3,404
Views
160
CrossRef citations to date
0
Altmetric
Original Articles

A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment

, , , , , , , , , , & show all
Pages 2084-2134 | Published online: 06 Jul 2015

REFERENCES

  • Akaighe, N., Maccuspie, R.I., Navarro, D.A., Aga, D.S., Banerjee, S., Sohn, M., and Sharma, V.K. (2011). Humic acid-induced silver nanomaterial formation under environmentally relevant conditions. Environ. Sci. Technol. 45, 3895–3901.
  • Akbulut, M., Alig, A.R. G., Min, Y., Belman, N., Reynolds, M., Golan, Y., and Israelachvili, J. (2007). Forces between surfaces across nanomaterial solutions: role of size, shape, and concentration. Langmuir 23, 3961–3969.
  • Arvidsson, R. (2012). Contributions to emission, exposure and risk assessment of nanomaterials. PhD thesis, Chalmers University of Technology. . Retrieved from . http://publications.lib.chalmers.se/records/fulltext/162283.pdf
  • Auffan, M.l., Pedeutour, M., Rose, J.r. M., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C.l., Chaurand, P., Labille, J.r. M., and Bottero, J.-Y. (2010). Structural degradation at the surface of a tio2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44, 2689–2694.
  • Avena, M.J., and Wilkinson, K.J. (2002). Disaggregation kinetics of a peat humic acid: mechanism and pH effects. Environ. Sci. Technol. 36, 5100–5105.
  • Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K., and Lead, J.R. (2008). Aggregation and surface properties of iron oxide nanomaterials; influence of pH and natural organic matter. Environ. Toxicol. Chem. 27, 1875–1882.
  • Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanomaterials: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 407, 2093–2101.
  • Baalousha, M., Nur, Y, Römer, I., Tejamaya, M., and Lead, J.R. (2013). Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ. 454–455, 119–131.
  • Baalousha, M., Arkill, K.P., Romer, I., Palmer, R.E., and Lead, J.R. (2015). Transformations of citrate and Tween coated silver nanoparticles reacted with Na2S. Sci. Total Environ. 502, 344–353.
  • Banfield, J.F., and Zhang, H.Z. (2001). Nanomaterials in the environment. Rev. Mineral. GeoChem. 44, 1–58.
  • Batley, G.E., Kirby, J.K., and McLaughlin, M.J. (2012). Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 46, 854862.
  • Bailey, R.P., Bennett, T., and Benjamin, M.M. (1992). Sorption onto and recovery of Cr(Vi) using iron-oxide-coated sand. Water Sci. Technol. 26, 1239–1244.
  • Battin, T.J., Kammer, F. Von der, Weilhartner, A., Ottofuelling, S., and Hofmann, T. (2009). Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ. Sci. Technol. 43, 8098–8104.
  • Benn, M.T., and Westerhoff, P. (2008). Nanomaterial Silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 4133–4139.
  • Bergendahl, J., and Grasso, D. (1998). Colloid generation during batch leaching tests: mechanics of disaggregation. Colloids Surf. A: Physicochem. Eng. Aspects 135, 19, 193–205.
  • Beulke, S., Brown, C.D., Dubus, I.G., Galicia, H., Jarvis, N., Schaefer, D., and Trevisan, M. (2006). User-subjectivity in Monte Carlo modeling of pesticide exposure. Environ. Toxicol. Chem. 25, 2227–2236.
  • Bhattacharjee, S., Ko, C.H., and Elimelech, M. (1998). DLVO Interaction between rough surfaces. Langmuir 14, 12, 3365–3375.
  • Blaser, S.A., Scheringer, M., MacLeod, M., and Hungerbühler, K. (2008). Environmental risk analysis for silver-containing nanofunctionalized plastics and textiles. Sci. Total Environ. 390, 396–409.
  • Bouillard, J.X., Vignes, A., Rmili, B., Moranviller, D., Fleury, D., Le Bihan, O., and Frejafon, E. (2010). Nanowastes: Risk assessment from the end-of-life combustion of nanomaterials. Paper presented at International Conference on Safe Production and Use of Nanomaterials, NANOSAFE, Grenoble, France, November 16–18.
  • Boxall, A.B. A., Chaudhry, Q., and Sinclair, C. (2007). Current and predicted environmental exposure to engineered nanomaterials. York, England: Central Science Laboratory. Retrieved from http://www.defra.gov.uk/science/Project_Data/DocumentLibrary/CB01098/CB01098_6270_FRP.pdf
  • Brunet, L.N., Lyon, D.Y., Hotze, E.M., Alvarez, P.J. J., and Wiesner, M.R. (2009). Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanomaterials. Environ. Sci. Technol. 43, 4355–4360.
  • Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J. (2006). In vitro cytotoxicity of oxide nanomaterials: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381.
  • Buffle, J., Wilkinson, K.J., Stoll, S., Filella, M., and Zhang, J.W. (1998). A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 32, 2887–2899.
  • Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J., and Amal, R. (2002). On techniques for the measurement of the mass fractal dimension of aggregates. Adv. Colloid Interface Sci. 95, 1–50.
