1,424
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Bio-Oxidation and Biocyanidation of Refractory Mineral Ores for Gold Extraction: A Review

, &
Pages 1611-1643 | Published online: 15 May 2015

REFERENCES

  • Acevedo, F. (2000). The use of reactors in biomining processes. Electronic Journal of Biotechnology, 3, 184–194.
  • Acevedo, F., Cacciuttolo, M.A., and Gentina, J.C. (1988). Comparative performance of stirred and Pachuca tanks in the bioleaching of a copper concentrate. Biohydrometallurgy: Proceedings of the International Biohydrometallurgy Symposium, 385–394.
  • Acevedo, F., Canales, C., and Gentina, J.C. (1999). Biooxidation of an enargite-pyrite gold concentrate in aerated columns. In: Amils, R., and Ballester, A., eds. Biohydromatallurgy and the Environment Toward the Mining of the 21st Century, Part A. Elsevier, Amsterdam, the Netherlands. 301–308.
  • Afenya, P.M. (1991). Treatment of carbonaceous refractory gold ores. Minerals Engineering, 4, 1043–1055.
  • Ahmadi, A., Schaffie, M., Manafi, Z., and Ranjbar, M. (2010). Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy, 104, 99–105.
  • Ahmadi, A., Schaffie, M., Petersen, J., Schippers, A., and Ranjbar, M. (2011). Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy, 106, 84–92.
  • Allen, E.E., Tyson, G.W., Whitaker, R.J., Detter, J.C., Richardson, P.M., and Banfield, J.F. (2007). Genome dynamics in a natural archaeal population. Proceedings of the National Academy of Sciences of the USA, 104, 1883–1888.
  • Amankwah, R.K., Yen, W.T., and Ramsay, J.A. (2005). Two-stage bacterial pre-treatment process for double refractory gold ores. Minerals Engineering, 18, 103–108.
  • Askeland, R. A., and Morrison, S. M. (1983). Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginos. Applied and Environmental Microbiology, 45, 802–1807.
  • Atkins, A. S., and Pooley, F. D. (1983). Comparison of bacterial reactors employed in the oxidation of sulfide concentrates. In: Rossi, G., and Torma, A.E., eds. Recent Progress in Biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Italy. 111–125.
  • Atkins, A. S., Pooley, F.D., and Townsley, C.C. (1986). Comparative mineral sulfide leaching in shake flasks, percolation columns and pachuca reactors using Thiobacillus ferrooxidans. Process Biochemistry, 21, 3–10.
  • Auld, R. R., Myre, M., MyKytczuk, N. C., Leduc, L. G., and Merritt, T. J. (2013). Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. Journal of Microbiological Methods, 93, 108–115.
  • Banerjee, P. C., Ray, M. K., Koch, C., Bhattacharyya, S., Shivaji, S., and Stackebrandt, E. (1996). Molecular characterization of two acidophilic heterotrophic bacteria isolated from a copper mine in India. Systematic and Applied Microbiology, 19, 78–82.
  • Banfield, J. F., Verberkmoes, N. C., Hettich, R. L., and Thelen, M. P. (2005). Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS: A Journal of Integrative Biology, 9, 301–333.
  • Baker, B. J., and Banfield, J. F. (2003). Microbial communities in acid mine drainage FEMS Microbiology Ecology, 44, 139–152.
  • Bakhtiari, F., Atashi, H., Zivdar, M., Seyedbagheri, S., and Fazaelipoor, M.H. (2011). Bioleaching kinetics of copper from copper smelters dust. Journal of Industrial and Engineering Chemistry, 17, 29–35.
  • Barrette, L. M., and Couillard, D. (1993). Bacterial leaching of sulfide tailings in an airlift reactor. In: Torma, A. E., Wey, J. E., and Laksman, V. L., eds. Biohydrometallurgical Technologies, Vol. I. The Minerals, Metals and Materials Society, Warrendale, Pennsylavania. 205–215.
  • Bas, A. D., Altinkaya, P., Yazici, E. Y., and Deveci, H. (2012). Preg-robbing potential of sulfide bearing gold ores. Proceedings of the XIII International Mineral Processing Symposium, 613–618.
