4,859
Views
369
CrossRef citations to date
0
Altmetric
Original Articles

Sulfate Radical and Its Application in Decontamination Technologies

, , &
Pages 1756-1800 | Published online: 18 May 2015

REFERENCES

  • Qu, J., and Fan, M. (2010). The current state of water quality and technology development for water pollution control in China. Crit. Rev. Environ. Sci. Technol., 40, 519–560.
  • Zheng, X., Zhang, B.-T., and Teng, Y. (2014). Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities. Sci. Total Environ., 476–477, 107–113.
  • Zhang, B.-T., Zhao, L.-X., and Lin, J.-M. (2008). Study on superoxide and hydroxyl radicals generated in indirect electrochemical oxidation by chemiluminescence and UV-Visible spectra. J. Environ. Sci., 20, 1006–1011.
  • Shukla, P., Sun, H., Wang, S., Ang, H.M., and Tadé, M.O. (2011). Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today, 175, 380–385.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol., 38, 3705–3712.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2003). Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol., 37, 4790–4797.
  • Zhang, B.-T., and Lin, J.-M. (2010). Chemiluminescence and energy transfer mechanism of lanthanide ions in different media based on peroxomonosulfate system. Luminescence, 25, 322–327.
  • Zhang, B.-T., Zhao, L., and Lin, J.-M. (2008). Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system. Talanta, 74, 1154–1159.
  • Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2003). Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam., 12, 207–228.
  • Peyton, G.R. (1993). The free-radical chemistry of persulfate-based total organic-carbon analyzers. Mar. Chem., 41, 91–103.
  • Raimbault, P., Pouvesle, W., Diaz, F., Garcia, N., and Sempéré, R. (1999). Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar. Chem., 66, 161–169.
  • Liang, C., and Bruell, C.J. (2008). Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders. Ind. Eng. Chem. Res., 47, 2912–2918.
  • Huang, K.-C., Zhao, Z., Hoag, G.E., Dahmani, A., and Block, P.A. (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61, 551–560.
  • Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., and Nurmi, J.T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ. Sci. Technol., 41, 1010–1015.
  • Hori, H., Nagaoka, Y., Murayama, M., and Kutsuna, S. (2008). Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environ. Sci. Technol., 42, 7438–7443.
  • Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., and Chang, D.-G. (2009). Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res., 43, 2811–2816.
  • Kirmser, E.M.D., Mártire, D.O., Gonzalez, M.C., and Rosso, J.A. (2010). Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate. J. Agric. Food Chem., 58, 12858–12862.
  • Tan, C., Gao, N., Deng, Y., An, N., and Deng, J. (2012). Heat-activated persulfate oxidation of diuron in water. Chem. Eng. J., 203, 294–300.
  • Fang, G.-D., Dionysiou, D.D., Zhou, D.-M., Wang, Y., Zhu, X.-D., Fan, J.-X., Gang, L., and Wang, Y.-J. (2013). Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere, 90, 1573–1580.
  • Yang, S., Cheng, J., Sun, J., Hu, Y., and Liang, X. (2013). Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS One, 8, e74877–e74877.
  • Deng, J., Shao, Y., Gao, N., Deng, Y., Zhou, S., and Hu, X. (2013). Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chem. Eng. J., 228, 765–771.
  • Deng, Y., and Ezyske, C.M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res., 45, 6189–6194.
  • Nadim, F., Huang, K.-C., and Dahmani, A.M. (2005). Remediation of soil and ground water contaminated with PAH using heat and Fe (II)-EDTA catalyzed persulfate oxidation. Water Air Soil Pollut. Focus, 6, 227–232.
  • Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., and Kutsuna, S. (2005). Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol., 39, 2383–2388.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2004). Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B: Environ., 54, 155–163.
  • He, X., de la Cruz, A.A., and Dionysiou, D.D. (2013). Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A: Chem., 251, 160–166.
  • Bandala, E.R., Pel⟨ez, M.A., Dionysiou, D.D., Gelover, S., Garcia, J., and Macías, D. (2007). Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. J. Photochem. Photobiol. A: Chem., 186, 357–363.
  • Fernandez, J., Maruthamuthu, P., Renken, A., and Kiwi, J. (2004). Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes. Appl. Catal. B: Environ., 49, 207–215.