  • Butt, H.J., Jaschke, M., and Ducker, W. (1995). Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem. Bioenerget. 38, 1, 191–201.
  • Carp, O., Huisman, C.L., and Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progr. Solid State Chem. 32, 33–177.
  • Cassee, F.R., van Balen, E.C., Singh, C., Green, D., Muijser, H., Weinstein, J., and Dreher, K. (2011). Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit. Rev. Toxicol. 41, 213–229.
  • Cedervall, T., Lynch, I., Foy, M., Berggard, T., Donnelly, S.C., Cagney, G., Linse, S., and Dawson, K.A. (2007). Detailed identification of plasma proteins adsorbed on copolymer nanomaterials. Angew. Chem. Int. Ed. Engl. 46, 5754–5756.
  • Cerbelaud, M., Ferrando, R., and Videcoq, A. (2010). Simulations of heteroaggregation in a suspension of alumina and silica particles: effect of dilution. J. Chem. Phys. 132, 084701–1–084701–9.
  • Cerbelaud, M., Videcoq, A., Abelard, P., Pagnoux, C., Rossignol, F., and Ferrando, R. (2008). Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanomaterials: experiment and simulation. Langmuir 24, 3001–3008.
  • Chappell, M.A., George, A.J., Dontsova, K.M., Porter, B.E., Price, C.L., Zhou, P., Morikawa, E., Kennedy, A.J., and Steevens, J.A. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environ. Poll. 157, 1081–1087.
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., and Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Addit. Contam.: Part A 25, 241–258.
  • Chen, G., Liu, X., and Su, C. (2012). Distinct effects of humic acid on transport and retention of TiO2 rutile nanomaterials in saturated sand columns. Environ. Sci. Technol. 46, 7142–7150.
  • Chen, C.Y., and Jafvert, C.T. (2011). The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water. Carbon 49, 5099–5106.
  • Chen, K.L., and Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanomaterials. Langmuir 22, 10994–11001.
  • Chen, K.L., and Elimelech, M. (2007). Influence of humic acid on the aggregation kinetics of fullerene (C60) nanomaterials in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 309, 126–134.
  • Chen, K.L., Mylon, S.E., and Elimelech, M. (2005). Influence of solution chemistry on the aggregation kinetics of alginate-coated hematite colloids. Abstr. Pap. Am. Chem. S., 229, U647.
  • Chen, K.L., Mylon, S.E., and Elimelech, M. (2006). Aggregation kinetics of alginate-coated hematite nanomaterials in monovalent and divalent electrolytes. Environ. Sci. Technol. 40, 1516–1523.
  • Chen, K.L., Mylon, S.E., and Elimelech, M. (2007). Enhanced aggregation of alginate-coated iron oxide (hematite) nanomaterials in the presence of calcium, strontium, and barium cations. Langmuir 23, 5920–5928.
  • Chen, K.L., Smith, B.A., Ball, W.P., and Fairbrother, D.H. (2010). Assessing the colloidal properties of engineered nanomaterials in water: Case studies from fullerene C60 nanomaterials and carbon nanotubes. Environ. Chem. 7, 10–27.
  • Cheng, Y., Yin, L., Lin, S., Wiesner, M., Bernhardt, E., and Liu, J. (2011). Toxicity reduction of polymer-stabilized silver nanomaterials by sunlight. J. Phys. Chem. C 115, 4425–4432.
  • Cho, M., Fortner, J.D., Hughes, J.B., and Kim, J.H. (2009). Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ. Sci. Technol. 43, 7410–7415.
  • Chowdhury, I., Cwiertny, D.M., and Walker, S.L. (2012). Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ. Sci. Technol. 46, 6968–6976.
  • Christenson, H.K., and Claesson, P.M. (2001). Direct measurements of the force between hydrophobic surfaces in water. Adv. Colloid Interface Sci. 91, 391–436.
  • Cornelis, G., Hund-Rinke, K., Kuhlbusch, T. Van den Brink, N., and Carmen, N. (2014). Fate and bio-availability of engineered nanomaterials in soils: a review Crit. Reviews. Environ. Sci. Technol. 44, 27202764.
  • Cornell, R.M., and Schwertmann, U. (2002). The iron oxides: structure, properties, reactions, occurrences, and uses (2nd, completely rev. and extended ed.). Weinheim, Germany: Wiley-VCH.
  • Cundy, A.B., Hopkinson, L., and Whitby, R.L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 400, 42–51.
  • Davis, R., and Kim, Y.S. (2010). 45. NIST Technical Note 1674. Gaithersburg, MD: National Institute of Standards and Technology.
  • Dekkers, S., Krystek, P., Peters, R.J. B., Lankveld, D.P. K., Bokkers, B.G. H., van Hoeven-Arentzen, P.H., Bouwmeester, H., and Oomen, A.G. (2011). Presence and risks of nanosilica in food products. Nanotox. 5, 393–405.
  • Derjaguin, B.V., and Landau, L.D. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. 14, 633–662.
  • Diegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R., and Preece, J.A. (2008). Interaction between manufactured gold nanomaterials and naturally occurring organic macromolecules. Sci. Total Environ. 402, 51–61.
  • Dobrovolskaia, M. (2007). Immunological properties of engineered nanomaterials. Nature Nanotech. 2, 469–478.
  • Domingos, R.F., Peyrot, C., and Wilkinson, K.J. (2010). Aggregation of titanium dioxide nanomaterials: role of calcium and phosphate. Environ. Chem. 7, 61–66.
  • Domingos, R.F., Tufenkji, N., and Wilkinson, K.J. (2009). Aggregation of titanium dioxide nanomaterials: role of a fulvic acid. Environ. Sci. Technol. 43, 1282–1286.
  • Ducker, W.A., Senden, T.J., and Pashley, R.M. (1991). Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241.
  • Ducker, W.A., Senden, T.J., and Pashley, R.M. (1992). Measurement of forces in liquids using a force microscope. Langmuir 8, 1831–1836.
  • El Badawy, A.M., Luxton, T.P., Silva, R.G., Scheckel, K.G., Suidan, M.T., and Tolaymat, T.M. (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanomaterials suspensions. Environ. Sci. Technol. 44, 1260–1266.
  • Ferretti, R., Zhang, J., and Buffle, J. (1997). Kinetics of hematite aggregation by polyacrylic acid: effect of polymer molecular weights. Colloids Surf. A: Physicochem. Eng. Aspects 121, 203–215.
  • Filella, M., Buffle, J., and Leppard, G.G. (1993). Characterization of submicrometre colloids in freshwaters: evidence for their bridging by organic structures. Water Sci. Technol. 27, 91–102.
  • Florence, A.T. (2005). Nanomaterial uptake by the oral route: fulfilling its potential? Drug Discov. Today: Technol. 2, 75–81.
  • Forstner, U., Jacobs, P., and Von der Kammer, F. (2001). Impact of natural nanophases on heavy-metal retention in zeolite-supported reactive filtration facilities for urban run-off treatment. Fresen. J. Anal. Chem. 371, 652–659.
  • Fortner, J.D., Kim, D.I., Boyd, A.M., Falkner, J.C., Moran, S., Colvin, V.L., Hughes, J.B., Kim, J.H. (2007). Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol. 41, 21, 7497–7502.
  • Fritz, G., Schadler, V., Willenbacher, N., and Wagner, N.J. (2002). Electrosteric stabilization of colloidal dispersions. Langmuir 18, 6381–6390.
  • Garcia-Perez, P., Pagnoux, C., Rossignol, F., and Baumard, J.F. (2006). Heterocoagulation between SiO2 nanomaterials and Al2O3 submicronparticles; influence of the background electrolyte. Colloids Surf. A: Physicochem. Eng. Aspects 281, 58–66.
  • Gatica, S.M., Cole, M.W., and Velegol, D. (2004). Designing van der Waals forces between nanocolloids. Nano Lett. 5, 169–173.
  • Gigault, J., Grassl, B., and Lespes, G. (2012). Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering. Chemosphere 86, 177–182.
  • Gottschalk, F., Ort, C., Scholz, R.W., and Nowack, B. (2011). Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ. Poll. 159, 3439–3445.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2010). Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29, 1036–1048.
  • Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., and Sticher, H. (1998). Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32, 3562–3569.
  • Guo, H.M., Stuben, D., and Berner, Z. (2007). Arsenic removal from water using natural iron mineral-quartz sand columns. Sci. Total Environ. 377, 142–151.
  • Gupta, V.K., Saini, V.K., and Jain, N. (2005). Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J. Colloid Interface Sci. 288, 55–60.
  • Hammes, K., Torn, M.S., Lapenas, A.G., and Schmidt, M.W. I. (2008). Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5, 1339–1350.
  • Han, Z., Zhang, F., Lin, D., Xing, B., 2008. Clay minerals affect the stability of surfactant-facilitated carbon nanotube suspensions. Environ. Sci. Technol. 42, 6869–6875.
  • Hassellöv, M., and von der Kammer, F. (2008). Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4, 401–406.
  • He, M., Zhou, R., and Guo, X. (2012). Behavior of stabilized multiwalled carbon nanotubes in a FeCl3 coagulation system and the structure characteristics of the produced flocs. J. Colloid Interface Sci. 366, 173–178.
  • Hendren, C.O., Mesnard, X., Dro¨ge, J., and Wiesner, M.R. (2011). Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 45, 2562–2569.
  • Hendren, C.O., Lowry, M., Grieger, K.D., Money, E.S., Johnston, J.M., Wiesner, M.R., and Beaulieu, S.M. (2013). Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environ. Sci. Technol. 47, 1190–1205.
  • Hitchman, A., Smith, G.H., Ju-Nam, Y., Sterling, M., and Lead, J.R. (2013). The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90, 410–416.
  • Hoek, E.M. V., and Agarwal, G.K. (2006). Extended DLVO interactions between spherical particles and rough surfaces. J. Colloid Interface Sci. 298, 50–58.