  • Bell, N., and Quan, L. (1999). The application of Bactech (Australia) Ltd. technology for processing refractory gold ores at Youanmi gold mine. Paper presented at IBS’97-BIOMINE’97: Biotechnology Comes of Age, Sydney, Australia, August 4–6. Paper M2.3.
  • Blumer, C., and Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives in Microbiology, 173, 170–177.
  • Bond, P. L., Smriga, S. P., and Banfield, J. F. (2000). Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 3842–3849.
  • Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 591–604.
  • Boyle, R. W. (1979). The geochemistry of Gold and its deposits. Canada Geological Survey Bulletin, 280.
  • Brandl, H., Lehmann, S., Faramarzi, M.A., and Martinelli, D. (2008). Biomobilization of silver, gold, and platinum from solid materials by HCN-forming microorganisms, Hydrometallurgy, 94, 14–17.
  • Brierley, J. A., and Brierley, C. L. (2001). Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59, 233–239.
  • Brierley, C.L. (1997). Mining biotechnology: Research to commercial development and beyond. In: Rawlings, D. E., ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin. 3–17.
  • Brierley, C. L. (1978). Bacterial leaching. Critical Reviews in Microbiology, 6, 207–262.
  • Bryan, C. G., Joulian, C., Spolaore, P., El Achbouni, H., Challan-Belval, S., Morin, D., and d’Hugues, P. (2011). The efficiency of indigenous and designed consortia in bioleaching stirred tank reactors. Minerals Engineering, 24, 1149–1156.
  • Campbell, S. C., Olson, G. J., Clark, T. R., and McFeters, G. (2001). Biogenic production of cyanide and its application to gold recovery. Journal of Industrial Microbiology and Biotechnology, 26, 134–139.
  • Castric, P. A. (1975). Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Canadian Journal of Microbiology, 29, 19–21.
  • Castric, P. A. (1981). The metabolism of hydrogen cyanide by bacteria. In: Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J., and Wissing, F., eds. Cyanide in Biology Academic Press, London. 233–261.
  • Celep, O., Alp, I., Deveci, H., and Vicil, M. (2009). Characterization of refractory behavior of complex gold/silver ore by diagnostic leaching. Transactions of Nonferrous Metals Society of China, 19, 707–713.
  • Checa, S. K., and Soncini, F. C. (2011). Bacterial gold sensing and resistance. Biometals, 24, 419–427.
  • Chen, T. T., Cabri, L. J., and Dutrizac, J. E. (2002). Characterizing gold in refractory sulfide gold ores and residues. Journal of the Minerals, Metals and Materials Society, 54, 20–22.
  • Cheng, H., and Hu, Y. H. (2007). Bioleaching of anilite using pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Minerals Engineering, 20, 1187–1190.
  • Crundwell, F. K. (2001). Modeling, simulation, and optimization of bacterial leaching reactors. Biotechnolgy Bioengineering, 71, 255–265.
  • Crundwell, F. K. (2003). How do bacteria interact with minerals? Hydrometallurgy, 71, 75–81.
  • Das, T., Ayyappan, S., and Chaudhury, G. R. (1999). Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. BioMetals, 12, 1–10.
  • Denef, V. J., Mueller, R. S., and Banfield, J. F. (2010). AMD biofilms, using model communities to study microbial evolution and ecological complexity in nature. International Society for Microbial Ecology Journal, 4, 599–610.
  • Dew, D. H. (1995). Comparison of performance for continuous bio-oxidation of refractory gold ore flotation concentrates. In: Vargas, T., Jerez, C. A., Wiertz, J. V., and Toledo, H., eds. Biohydrometallurgical Processing, Vol.45. Universidad de Chile, Santiago, Chile. 239–251.
  • Dew, D. W., Lawson, E. N., and Broadhurst, J. L. (1997). The BIOX process for biooxidation of gold-bearing ores or concentrates. In: Rawlings, D. E., ed. Biomining: Theory, Microbes and Industrial Processes. Springer Verlag, Berlin, Germany. 45–80.