  • Fernandez, J., Nadtochenko, V., and Kiwi, J. (2003). Photobleaching of Orange II within seconds using the oxone/Co2+ reagent through Fenton-like chemistry. Chem. Commun., 18, 2382–2383.
  • Chen, X., Qiao, X., Wang, D., Lin, J., and Chen, J. (2007). Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymono sulfate system. Chemosphere, 67, 802–808.
  • Hazime, R., Nguyen, Q.H., Ferronato, C., Huynh, T.K.X., Jaber, F., and Chovelon, J.-M. (2013). Optimization of imazalil removal in the system UV/TiO2/K2S2O8 using a response surface methodology (RSM). Appl. Catal. B: Environ., 132, 519–526.
  • Syoufian, A., and Nakashima, K. (2008). Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Study of reaction enhancement by various electron scavengers. J. Colloid Interface Sci., 317, 507–512.
  • Malato, S., Blanco, J., Richter, C., Braun, B., and Maldonado, M.I. (1998). Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl. Catal. B: Environ., 17, 347–356.
  • Yu, C.-H., Wu, C.-H., Ho, T.-H., and Hong, P.K.A. (2010). Decolorization of C.I. reactive Black 5 in UV/TiO2, UV/oxidant and UV/TiO2/oxidant systems: A comparative study. Chem. Eng. J., 158, 578–583.
  • Andersen, J., Pelaez, M., Guay, L., Zhang, Z., O’Shea, K., and Dionysiou, D.D. (2013). NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes. J. Hazard. Mater., 260, 569–575.
  • Shukla, P.R., Wang, S., Ang, H.M., and Tadé, M.O. (2010). Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep. Purif. Technol., 70, 338–344.
  • Shukla, P., Fatimah, I., Wang, S., Ang, H.M., and Tadé, M.O. (2010). Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catal. Today, 157, 410–414.
  • Rao, Y.F., Chu, W., and Wang, Y.R. (2013). Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway. Appl. Catal., A: Gen., 468, 240–249.
  • Lau, T.K., Chu, W., and Graham, N.J.D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82−: Study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol., 41, 613–619.
  • Sadik, W., and Shama, G. (2002). UV-induced decolourization of an azo dye by homogeneous advanced oxidation processes. Process Saf. Environ. Prot., 80, 312–316.
  • Hori, H., Yamamoto, A., Koike, K., Kutsuna, S., Osaka, I., and Arakawa, R. (2007). Persulfate-induced photochemical decomposition of a fluorotelomer unsaturated carboxylic acid in water. Water Res., 41, 2962–2968.
  • Chen, J., and Zhang, P. (2006). Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Sci. Technol., 54, 317–325.
  • Huang, Y.-F., and Huang, Y.-H. (2009). Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. J. Hazard. Mater., 162, 1211–1216.
  • David Gara, P.M., Bosio, G.N., Arce, V.B., Poulsen, L., Ogilby, P.R., Giudici, R., Gonzalez, M.C., and M⟨rtire, D.O. (2009). Photoinduced degradation of the herbicide clomazone model reactions for natural and technical systems. Photochem. Photobiol., 85, 686–692.
  • Criquet, J., and Leitner, N.K.V. (2009). Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere, 77, 194–200.
  • Wang, B.B., Cao, M.H., Tan, Z.J., Wang, L.L., Yuan, S.H., and Chen, J. (2010). Photochemical decomposition of perfluorodecanoic acid in aqueous solution with VUV light irradiation. J. Hazard. Mater., 181, 187–192.
  • Khataee, A.R., and Mirzajani, O. (2010). UV/peroxydisulfate oxidation of C. I. Basic Blue 3. Modeling of key factors by artificial neural network. Desalination, 251, 64–69.
  • Yeber, M.C., Díaz, L., and Fern´ndez, J. (2010). Catalytic activity of the SO4.− radical for photodegradation of the azo dye Cibacron Brilliant Yellow 3 and 3,4-dichlorophenol: Optimization by application of response surface methodology. J. Photochem. Photobiol. A: Chem., 215, 90–95.
  • Lin, Y.-T., Liang, C., and Chen, J.-H. (2011). Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere, 82, 1168–1172.
  • Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., and Chen, L.-W. (2011). Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol., 45, 9308–9314.
  • Chen, X., Xue, Z., Yao, Y., Wang, W., Zhu, F., and Hong, C. (2012). Oxidation degradation of Rhodamine B in aqueous by UV/S2O82− treatment system. Int. J. Photoenergy, 754691, 754695 pp.
  • Gao, Y.-Q., Gao, N.-Y., Deng, Y., Yang, Y.-Q., and Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J., 195–196, 248–253.
  • Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., and Guo, P. (2012). Degradation of trichloromethane by the combination of UV irradiation and peroxymonosulfate. Adv. Mater. Res., 518–523, 2479–2483.
  • Rivas, J., Gimeno, O., Borralho, T., and Beltr´n, F. (2010). Influence of oxygen and free radicals promoters on the UV-254 nm photolysis of diclofenac. Chem. Eng. J., 163, 35–40.
  • Chan, T.W., Graham, N.J.D., and Chu, W. (2010). Degradation of iopromide by combined UV irradiation and peroxydisulfate. J. Hazard. Mater., 181, 508–513.
  • Shih, Y.-J., Putra, W.N., Huang, Y.-H., and Tsai, J.-C. (2012). Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption. Chemosphere, 89, 1262–1266.
  • Lin, C.-C., Lee, L.-T., and Hsu, L.-J. (2013). Performance of UV/S2O82− process in degrading polyvinyl alcohol in aqueous solutions. J. Photochem. Photobiol. A: Chem., 252, 1–7.
  • Torres-Luna, J.R., Ocampo-Pérez, R., S´nchez-Polo, M., Rivera Utrilla, J., Velo-Gala, I., and Bernal-Jacome, L.A. (2013). Role of HO· and SO4•− radicals on the photodegradation of remazol red in aqueous solution. Chem. Eng. J., 223, 155–163.
  • Liu, X., Zhang, T., Zhou, Y., Fang, L., and Shao, Y. (2013). Degradation of atenolol by UV/peroxymonosulfate: Kinetics, effect of operational parameters and mechanism. Chemosphere, 93, 2717–2724.
  • Olmez-Hanci, T., and Arslan-Alaton, I. (2013). Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J., 224, 10–16.
  • Pi, Y., Feng, J., Sun, J., and Sun, J. (2013). Facile, effective, and environment-friendly degradation of sulfamonomethoxine in aqueous solution with the aid of a UV/Oxone oxidative process. Environ. Sci. Pollut. Res., 20, 8621–8628.
  • Méndez-Díaz, J., S´nchez-Polo, M., Rivera-Utrilla, J., Canonica, S., and von Gunten, U. (2010). Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chem. Eng. J., 163, 300–306.
  • Olmez-Hanci, T., Imren, C., Kabda, I., Tüenay, O., and Arslan-Alaton, I. (2011). Application of the UV-C photo-assisted peroxymonosulfate oxidation for the mineralization of dimethyl phthalate in aqueous solutions. Photochem. Photobiol. Sci., 10, 408–413.
  • Tan, C., Gao, N., Deng, Y., Zhang, Y., Sui, M., Deng, J., and Zhou, S. (2013). Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J. Hazard. Mater., 260, 1008–1016.
  • Neppolian, B., Celik, E., and Choi, H. (2008). Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol., 42, 6179–6184.
  • Fernandez, J., Maruthamuthu, P., and Kiwi, J. (2004). Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. J. Photochem. Photobiol. A: Chem., 161, 185–192.
  • Yu, Z., Kiwi-Minsker, L., Renken, A., and Kiwi, J. (2006). Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes. J. Mol. Catal. A: Chem., 252, 113–119.
  • Syoufian, A., and Nakashima, K. (2007). Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Optimization of reaction by peroxydisulfate electron scavenger. J. Colloid Interface Sci., 313, 213–218.
  • Sun, H., Feng, X., Wang, S., Ang, H.M., and Tadé, M.O. (2011). Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: Effects of support and sulphate oxidant. Chem. Eng. J., 170, 270–277.
  • Tyagi, V.K., Lo, S.-L., Appels, L., and Dewil, R. (2014). Ultrasonic treatment of waste sludge: A review on mechanisms and applications. Crit. Rev. Environ. Sci. Technol., 44, 1220–1288.