  • Hofmann, T., and von der Kammer, F. (2009). Estimating the relevance of engineered carbonaceous nanomaterial facilitated transport of hydrophobic organic contaminants in porous media. Environ. Poll. 157, 1117–1126.
  • Hotze, E.M., Phenrat, T., and Lowry, G.V. (2010). Nanomaterial aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual., 39, 1909–1924.
  • Hou, W.C., and Jafvert, C.T. (2008). Photochemical transformation of aqueous C60 clusters in sunlight. Environ. Sci. Technol. 43, 362–367.
  • Hunter, K.A., Leonard, M.R., Carpenter, P.D., and Smith, J.D. (1997). Aggregation of iron colloids in estuaries: A heterogeneous kinetics study using continuous mixing of river and sea waters. Colloid Surf. A 120, 111–121.
  • Huynh, K.A., McCaffery, J.M., and Chen, K.L. (2012). Heteroaggregation of multiwalled carbon nanotubes and hematite nanomaterials: rates and mechanisms. Environ. Sci. Technol. 46, 5912–5920.
  • Hyung, H., Fortner, J.D., Hughes, J.B., and Kim, J.H. (2007). Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 41, 179–184.
  • Hyung, H., and Kim, J.-K. (2008). Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 42, 4416–4421.
  • Illes, E., and Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanomaterials. J. Colloid Interface Sci. 295, 115–123.
  • Janssen, R., Peijnenburg, W., Van den Hoop, M. (1997). Equilibrium partitioning of heavy metals in Dutch soils. I. Relationships between metal partition coefficients and soil characteristics. Environ. Toxicol. Chem. 16, 2470–2478.
  • Jimenez-Lopez, C., and Romanek, C.S. (2004). Precipitation kinetics and carbon isotope partitioning of inorganic siderite at 25 degrees C and 1 atm. Geochim. Cosmochim. Acta 68, 557–571.
  • Jin, X., Li, M., Wang, J., Marambio-Jones, C., Peng, F., Huang, X., Damoiseaux, R., and Hoek, E.M. (2010). High-throughput screening of silver nanomaterial stability and bacterial inactivation in aquatic media: influence of specific ions. Environ. Sci. Technol. 44, 7321–7328.
  • Jones, A.M., Garg, S., He, D., Pham, A.N., and Waite, T.D. (2011). Superoxide-mediated formation and charging of silver nanomaterials. Environ. Sci. Technol. 45, 1428–1434.
  • Judy, J.D., Unrine, J.M., and Bertsch, P.M. (2011). Evidence for biomagnification of gold nanomaterials within a terrestrial food chain. Environ. Sci. Technol. 45, 776–781.
  • Judy, J.D., Unrine, J.M., Rao, W., Wirick, S., Bertsch, P.M. 2012a. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467–8474.
  • Judy, J.D., Unrine, J.M., Rao, W., Bertsch, P.M. 2012b. Bioaccumulation of gold nanomaterials by manduca sextathrough dietary uptake of surface contaminated plant tissue. Environ. Sci. Technol. 46, 12672–12678.
  • Kaegi, R., Ulrich, A., innet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., and Boller, M. (2008). Synthetic TiO2 nanomaterial emission from exterior facades into the aquatic environment. Environ. Poll. 156, 233–239.
  • Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., Hagendorfer, H., Elumelu, M., and Mueller, E. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 47, 3866–3877.
  • Kamal, M., Huang, B., Hamid, S., Amin, M., and Maadhah, A. (1992). Handbook of polymer degradation. Marcel Dekker, New York.
  • Kasel, D., Bradford, S.A., Simunek, J., Heggen, M., Vereecken, H., and Klumpp, E. (2013). Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size. Water Res. 47, 933–944.
  • Kashiwagi, T., Mu, M., Winey, K., Cipriano, B., Raghavan, S.R., Pack, S., Rafailovich, M., Yang, Y., Grulke, E., Shields, J., Harris, R., and Douglas, J. (2008). Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49, 4358–4368.
  • Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., and Ji, Z. (2010). Stability and aggregation of metal oxide nanomaterials in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967.
  • Kennedy, A.J., Hull, M.S., Steevens, J.A., Dontsova, K.M., Chappell, M.A., Gunter, J.C., and Weiss, C.A. (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ. Toxicol. Chem. 27, 1932–1941.
  • Kent, R.D., and Vikesland, P.J. (2012). Controlled evaluation of silver nanomaterial dissolution using atomic force microscopy. Environ. Sci. Technol. 46, 6977–6984.
  • Kirschling, T.L., Golas, P.L., Unrine, J.M., Matyjaszewski, K., Gregory, K.B., Lowry, G.V., and Tilton, R. (2011). Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ. Sci. Technol. 45, 5253–5259.
  • Kiser, M.A., Ryu, H., Jang, H., Hristovski, K., and Westerhoff, P. (2010). Biosorption of nanomaterials to heterotrophic wastewater biomass. Water Research, 44, 4105–4114.
  • Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., PeÌrez-Rivera, J., and Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763.