  • Dew, D. W., Van Buren, C., McEwan, K., and Bowker, C. (1999). Bioleaching base metal sulfide concentrates: a comparison of mesophile and thermophile bacterial cultures: In: Amils, R., and Ballester, A., eds. Biohydromatallurgy and the Environment Toward the Mining of the 21st Century, Part A. Elsevier, Amsterdam, The Netherlands. 229–238.
  • Donati, E. R., Viera, M. R., Tavani, E. L., Giaveno, M. A., Lavalle, T. L., and Chiacchiarini, P. A. (2009). Gold bioleaching of electronic waste by cyanogenic bacteria and enhancement with bio-oxidation. Advanced Materials Research, 71–73, 661–664.
  • Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F. (2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.
  • Erüst, C., Akcil, A., Gahan, C. S., Tuncuk, A., and Deveci, H. (2013). Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. Journal of Chemical Technology and Biotechnology, 88, 2115–2132.
  • Falconer, D. M., Craw, D., Youngson, J. H., and Faure, K. (2006). Gold and sulfide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand. Ore Geology Reviews, 28, 525–545.
  • Faramarzi, M. A., and Brandl, H. (2006). Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiology Letters, 259, 47–52.
  • Faramarzi, M. A., Stagars, M., Pensini, E., Krebs, W., and Brandl, H. (2004). Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology, 113, 321–326.
  • Ferraz, L. F.C., Verde, L. C.L., Vicentini, R., Felicio, A. P., Ribeiro, M. L., Alexandrino, F., Novo, M. T.M., Garcia, O.Jr., Rigden, D. J., and Ottoboni, L. M.M. (2011). Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR. Antonie van Leeuwenhoek, 99, 609–617.
  • Flaishman, M. A., Eyal, Z., Zilberstein, A., Voisard, C., and Haas, D. (1996). Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Molecular Plant-Microbe Interaction, 9, 642–645.
  • Foucher, S., Battaglia-Brunet, F., d’Hugues, P., Clarens, M., Godon, J. J., and Morin, D. (2003). Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor. Hydrometallurgy, 71, 5–12.
  • Gahan, C. S., Srichandan, H., Kim, D. J., and Akcil, A. (2010). Biohydrometallurgy and biomineral processing technology: A review on its past, present and future. Research Journal of Recent Sciences, 1(10), 85–99.
  • Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat’eva, T. F., Moore, E. R.B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M. M., and Golyshin, P. N. (2000). Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology, 50, 997–1006.
  • Gormely, L. S., and Brannion, R. M.R. (1989). Engineering design of microbiological leaching reactors. Biohydrometallurgy 1989: Proceedings of the International Biohydrometallurgy Symposium, 499–518.
  • Hallberg, K. B., and Johnson, D. B. (2001). Biodiversity of acidophilic microorganisms. Advances in Applied Microbiology, 49, 37–84.
  • Haque, K. (1992). The role of oxygen in cyanide leaching of gold ore. CIM Bulletin, 85–963, 31–38.
  • Henley, K. J. (1975). Gold ore mineralogy and its relation to metallurgical treatment. Mineral Science and Engineering, 7, 289–312.
  • Henley, K. J., Clarke, N. C., and Sauter, P. (2001). Evaluation of a diagnostic leaching technique for gold in native gold and gold ± silver tellurides. Minerals Engineering, 14, 1–12.
  • Hilson, G., and Monheminus, A. J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14, 1158–1167.
  • Hol, A., van der Weijden, R. D., Weert, G. V., Kondos, P., and Buisman, C. J.N. (2010). Bio-reduction of pyrite investigated in a gas lift loop reactor. International Journal of Mineral Processing, 94, 140–146.
  • Hol, A., van der Weijden, R. D., Weert, G. V., Kondos, P., and Buisman, C. J.N. (2011a). Processing of Arsenopyritic gold concentrates by partial bio-oxidation followed by bioreduction. Environmental Science and Technology, 45, 6316–6321.
  • Hol, A., van der Weijden, R. D., Weert, G. V., Kondos, P., and Buisman, C. J.N. (2011b). The effect of anaerobic processes on the leachability of an arsenopyrite refractory ore. Minerals Engineering, 24, 535–540.
  • Hoque, M. E., and Philip, O. J. (2011). Biotechnological recovery of heavy metals from secondary sources-An overview. Materials Science and Engineering C31, 57–66.