  • Li, B., Li, L., Lin, K., Zhang, W., Lu, S., and Luo, Q. (2013). Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason. Sonochem., 20, 855–863.
  • Adewuyi, Y.G., and Owusu, S.O. (2006). Ultrasound-induced aqueous removal of nitric oxide from flue gases: Effects of sulfur dioxide, chloride, and chemical oxidant. J. Phys. Chem. A, 110, 11098–11107.
  • Neppolian, B., Jung, H., Choi, H., Lee, J.H., and Kang, J.-W. (2002). Sonolytic degradation of methyl tert-butyl ether: The role of coupled fenton process and persulphate ion. Water Res., 36, 4699–4708.
  • Son, H.-S., Choi, S.-B., Khan, E., and Zoh, K.-D. (2006). Removal of 1,4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water Res., 40, 692–698.
  • Neppolian, B., Doronila, A., and Ashokkumar, M. (2010). Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res., 44, 3687–3695.
  • Chen, W.-S., and Su, Y.-C. (2012). Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason. Sonochem., 19, 921–927.
  • Su, S., Guo, W., Yi, C., Leng, Y., and Ma, Z. (2012). Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrason. Sonochem., 19, 469–474.
  • Gayathri, P., Dorathi, R.P.J., and Palanivelu, K. (2010). Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions. Ultrason. Sonochem., 17, 566–571.
  • Boukari, S.O.B., Pellizzari, F., and Leitner, K.V.N. (2011). Influence of persulfate ions on the removal of phenol in aqueous solution using electron beam irradiation. J. Hazard. Mater., 185, 844–851.
  • Liu, N., Xu, G., Wu, M., He, X., Tang, L., Shi, W., Wang, L., and Shao, H. (2013). Radical-induced destruction of diethyl phthalate in aqueous solution: Kinetics, spectral properties, and degradation efficiencies studies. Res. Chem. Intermed., 39, 3727–3737.
  • Manoj, P., Varghese, R., Manoj, V.M., and Aravindakumar, C.T. (2002). Reaction of sulphate radical anion (SO4•-) with cyanuric acid: A potential reaction for its degradation? Chem. Lett., 31, 74–75.
  • Das, S., Kamat, P.V., Padmaja, S., Au, V., and Madison, S.A. (1999). Free radical induced oxidation of the azo dye Acid Yellow 9. J. Chem. Soc., Perk. Trans., 2, 1219–1223.
  • Roshani, B., and Leitner, N.K.V. (2011). Influence of persulfate addition for degradation of micropollutants by ionizing radiation. Chem. Eng. J., 168, 784–789.
  • George, C., and Chovelon, J.-M. (2002). A laser flash photolysis study of the decay of SO4- and Cl2- radical anions in the presence of Cl- in aqueous solutions. Chemosphere, 47, 385–393.
  • Rastogi, A., Al-Abed, S.R., and Dionysiou, D.D. (2009). Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Res., 43, 684–694.
  • Zhou, L., Zheng, W., Ji, Y., Zhang, J., Zeng, C., Zhang, Y., Wang, Q., and Yang, X. (2013). Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J. Hazard. Mater., 263, 422–430.
  • Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55, 1213–1223.
  • Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004). Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 55, 1225–1233.
  • Liang, C., Huang, C.-F., and Chen, Y.-J. (2008). Potential for activated persulfate degradation of BTEX contamination. Water Res., 42, 4091–4100.
  • Liang, C., Liang, C.-P., and Chen, C.-C. (2009). pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J. Contam. Hydrol., 106, 173–182.
  • Anipsitakis, G.P., Stathatos, E., and Dionysiou, D.D. (2005). Heterogeneous activation of oxone using Co3O4. J. Phys. Chem. B, 109, 13052–13055.
  • Chen, X., Chen, J., Qiao, X., Wang, D., and Cai, X. (2008). Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B: Environ., 80, 116–121.
  • Yang, Q., Choi, H., and Dionysiou, D.D. (2007). Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B: Environ., 74, 170–178.
  • Yang, Q., Choi, H., Chen, Y., and Dionysiou, D.D. (2008). Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B: Environ., 77, 300–307.