  • Klaine, S.J., Alvarez, P.J. J., Batley, G., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., and Lead, J.R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851.
  • Koelmans, A.A., Van der Heijde, A., Knijff, L., and Aalderink, R.H. (2001). Modelling feedbacks between eutrophication and organic contaminant fate & effects in aquatic ecosystems. a review. Water Res. 35, 3517–3536.
  • Koelmans, A.A., Nowack, B., and Wiesner, M.R. (2009). Comparison of manufactured and black carbon nanomaterial concentrations in aquatic sediments. Environ. Poll. 157, 1110–1116.
  • Kohler, A.R., Som, C., Helland, A., and Gottschalk, F. (2008). Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927–937.
  • Kong, D., Yang, H., Yang, Y., Wei, S., Wang, J., and Cheng, B. (2004). Dispersion behavior and stabilization mechanism of alumina powders in silica sol. Mater. Lett. 58, 3503–3508.
  • Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge III. Update. J. Colloid Interface Sci. 298, 730–741.
  • Kosmulski, M. 2009a. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25.
  • Kosmulski, M. 2009b. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 337, 439–448.
  • Kostigen Mumper, C., Ostermeyer, A.K., Semprini, L., and Radniecki, T.S. (2013). Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere 93, 2493–2498.
  • Kretzschmar, R., and Sticher, H. (1997). Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ and trace metals. Environ. Sci. Technol. 31, 3497–3504.
  • Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., and Sticher, H. (1997). Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33, 1129–1137.
  • Kuhnen, F., Barmettler, K., Bhattacharjee, S., Elimelech, M., and Kretzschmar, R. (2000). Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231, 32–41.
  • Kundu, S., and Gupta, A.K. (2007). Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC). J. Hazard. Mater. 142, 97–104.
  • Labille, J., Feng, J., Botta, C., Borschneck, D., Sammut, M., Cabie, M., Auffan, M., Rose, J., and Bottero, J.-Y. (2010). Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Poll. 158, 3482–3489.
  • Lee, J., Cho, M., Fortner, J.D., Hughes, J.B.H., Kim, J.H. (2009). Transformation of aggregated C60 in the aqueous phase by UV irradiation. Environ. Sci. Technol. 43, 4878–4883.
  • Levard, C., Reinsch, B.C., Michel, F.M., Oumahi, C., Lowry, G.V., and Brown, G.E. (2011). Sulfidation processes of PVP-coated silver nanomaterials in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 45, 5260–5266.
  • Levard, C., Hotze, E.M., Lowry, G.V., and Brown, G.E. Jr. (2012). Environmental transformations of silver nanomaterials: impact on stability and toxicity. Environ. Sci. Technol. 46, 6900–6914.
  • Li, X., Lenhart, J.J., and Walker, H.W. (2010). Dissolution-accompanied aggregation kinetics of silver nanomaterials. Langmuir 26, 16690–16698.
  • Li, S., and Sun, W. (2011). A comparative study on aggregation/sedimentation of TiO2 nanomaterials in mono- and binary systems of fulvic acids and Fe(III). J. Hazard. Mater. 197, 70–79.
  • Li, X., and Lenhart, J.J. (2012). Aggregation and dissolution of silver nanomaterials in natural surface water. Environ. Sci. Technol. 46, 5378–5386.
  • Li, W., Bai, Y., Zhang, Y., Sun, M., Cheng, R., Xu, X., Chen, Y., and Mo, Y. (2005). Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth. Met. 155, 509–515.
  • Limbach, L.K., Bereiter, R., Mueller, E., Krebs, R., Gaelli, R., and Stark, W.J. (2008). Removal of oxide nanomaterials in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 42, 5828–5833.
  • Lin, D., Liu, N., Yang, K., Xing, B., and Wu, F. (2010). Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environ. Poll. 158, 1270–1274.
  • Liu, J., and Hurt, R.H. (2010). Ion release kinetics and particle persistence in aqueous nanosilver colloids. Environ. Sci. Technol. 44, 2169–2175.
  • Liu, J., Pennell, K.G., and Hurt, R.H. (2011). Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol. 45, 7345–7353.
  • Liu, J., Sonshine, D.A., Shervani, S., and Hurt, R.H. (2010). Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4, 6903–6913.
  • Liu, J., Wang, Z., Liu, F.D., Kane, A.B., and Hurt, R.H. (2012). Chemical Transformations of Nanosilver in Biological Environments. ACS Nano 6, 9887–9899.
  • Lloyd, J.R. (2003). Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27, 411–425.
  • Louie, S.M., Tilton, R.D., and Lowry, G.V. (2013). Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 47, 4245–4254.
  • Loosli, F., Le Coustumer, P., and Stoll, S. (2013). TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Res. 47, 6052–6063.
  • Lowry, G.V., Espinasse, B.P., Badireddy, A.R., Richardson, C.J., Reinsch, B.C., Bryant, L.D., Bone, A.J., Deonarine, A., Chae, S., Therezien, M., Colman, B.P., Hsu-Kim, H., Bernhardt, E.S., Matson, C.W., and Wiesner, M.R. (2012a). Long-term transformation and fate of manufactured Ag nanomaterials in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46, 7027–7036.
