44(12), 1313–1369.
  • Zeng, X.L., and Li, J.H. (2014). Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. J. Hazard. Mater. 271, 50–56.
  • Karak, T., Bhagat, R.M., and Bhattacharyya, P. (2011). Municipal solid waste generation, composition, and management: The world scenario. Crit. Rev. Environ. Sci. Technol. 42(15), 1509–1630.
  • Li, J.H., Lopez, N.B. N., Liu, L., Zhao, N., Yu, K., and Zheng, L. (2013). Regional or global WEEE recycling. Where to go? Waste Manage. 33(4), 923–934.
  • Li, J., and Xu, Z. (2010). Environmental friendly automatic line for recovering metal from waste printed circuit boards. Environ. Sci. Technol. 44, 1418–1423.
  • Stevels, A., Huisman, J., Wang, F., Li, J.H., Li, B., and Duan, H. (2013). Take back and treatment of discarded electronics: A scientific update. Front. Environ. Sci. Eng. 7(4), 475–482.
  • Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., and Stoica, I. (2010). A view of cloud computing. Commun. ACM 53, 50–58.
  • Miorandi, D., Sicari, S., Pellegrini, F.D., and Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks 7, 1497–1516.
  • Atzori, L., Iera, A., and Morabito, G. (2010). The Internet of things: A survey. Comput. Networks 54(15), 2787–2805.
  • Lu, J.-W., Chang, N.-B., and Liao, L. (2012). Environmental informatics for solid and hazardous waste management: Advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 43(15), 1557–1656.
  • Zeng, X.L., Li, J.H., Stevels, A., and Liu, L.L. (2013). Perspective of electronic waste management in China based on a legislation comparison between China and the EU. J. Clean. Prod. 51(0), 80–87.
  • Electronics Take Back Coalition. (2012). State legislation. Retrieved January 2013, from http://www.electronicstakeback.com/legislation/state_legislation.htm.
  • Holt, H.R. A. (1994). First step in electronic ecodesign. In Proceedings of IEEE international symposium on electronics and the environment, ISEE’94 May 2–4, 1994 (pp. 191–195). San Fransisco, CA: IEEE.
  • Li, J.H., Liu, L., Ren, J., Duan, H., and Zheng, L. (2012). Behavior of urban residents toward the discarding of waste electrical and electronic equipment: A case study in Baoding, China. Waste Manage. Res. 30(11), 1187–1197.
  • Saphores, J.-D. M., Ogunseitan, O.A., and Shapiro, A.A. (2012). Willingness to engage in a pro-environmental behavior: An analysis of e-waste recycling based on a national survey of U.S. households. Resour. Conserv. Recycl. 60(0), 49–63.
  • Song, Q., Wang, Z., and Li, J. (2012). Residents’ behaviors, attitudes, and willingness to pay for recycling e-waste in Macau. J. Environ. Manage. 106, 8–16.
  • Handfield, R.B., Melnyk, S.A., Calantone, R.J., and Curkovic, S. (2001). Integrating environmental concerns into the design process: The gap between theory and practice. IEEE Trans. Eng. Manage. 48(2), 189–208.
  • Boks, C. (2006). The soft side of ecodesign. J. Clean. Prod. 14(15), 1346–1356.
  • Collier, P., and Alles, C.M. (2010). Materials ecology: An industrial perspective. Science 6006, 919–920.
  • Mell, P., and Grance, T. (2011). The NIST definition of cloud computing (draft). NIST Spec. Publ. 800, 145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.