  • Raja, P., Bensimon, M., Klehm, U., Albers, P., Laub, D., Kiwi-Minsker, L., Renken, A., and Kiwi, J. (2007). Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation. J. Photochem. Photobiol. A: Chem., 187, 332–338.
  • Zhiyong, Y., Bensimon, M., Laub, D., Kiwi-Minsker, L., Jardim, W., Mielczarski, E., Mielczarski, J., and Kiwi, J. (2007). Accelerated photodegradation (minute range) of the commercial azo-dye Orange II mediated by Co3O4/Raschig rings in the presence of oxone. J. Mol. Catal. A: Chem., 272, 11–19.
  • Shukla, P., Sun, H., Wang, S., Ang, H.M., and Tadé, M.O. (2011). Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in wastewater. Sep. Purif. Technol., 77, 230–236.
  • Liang, H., Sun, H., Patel, A., Shukla, P., Zhu, Z.H., and Wang, S. (2012). Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl. Catal. B: Environ., 127, 330–335.
  • Muhammad, S., Saputra, E., Sun, H., Ang, H.-M., Tadé, M.O., and Wang, S. (2012). Heterogeneous catalytic oxidation of aqueous phenol on red mud-supported cobalt catalysts. Ind. Eng. Chem. Res., 51, 15351–15359.
  • Muhammad, S., Saputra, E., Sun, H., Izidoro, J.d.C., Fungaro, D.A., Ang, H.M., Tadé, M.O., and Wang, S. (2012). Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSC Adv., 2, 5645–5650.
  • Muhammad, S., Saputra, E., Sun, H., Ang, H.M., Tadé, M.O., and Wang, S. (2013). Removal of phenol using sulphate radicals activated by natural zeolite-supported cobalt catalysts. Water, Air, Soil Pollut., 224, 1–9.
  • Hardjono, Y., Sun, H., Tian, H., Buckley, C.E., and Wang, S. (2011). Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng. J., 174, 376–382.
  • Sun, H., Tian, H., Hardjono, Y., Buckley, C.E., and Wang, S. (2012). Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol. Catal. Today, 186, 63–68.
  • Liang, H., Ting, Y.Y., Sun, H., Ang, H.M., Tadé, M.O., and Wang, S. (2012). Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. J. Colloid Interface Sci., 372, 58–62.
  • Ding, Y., Zhu, L., Huang, A., Zhao, X., Zhangb, X., and Tang, H. (2012). A heterogeneous Co3O4–Bi2O3 composite catalyst for oxidative degradation of organic pollutants in the presence of peroxymonosulfatew. Catal. Sci. Technol., 2, 1977–1984.
  • Qi, F., Chu, W., and Xu, B. (2013). Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Appl. Catal. B: Environ., 134, 324–332.
  • Zhang, W., Tay, H.L., Lim, S.S., Wang, Y., Zhong, Z., and Xu, R. (2010). Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B: Environ., 95, 93–99.
  • Hu, L., Yang, X., and Dang, S. (2011). An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B: Environ., 102, 19–26.
  • Shi, P., Su, R., Wan, F., Zhu, M., Li, D., and Xu, S. (2012). Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B: Environ., 123–124, 265–272.
  • Chu, W., Choy, W.K., and Kwan, C.Y. (2007). Selection of supported cobalt substrates in the presence of oxone for the oxidation of monuron. J. Agric. Food. Chem., 55, 5708–5713.
  • Shukla, P., Wang, S., Singh, K., Ang, H.M., and Tadé, M.O. (2010). Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B: Environ., 99, 163–169.
  • Yang, Q., Choi, H., Al-Abed, S.R., and Dionysiou, D.D. (2009). Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B: Environ., 88, 462–469.
  • Deng, J., Shao, Y., Gao, N., Tan, C., Zhou, S., and Hu, X. (2013). CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J. Hazard. Mater., 262, 836–844.
  • Su, S., Guo, W., Leng, Y., Yi, C., and Ma, Z. (2013). Heterogeneous activation of Oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B. J. Hazard. Mater., 244, 736–742.
  • Guan, Y.-H., Ma, J., Ren, Y.-M., Liu, Y.-L., Xiao, J.-Y., Lin, L.-Q., and Zhang, C. (2013). Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res., 47, 5431–5438.