  • Lowry, G.V., Gregory, K.B., Apte, S.C., and Lead, J.R. (2012b). Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893–6899.
  • Lynch, I., and Dawson, K.A. (2008). Protein-nanomaterial interactions. Nano Today 3, 40–47.
  • Ma, R., Levard, C., Marinakos, S.M., Cheng, Y., Liu, J., Michel, F.M., Brown, G.E., and Lowry, G.V. (2012). Size-controlled dissolution of organic-coated silver nanomaterials. Environ. Sci. Tech. 46, 752–759.
  • Mackay, D. (2001). Multimedia environmental models. The fugacity approach ( ed.). 2ndBoca Raton, FL: Lewis.
  • Madden, A.S., Hochella, M.F., and Luxton, T.P. (2006). Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim. Cosmochim. Acta 70, 4095–4104.
  • Martin, T.A., and Kempton, J.H. (2010). In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: An experimental and modelling investigation. Environ. Sci. Technol. 34, 3229–3234.
  • Masui, T., Yamamoto, M., Sakata, T., Mori, H., and Adachi, G.Y. (2000). Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J. Mater. Chem. 10, 353–357.
  • Merchant, B. (1998). Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26, 49–59.
  • Middelburg, J.J., Nieuwenhuize, J., and van Breugel, P. (1999). Black carbon in marine sediments. Marine Chem. 65, 245–252.
  • Mohd Omar, F., Abdul Aziz, H., and Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Sci. Total Environ. 468, 195–201.
  • Müller, N.C., and Nowack, B. (2010). Nanomaterials for Remediation: Solving Big Problems with Little Particles. Elements 6, 395–400.
  • Müller, N., and Nowack, B. (2008). Exposure modeling of engineered nanomaterials in the environment. Environ. Sci. Technol. 42, 4447–4453.
  • Murr, L.E., Bang, J.J., Esquivel, E.V., Guerrero, P.A., Lopez, D.A. (2004). Carbon nanotubes, nanocrystal forms and complex nanomaterial aggregates in common fuel gas combustion streams. J. Nanopart. Res. 6, 241–251.
  • Murr, L.E., Garza, K.M., Soto, K.F., Carrasco, A., Powell, T.G., Ramirez, D.A., Guerrero, P.A., Lopez, D.A., and Venzor, J. III. (2005). Cytotoxicity assessment of some carbon nanotubes and related carbon nanotube aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int. J. Environ. Res. Public Health 2, 31–42.
  • Mylon, S.E., Chen, K.L., and Elimelech, M. (2004). Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries. Langmuir 20, 9000–9006.
  • Neal, C., Jarvie, H., Rowland, P., Lawler, A., Sleep, D., and Scholefield, P. (2011). Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci. Total Environ. 409, 1843–1853.
  • Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M. V., Somasundaran, P., Klaessig, F., Castranova, V., and Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557.
  • Neubauer, E., Kammer, F.v.d., and Hofmann, T. (2012). Using FlowFFF and HPSEC to determine trace metal-colloid associations in wetland runoff. Water Res. 47, 27572769.
  • Newman, K.A., and Stolzenbach, K.D. (1996). Kinetics of aggregation and disaggregation of titanium dioxide particles and glass beads in a sheared fluid suspension. Colloids Surf. A: Physicochem. Eng. Aspects 107, 189–203.
  • Nguyen, T., Pellegrin, B., Bernard, C., Gu, X., Gorham, J.M., Stutzman, P., Stanley, D., Shapiro, A., Byrd, E., Hettenhouser, R., and Chin, J. (2011). Fate of nanomaterials during life cycle of polymer nanocomposites. J. Phys.: Conf. Series 304, 012060.
  • Nguyen, T., Pelligrin, B., Mermet, L., Gu, X., Shapiro, A., Chin, J., and Reichert, T. (2009a). Degradation and nanofiller release of polymer nanocomposites exposed to ultraviolet radiation. In: Reichert, T. (Ed.), Natural and artificial ageing of polymers. DWS Werbeagentur GmBH, Karlsruhe, Germany (pp. 149–162).
  • Nguyen, T., Pelligrin, B., Mermet, L., Shapiro, A., Gu, X., and Chin, J. (2009b). Network aggregation of CNTs at the surface of epoxy/MWCNT composite exposed to UV radiation. Nanotechnology, 1, 90–93.
  • Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E., and Haddon, R.C. (2002). Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113.
  • Noubactep, C., Care, S., and Crane, R. (2012). Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Poll. 223, 1363–1382.
  • Nowack, B., and Bucheli, T. (2007). Occurrence, behavior and effects of nanomaterials in the environment, Environ. Poll. 150, 5–22.
  • Nowack, B., Ranville, J.F., Diamond, S., Gallego-Urrea, J.A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A.A., and Klaine, S.J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31, 50–59.