  • Hu, Q., Liang, Y., Yin, H., Guo, X., Hao, X., Liu, X., and Qiu, G. (2013). Metagenomic insights into the microbial community diversity between leaching heap and acid mine drainage. Advanced Materials Research, 825, 141–144.
  • Jaatinen, T. (2011). Bio-oxidation and bioleaching of arsenic containing and refractory gold concentrates. Master of Science Thesis, Tampere University of Technology. Retrieved from http://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/20695/jaatinen.pdf?sequence=3
  • Johnson, D. B., and Hallberg, K. B. (2005). Acid mine drainage: remediation options. Science of the Total Environment, 338, 3–14.
  • Johnson, D. B., Sen, A. M., Kimura, S., Rowe, O. F., and Hallberg, K. B. (2006). Novel biosulfidogenic system for selective recovery of metals from acidic leach liquors and waste streams. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 115, 19–24.
  • Kakosnen, A. H., Lavonen, L., Kuusenaho, M., Kolli, A., Narhi, H., Vestola, E., Puhakka, J. A., and Tuovinen, O. H. (2011). Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Minerals Engineering, 24, 1113–1121.
  • Kita, Y., Nishikawa, H., and Takemoto, T. (2006). Effects of cyanide and dissolved oxygen concentration on biological Au recovery. Journal of Biotechnology, 124, 545–551.
  • Knowles, C. (1976). Microorganisms and cyanide. Bacteriological Review, 40, 652–680.
  • Kock, D., and Schippers, A. (2008). Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Applied and Environmental Microbiology, 74, 5211–5219.
  • Kulpa, C. F., and Brierley, J. A. (1993). Microbial deactivation of preg-robbing carbon in gold ore. In: Torma, A. E., Wey, J. E., and Lakshmanan, V. I., eds. Biohydrometallurgical Technologies 1, Proceedings of an International Biohydrometallurgical Symposium. Jackson Hole, Wyoming. 427–435.
  • La Brooy, S. R., Lingei, H. G., and Walker, G. S. (1994). Review of gold extraction from ores. Minerals Engineering, 7, 1213–1241.
  • Laguna, C., Gonzalez, F., García-Balboa, C., Ballester, A., Blázquez, M. L., and Muñoz, J. A. (2011). Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery, Minerals Engineering, 24, 10–18
  • Laville, J., Blumer, C., Schroetter, C. V., Gaia, V., Défago, G., Keel, C., and Haas, D. (1998). Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas Fluorescens CHAO. Journal of Bacteriology, 180, 3187–3196.
  • Lawson, E. N., Barkhuizen, M., and Dew, D. W. (1999). Gold solubilisation by the cyanide producing bacteria Chromobacterium violaceum. In: Amils, R., and Ballester, A., eds. Biohydrometallurgy and the Environment toward the Mining of the 21st Century. Elsevier, New York. 239–246.
  • Li, J., and Miller, J. D. (2006). A review of gold leaching in acid thiourea solutions. Mineral Processing and Extractive Metallurgical Review, 27, 117–214.
  • Livesey-Goldblatt, E., Norman, P., and Livesey-Goldblatt, D. R. (1983). Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation. In: Rossi, G., and Torma, A.E. ed. Recent Progress in Biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Italy. 627–641.
  • Merchant, B. (1998). Gold, the noble metal and the paradoxes of its toxicology. Biologicals, 45, 49–59.
  • Mousavi, S. M., Yaghmaei, S., Vossoughi, M., Jafari, A., and Hoseini, S. A. (2005). Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80, 139–144.
  • Murr, L. E., and Brierley, J. A. (1978). The use of large-scale test facilities in studies of the role of microorganisms in commercial leaching operations. In: Murr, L. E., Torma, A. E. and Brierley, J. A. eds. Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic Press Inc., New York, 491–520.
  • Mwase, J. M., Petersen, J., and Eksteen, J. J. (2012). A conceptual flow sheet for heap leaching of platinum group metals (PGMs) from a low-grade ore concentrate. Hydrometallurgy, 111–112, 129–135.