  • Zhang, T., Zhu, H., and Croué, J.-P. (2013). Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environ. Sci. Technol., 47, 2784–2791.
  • Ding, Y., Zhu, L., Wang, N., and Tang, H. (2013). Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl. Catal. B: Environ., 129, 153–162.
  • Saputra, E., Muhammad, S., Sun, H., Patel, A., Shukla, P., Zhu, Z.H., and Wang, S. (2012). α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal. Commun., 26, 144–148.
  • Saputra, E., Muhammad, S., Sun, H., Ang, H.-M., Tadé, M.O., and Wang, S. (2013). Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl. Catal. B: Environ., 142, 729–735.
  • Saputra, E., Muhammad, S., Sun, H., Ang, H.M., Tadé, M.O., and Wang, S. (2013). Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ. Sci. Technol., 47, 5882–5887.
  • Saputra, E., Muhammad, S., Sun, H., Ang, H.-M., Tadé, M.O., and Wang, S. (2013). A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. J. Colloid Interface Sci., 407, 467–473.
  • Muhammad, S., Shukla, P.R., Tadé, M.O., and Wang, S. (2012). Heterogeneous activation of peroxymonosulfate by supported ruthenium catalysts for phenol degradation in water. J. Hazard. Mater., 215–216, 183–190.
  • Ji, F., Li, C., and Deng, L. (2011). Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions. Chem. Eng. J., 178, 239–243.
  • Peng, W., Liu, S., Sun, H., Yao, Y., Zhi, L., and Wang, S. (2013). Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J. Mater. Chem. A, 1, 5854–5859.
  • Sun, H., Liu, S., Zhou, G., Ang, H.M., Tadé, M.O., and Wang, S. (2012). Reduced graphene oxide for catalyticoxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces, 4, 5466–5471.
  • Saputra, E., Muhammad, S., Sun, H., and Wang, S. (2013). Activated carbons as green and effective catalysts for generation of reactive radicals in degradation of aqueous phenol. RSC Adv., 3, 21905–21910.
  • Chan, K.H., and Chu, W. (2009). Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Res., 43, 2513–2521.
  • Shi, P., Su, R., Zhu, S., Zhu, M., Li, D., and Xu, S. (2012). Supported cobalt oxide on graphene oxide: Highly efficient catalysts for the removal of Orange II from water. J. Hazard. Mater., 229–230, 331–339.
  • Chen, Q., Ji, F., Liu, T., Yan, P., Guan, W., and Xu, X. (2013). Synergistic effect of bifunctional Co-TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process. Chem. Eng. J., 229, 57–65.
  • Guo, W., Su, S., Yi, C., and Ma, Z. (2013). Degradation of antibiotics amoxicillin by Co3O4- catalyzed peroxymonosulfate system. Environ. Prog. Sustain. Energy, 32, 193–197.
  • Hu, L., Yang, F., Lu, W., Hao, Y., and Yuan, H. (2013). Heterogeneous activation of oxone with CoMg/SBA-15 for the degradation of dye Rhodamine B in aqueous solution. Appl. Catal. B: Environ., 134, 7–18.
  • Shukla, P.R., Wang, S., Sun, H., Ang, H.M., and Tadé, M. (2010). Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B: Environ., 100, 529–534.
  • Liang, C., and Lai, M.-C. (2008). Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environ. Eng. Sci., 25, 1071–1077.
  • Liang, C., and Guo, Y.-Y. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ. Sci. Technol., 44, 8203–8208.
  • Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., and Yoon, C. (2009). Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J. Hazard. Mater., 168, 346–351.
  • Oh, S.-Y., Kang, S.-G., and Chiu, P.C. (2010). Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci. Total Environ., 408, 3464–3468.
  • Zhao, J., Zhang, Y., Quan, X., and Chen, S. (2010). Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep. Purif. Technol., 71, 302–307.
  • Hussain, I., Zhang, Y., Huang, S., and Du, X. (2012). Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chem. Eng. J., 203, 269–276.
  • Jiang, X., Wu, Y., Wang, P., Li, H., and Dong, W. (2013). Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion. Environ. Sci. Pollut. Res. Int., 20, 4947–4953.
  • Ghauch, A., Ayoub, G., and Naim, S. (2013). Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem. Eng. J., 228, 1168–1181.