  • Nyden, M.R., Zammarano, M., Harris, R.H., Kramer, R., Uddin, N.M., and Marsh, N.D. (2010). Characterizing particle emissions from burning polymer nanocomposites, in: Stamford, C. (Ed.), 21th BCC Conference on Flame Retardation.
  • O'Brien, N., and Cummins, E. (2010). Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health, Part A, 45, 992–1007.
  • O'Driscoll, N.J., Messier, T., Robertson, M.D., and Murimboh, J. (2010). Suspension of multi-walled carbon nanotubes (CNTs) in freshwaters: examining the effect of CNT size. Water Air Soil Poll. 208, 235–241.
  • Ottofuelling, S., Von Der Kammer, F., and Hofmann, T. (2011). Commercial titanium dioxide nanomaterials in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ. Sci. Technol. 45, 10045–10052.
  • Ouali, L., and Pefferkorn, E. (1994). Fragmentation of colloidal aggregates induced by polymer adsorption. J. Colloid Interface Sci. 168, 315–322.
  • Pallem, V.L., Stretz, H.A., and Wells, M.J. M. (2009). Evaluating aggregation of gold nanomaterials and humic substances using fluorescence spectroscopy. Environ. Sci. Technol. 43, 7531–7535.
  • Peretyazhko, T.S., Zhang, Q., and Colvin, V.L. (2014). Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ. Sci. Technol. 48, 11954–11961.
  • Peterson, J.W., Petrasky, L.J., Seymour, M.D., Burkhart, R.S., and Schuiling, A.B. (2012). Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanomaterials in water. Chemosphere 87, 911–917.
  • Petersen, E.J., Zhang, L., Mattison, N.T., O'Carroll, D.M., Whelton, A.J., Uddin, N., Nguyen, T., Huang, Q., Henry, T.B., Holbrook, R.D., and Chen, K.L. (2011). Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45, 9837–9856.
  • Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., and Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549.
  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R.D., and Lowry, G.V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 10, 795–814.
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., and Lowry, G.V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci Technol. 41, 284–290.
  • Planchon, M., Ferrari, R., Guyot, F., Gélabert, A., Menguy, N., Chanéac, C., Thill, A., Benedetti, M.F., and Spalla, O. (2013). Interaction between Escherichia coli and TiO2 nanomaterials in natural and artificial waters. Colloids Surf. B: Biointerfaces 102, 158–164.
  • Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J.N., Murayama, M., Hofmann, T., and Hochella, M.F. Jr. (2013). The role of nanominerals and mineral nanomaterials in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanomaterial isolation and density separation. Geochim. Cosmochim. Acct. 102, 213–225.
  • Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A. H., Seaton, A., Stone, V., Brown, S., MacNee, W., and Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. NanoTechnol. 3, 423–428.
  • Praetorius, A., Scheringer, M., and Hungerbühler, K. (2012). Development of environmental fate models for engineered nanomaterials—a case study of TiO2 nanomaterials in the Rhine river. Environ. Sci. Technol. 46, 6705–6713.
  • Quik, J.T. K., Lynch, I., Van Hoecke, K., Miermans, C.J. H., Schamphelaere, C.R. K.A. de, Janssen, C.R., Dawson, K.A., Cohen Stuart, M.A., and Van de Meent, D. (2010). Effect of natural organic matter on cerium dioxide nanomaterials settling in model fresh water. Chemosphere 81, 711–715.
  • Quik, J.T. K., Stuart, M.C., Wouterse, M., Peijnenburg, W., Hendriks, A.J., and Van de Meent, D. (2012). Natural colloids are the dominant factor in the sedimentation of nanomaterials. Environ. Toxicol. Chem. 31, 1019–1022.
  • Quik, J.T. K., Velzeboer, I., Wouterse, M., Koelmans, A.A., and Van de Meent, D. (2014). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res. 48, 269–279.
  • Radovanovic H., and Koelmans, A.A. (1998). Prediction of in situ trace metal distribution coefficients for suspended solids in natural waters. Environ. Sci. Technol. 32, 753–759.
  • Roszek, B., de Jong, W., and Geertsma, R. (2005). Nanotechnology in medical applications: State-of-the-art in materials and devices. Department of Pharmaceutical Affairs and Medical Technology of the Dutch Ministry of Healt, Welfare and Sport, Bilthoven, The Netherlands.
  • Sabia, R., and Stevens, H.J. (2000). Performance characterization of cerium oxide abrasives for chemical-mechanical polishing of glass. Machining Sci. Technol. 4, 235–251.
  • Saleh, N.B., Pfefferle, L.D., and Elimelech, M. (2008). Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ. Sci. Technol. 42, 7963–7969.
  • Saleh, N.B., Pfefferle, L.D., and Elimelech, M. (2010). Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 44, 2412–2418.
  • Sander, S., Mosley, L.M., and Hunter, K.A. (2004). Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties. Environ. Sci. Technol. 38, 4791–4796.
  • Scheffer, F., and Schachtschabel, P. (1970). Lehrbuch der Bodenkunde. 7., völlig neubearb (Aufl. ed.). Stuttgart, Germany, Enke.