  • Mxinwa, S., Huberts, R., and Belaid, M. (2012). Process parameters for bio-oxidation of sulfur in the pre-treatment of bioleaching residues destined for cyanide gold extraction. Paper presented at the World Congress on Engineering 2012, London, England, July 4–6.
  • Nakajima, A. (2003). Accumulation of gold by microorganisms. World Journal of Microbiology and Biotechnology, 19, 369–374.
  • Natarajan, K. A. (2008). Microbial aspects of acid mine drainage and its bioremediation. Transactions of Nonferrous Metals Society of China, 18, 1352–1360.
  • Ndlovu, S. (2008). Biohydrometallurgy for sustainable development in the African minerals industry. Hydrometallurgy, 91, 20–27.
  • Ofori-Sarpong, G., Osseo-Asare, K., and Tien, M. (2011). Fungal pretreatment of sulfides in refractory gold ores. Minerals Engineering, 24, 499–504.
  • Ofori-Sarpong, G., Tien, M., and Osseo-Asare, K. (2010). Myco-hydrometallurgy: Coal model for potential reduction of preg-robbing capacity of carbonaceous gold ores using the fungus, Phanerochaete chrysosporium. Hydrometallurgy, 102, 66–72.
  • Okibe, N., Gericke, M., Hallberg, K. B., and Johnson, D. B. (2003). Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Applied and Environmental Microbiology, 69, 1936–1943.
  • Olson, G. J. (1994). Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiology Letters, 119, 1–6.
  • Olson, G. J., and Clark, T. R. (2008). Bioleaching of molybdenite. Hydrometallurgy, 93, 10–15.
  • Olumbambi, P. A., Ndlovu, S., Potgieter, J. H., and Borode, J. (2008). Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulfide ores. Transactions of Nonferrous Metals Society of China, 18, 1234–1246.
  • Olumbambi, P. A., Potgieter, J. H., Ndlovu, S., and Borode, J. (2009). Electrochemical studies on interplay of mineralogical variations and particle size on bioleaching low grade complex sulfide ores. Transactions of Nonferrous Metals Society of China, 19, 1312–1325.
  • Oranid, S., and Lewis, D. M. (2013). Synthesising acid mine drainage to maintain and exploit indigenous mining micro-algae and microbial assemblies for biotreatment investigation. Environmental Science and Pollution Research, 20, 950–956.
  • Paterson, C. J. (1990). In: Arbriter, A., and Han, K. N., eds. Gold: Advances in Precious Metals Recovery. Gordon and Breach, New York. Ch. 1, 49–116.
  • Plumb, J. J., Hawkes, R. B., and Franzmann, P. D. (2007). The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In: Rawlings, D. E., and Johnson, D. B., eds.. Biomining, Springer-Verlag, Berlin. 217–235.
  • Pradhan, N., Nathsarma, K. C., Rao, S., Sukla, L. B., and Mishra, B. K. (2008). Heap bioleaching of chalcopyrite: A review. Minerals Engineering, 21, 355–365.
  • Rawlings, D. E. (1988). Sequence and structural analysis of the a− and j-dinitrogenase subunits of Thiobacillus ferrooxidans. Gene, 69, 337–343.
  • Rawlings, D. E. (2005). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4, 13–16.
  • Rawlings, D. E., Dew, D., and du Plessis, C. (2003). Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology, 21, 38–44.
  • Rawlings, D. E., and Johnson, D. B. (2007). The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology, 153, 315–324.
  • Rawlings, D. E., Tributsch, H., and Hansford, G. (1999). Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology, 145, 5–13.
  • Reith, F., Lengke, M. F., Falconer, D., Craw, D., and Southam, G. (2007). The geomicrobiology of gold. The International Society for Microbial Ecology Journal, 1, 567–584.
  • Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W. (2003). Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiol Biotechnology, 63, 239–248.
  • Rossi, G. (2001). The design of bioreactors. Hydrometallurgy, 59, 217–231.
  • Ruitenberg, R., Schultz, C. E., and Buisman, J. N. (2001). Bio-oxidation of minerals in air-lift loop bioreactors. International Journal of Mineral Processing, 62, 271–278.