  • Devi, L.G., Kumar, S., Reddy, K.M., and Munikrishnappa, C. (2009). Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J. Hazard. Mater., 164, 459–467.
  • Le, C., Wu, J.-H., Li, P., Wang, X., Zhu, N.-W., Wu, P.-X., and Yang, B. (2011). Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Water Sci. Technol., 64, 754–759.
  • Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., Liou, Y.-H., and Chen, M.-L. (2010). Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Res., 44, 886–892.
  • Yan, J., Lei, M., Zhu, L., Anjum, M.N., Zou, J., and Tang, H. (2011). Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard. Mater., 186, 1398–1404.
  • Hou, L., Zhang, H., and Xue, X. (2012). Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Sep. Purif. Technol., 84, 147–152.
  • Fang, G.-D., Dionysiou, D.D., Al-Abed, S.R., and Zhou, D.-M. (2013). Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Appl. Catal. B: Environ., 129, 325–332.
  • Zhu, L., Ai, Z., Ho, W., and Zhang, L. (2013). Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange. Sep. Purif. Technol., 108, 159–165.
  • Leng, Y., Guo, W., Shi, X., Li, Y., and Xing, L. (2013). Polyhydroquinone-coated Fe3O4 nanocatalyst for degradation of rhodamine B based on sulfate radicals. Ind. Eng. Chem. Res., 52, 13607–13612.
  • Liang, C., Guo, Y.-Y., Chien, Y.-C., and Wu, Y.-J. (2010). Oxidative degradation of MTBE by pyrite-activated persulfate: Proposed reaction pathways. Ind. Eng. Chem. Res., 49, 8858–8864.
  • Liang, C., Lin, Y.-T., and Shih, W.-H. (2009). Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Ind. Eng. Chem. Res., 48, 8373–8380.
  • Yang, S., Yang, X., Shao, X., Niu, R., and Wang, L. (2011). Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature. J. Hazard. Mater., 186, 659–666.
  • Lee, Y.-C., Lo, S.-L., Kuo, J., and Huang, C.-P. (2013). Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. J. Hazard. Mater., 261, 463–469.
  • Mateos, D., Portela, J.R., Mercadier, J., Marias, F., Marraud, C., and Cansell, F. (2005). New approach for kinetic parameters determination for hydrothermal oxidation reaction. J. Supercrit. Fluids, 34, 63–70.
  • Rivas, F.J., Beltrán, F.J., Carvalho, F., and Alvarez, P.M. (2005). Oxone-promoted wet air oxidation of landfill leachates. Ind. Eng. Chem. Res., 44, 749–758.
  • Rivas, F.J., García, R., García-Araya, J.F., and Gimeno, O. (2008). Promoted wet air oxidation of polynuclear aromatic hydrocarbons. J. Hazard. Mater., 153, 792–798.
  • Xu, X.-Y., Zeng, G.-M., Peng, Y.-R., and Zeng, Z. (2012). Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem. Eng. J., 200–202, 25–31.
  • Kronholm, J., Jyske, P., and Riekkola, M.-L. (2000). Oxidation efficiencies of potassium persulfate and hydrogen peroxide in pressurized hot water with and without preheating. Ind. Eng. Chem. Res., 39, 2207–2213.
  • Kronholm, J., Metsälä, H., Hartonen, K., and Riekkola, M.-L. (2001). Oxidation of 4-chloro-3-methylphenol in pressurized hot water/supercritical water with potassium persulfate as oxidant. Environ. Sci. Technol., 35, 3247–3251.
  • Kronholm, J., and Riekkola, M.-L. (1999). Potassium persulfate as oxidant in pressurized hot water. Environ. Sci. Technol., 33, 2095–2099.
  • Kronholm, J., Desbands, B., Hartonen, K., and Riekkola, M.-L. (2002). Environmentally friendly laboratory-scale remediation of PAH-contaminated soil by using pressurized hot water extraction coupled with pressurized hot water oxidation. Green Chem., 4, 213–219.
  • Interstate Technology & Regulatory Council (ITRC). (2005). Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater (2nd ed., ISCO-2). Washington, DC: Author.
  • Huang, K.-C., Couttenye, R.A., and Hoag, G.E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49, 413–420.