  • Sand, W., Gehrke, T., and Hallmann, R. (1995). Sulfur chemistry, biofilm, and the (in) direct attack mechanism a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961–966.
  • Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., and Wright, T. L. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacterial. Hydrometallurgy, 104, 342–350.
  • Shi, S., and Fang, Z. (2005). Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. International Journal of Mineral Processing, 76, 3–12.
  • Siddiqui, M. H., Kumar, A., Kesari, K. K., and Arif, J. M. (2009). Biomining—a useful approach toward metal extraction. American-Eurasian Journal of Agronomy, 2, 84–88.
  • Tay, S. B., Natarajan, G. ,Rahim, M.N.A., Tan, H. T., Chung, M. C.M., Ting, Y. P., and Yew, W. S. (2013). Enhancing gold recovey from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Scientific Reports, 3, 22–36.
  • Tributsch, H. (2001). Direct versus indirect bioleaching. Hydrometallurgy, 59, 177–185.
  • Tsuruta, T. (2004). Biosorption and recycling of gold using various microorganisms. Journal of General Applied Microbiology, 50, 221–228.
  • Valdes, J., Cardenas, J. P., Quatrini, R., Esparza, M., Osorio, H., Duarte, F., Lefimil, C., Sepulveda, R., Jedlicki, E., and Holmes, D. S. (2010). Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy, 104, 471–476.
  • Valenzuela, L., Chi, A., Beard, S., Orell, A., Guiliani, N., Shabanowitz, J., Hunt, D. F., and Jerez, C. A. (2006). Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnological Advances, 24, 197–211.
  • Wakeman, D. K., Honkavirta, P., and Puhakka, J. A. (2011). Bioleaching of flotation by-products of talc production permits the separation of nickel and cobalt from iron and arsenic. Process Biochemistry, 46, 1589–1598.
  • Watling, H. R. (2006). The bioleaching of sulfide minerals with emphasis on copper sulfides – A review. Hydrometallurgy, 84, 81–108.
  • Winkler, K., Wysocka-Żołopa, M., Rećko, K., Dobrzyński, L., Vickery, J.C., and Balch, A. L. (2009). Formation of a partially oxidized gold compound by electrolytic oxidation of the solvoluminescent gold(I) trimer, Au3(MeN=COMe)3. Inorganic Chemistry, 48, 1551–1558.
  • Xie, X. H., Xiao, S. M., Wang, H.T., and Liu, J. S. (2009). Biooxidation of refractory gold ores by mixed moderate thermophiles in airlift bioreactor. Advanced Materials Research, 71–73, 469–472.
  • Yen, W. T., Amankwah, R. K., and Choi, Y. (2008). Microbial pre-treatment of double refractory gold ores. In: Young, C. A., Taylor, P. R., Anderson, C. G., and Choi, Y. eds. Proceedings of the 6th International Symposium, Hydrometallurgy, 2008. SME, Littleton, Colorado. 506–510.
  • Yeung, W. Y., Wuhrer, R., Cortie, M., and Ferry, M. (2007). Equal channel angular extrusion of high purity gold solid, Materials Forum, 31, 31–38.
  • Yin, H., Cao, L., Qiu, G., Wang, D., Kellogg, L., Zhou, J., Dai, Z., and Liu, X. (2007). Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial population in acid mine drainage and bioleaching systems. Journal of Microbiological Methods. 70, 165–178.
  • Zaulochnyi, P., Bulaev, A., Savari, E., Pivovarova, T., Kondratieva, T., and Sedelnikova, G. (2011). Two-stage process of bacterial-chemical oxidation of refractory pyrite-arsenopyrite gold bearing concentrate. Applied Biochemistry and Microbiology, 47, 833–840.
  • Zeng, W. M., Zhou, H. B., Wan, M. X., Chao, W. L., Xu, A. L., Liu, X. D., and Qiu, G. H. (2009). Preservation of Acidithiobacillus caldus: A moderately thermophilic bacterium and the effect on subsequent bioleaching of chalcopyrite. Hydrometallurgy, 96, 333–336.
  • Zhou, J. Y., and Cabri L. J. (2004). Gold process mineralogy: objectives, techniques, and applications. Journal of the Minerals, Metals and Material Society, 56, 49–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.