  • Chen, K.F., Kao, C.M., Wu, L.C., Surampalli, R.Y., and Liang, S.H. (2009). Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies. Water Environ. Res., 81, 687–694.
  • Yen, C.-H., Chen, K.-F., Kao, C.-M., Liang, S.-H., and Chen, T.-Y. (2011). Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. J. Hazard. Mater., 186, 2097–2102.
  • Killian, P.F., Bruell, C.J., Liang, C., and Marley, M.C. (2007). Iron (II) activated persulfate oxidation of MGP contaminated soil. Soil Sediment. Contam., 16, 523–537.
  • Dahmani, M.A., Huang, K., and Hoag, G.E. (2006). Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA superfund innovative technology evaluation program). Water, Air, Soil Pollut. Focus, 6, 127–141.
  • Liang, C., Wang, Z.-S., and Mohanty, N. (2006). Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci. Total Environ., 370, 271–277.
  • Ahmad, M., Teel, A.L., and Watts, R.J. (2010). Persulfate activation by subsurface minerals. J. Contam. Hydrol., 115, 34–45.
  • Teel, A.L., Ahmad, M., and Watts, R.J. (2011). Persulfate activation by naturally occurring trace minerals. J. Hazard. Mater., 196, 153–159.
  • Do, S.-H., Kwon, Y.-J., and Kong, S.-H. (2010). Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand. J. Hazard. Mater., 182, 933–936.
  • Crimi, M.L., and Taylor, J. (2007). Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil Sediment. Contam., 16, 29–45.
  • Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R.L., and Bjerg, P.L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol., 40, 55–91.
  • Liang, C., Chen, Y.-J., and Chang, K.-J. (2009). Evaluation of persulfate oxidative wet scrubber for removing BTEX gases. J. Hazard. Mater., 164, 571–579.
  • Khan, N.E., and Adewuyi, Y.G. (2010). Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor. Ind. Eng. Chem. Res., 49, 8749–8760.
  • Adewuyi, Y.G., and Sakyi, N.Y. (2013). Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature. Ind. Eng. Chem. Res., 52, 11702–11711.
  • Adewuyi, Y.G., and Sakyi, N.Y. (2013). Removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+ in a lab-scale bubble reactor. Ind. Eng. Chem. Res., 52, 14687–14697.
  • van der Vaart, R., Akkerhuis, J., Feron, P., and Jansen, B. (2001). Removal of mercury from gas streams by oxidative membrane gas absorption. J. Membr. Sci., 187, 151–157.
  • Xu, X., Ye, Q., Tang, T., and Wang, D. (2008). Hg-0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+. J. Hazard. Mater., 158, 410–416.
  • Liang, C., and Su, H.-W. (2009). Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res., 48, 5558–5562.
  • Liang, C., Wang, Z.-S., and Bruell, C.J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66, 106–113.
  • Gilbert, B.C., Smith, J.R.L., Taylor, P., Ward, S., and Whitwood, A.C. (1999). The interplay of electronic, steric and stereoelectronic effects in hydrogen-atom abstraction reactions of SO4-, revealed by EPR spectroscopy. J. Chem. Soc., Perk. Trans., 2, 1631–1637.
  • Dell’Arciprete, M.L., Cobos, C.J., Mártire, D.O., Furlong, J.P., and Gonzalez, M.C. (2011). Reaction kinetics and mechanisms of neonicotinoid pesticides with sulfate radicals. New J. Chem., 35, 672–680.
  • Wang, D., Li, Y., Yang, M., and Han, M. (2008). Decomposition of polycyclic aromatic hydrocarbons in atmospheric aqueous droplets through sulfate anion radicals: An experimental and theoretical study. Sci. Total Environ., 393, 64–71.
  • Caregnato, P., David Gara, P.M., Bosio, G.N., Gonzalez, M.C., Russo, N., Michelini, M.D.C., and Mártire, D.O. (2008). Theoretical and experimental investigation on the oxidation of gallic acid by sulfate radical anions. J. Phys. Chem. A, 112, 1188–1194.
  • David Gara, P.M., Bosio, G.N., Gonzalez, M.C., Russo, N., Michelini, M.D.C., Diez, R.P., and Mártire, D.O. (2009). A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion. Photochem. Photobiol. Sci., 8, 992–997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.