  • Scheringer, M. (2002). Persistence and spatial range of environmental chemicals. Weinheim, Germany: Wiley-VCH.
  • Scheringer, M. (2008). Environmental risks of nanomaterials. Nat. NanoTechnol. 3, 322–323.
  • Scheringer, M. (2009). The Long-range transport of organic chemicals in the environment. Environ. Toxicol. Chem. 28, 677–690.
  • Schmidt, J., and Vogelsberger, W. (2009). Aqueous long-term solubility of titania nanomaterials and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J. Sol. Chem. 38, 1267–1282.
  • Schwertmann, U., and Cornell, R.M. (2000). Iron oxides in the laboratory: preparation and characterization ( 2nd completely rev. and extended ed.). New York: Wiley-VCH.
  • Schwyzer, I., Kaegi, R., Sigg, L., Smajda, R., Magrez, A., and Nowack, B. (2012). Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Environ. Poll. 169, 64–73.
  • Singh, R., Pantarotto, D., and Lacerda, L. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362.
  • Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., and Fairbrother, D.H. (2009). Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure–property relationship. Langmuir 25, 9767–9776.
  • Smith, B., Yang, J., Bitter, J.L., Ball, W.P., and Fairbrother, D.H. (2012). Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ. Sci. Technol. 46, 12839–12847.
  • Soenen, S.J. H., and De Cuyper, M. (2010). Assessing iron oxide nanomaterial toxicity in vitro: current status and future prospects. Nanomed. (UK) 5, 1261–1275.
  • Som, C., Berges, M., Chaudhry, Q., Dusinska, M., Fernandes, T.F., Olsen, S.I., and Nowack, B. (2010). The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160–169.
  • Stankus, D.P., Lohse, S.E., Hutchison, J.E., and Nason, J.A. (2011). Interactions between natural organic matter and gold nanomaterials stabilized with different organic capping agents. Environ. Sci. Technol. 45, 3238–3244.
  • Stebounova, L.V., Guio, E., and Grassian, V.H. (2011). Silver nanomaterials in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanomaterials Research, 13, 233–244.
  • Stumm, W. (1992). Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. London: Wiley Interscience.
  • Stumm, W., and Morgan, J.J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters ( ed.). 3rdLondon: Wiley Interscience.
  • Tejamaya, M., Romer, I., Merrifield, R.C., and Lead, J.R. (2012). Stability of citrate, PVP, and PEG coated silver nanomaterials in ecotoxicology media. Environ. Sci. Technol. 46, 7011–7017.
  • Thalmann, B., Voegelin, A., Sinnet, B., Morgenroth, E., and Kaegi, R. (2014). Sulfidation kinetics of silver nanoparticles reacted with metal sulphides. Environ. Sci. Technol. 48, 4885–4892.
  • Thio, B.J. R., Zhou, D., and Keller, A.A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanomaterials. J. Hazard. Mater. 189, 556–563.
  • Velzeboer, I., Kupryianchyk, D., Peeters, E.T. H. M., and Koelmans, A.A. (2011). Community effects of carbon nanotubes in aquatic sediments. Environ. Int. 37, 1126–1130.
  • Velzeboer, I., Peeters, E.T. H. M., and Koelmans, A.A. (2013). Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities. Environ. Sci. Technol. 47, 7475–7482.
  • Velzeboer, I., Quik, J.T. K., Van de Meent, D., and Koelmans, A.A. (2014). Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment. Environ. Toxicol. Chem. 33, 1766–1773.
  • Verwey, E.J. W., and Overbeek, J.T. G. (1948). Theory of the stability of lyophobic colloids. Amsterdam, the Netherlands: Elsevier.
  • Von der Kammer, F., Baborowski, M., Tadjiki, S., and Von Tumpling, W. (2004). Colloidal particles in sediment pore waters: Particle size distributions and associated element size distribution in anoxic and re-oxidized samples, obtained by FFF-ICP-MS coupling. Acta Hydroch. Hydrob. 31, 400–410.
  • Von der Kammer, F., Ottofuelling, S., and Hofmann, T. (2010). Assessment of the physico-chemical behavior of titanium dioxide nanomaterials in aquatic environments using multi-dimensional parameter testing. Environ. Poll. 158, 3472–3481.
  • Wang, J., Chen, Z., and Chen, B. (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 48, 4817–4825.
  • Wilkinson, K.J., Joz-Rolland, A., and Buffle, J. (1997). Different role of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol. Oceanogr. 42, 1714–1724.
  • Wolthoorn, A., Temminghoff, E.J. M., Weng, L.P., and Van Riemsdijk, W. (2004). Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron. Appl. Geochem. 19, 611–622.
  • Wormuth, M., Demou, E., Scheringer, M., and Hungerbühler, K. (2007). Assessments of direct human exposure – the approach of EU risk assessments compared to scenario-based risk assessment (SceBRA). Risk Anal. 27, 979–990.
  • Xu, P.A., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X., and Liu, Z.F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 424, 1–10.
  • Yang, K., Lin, D., and Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir 25, 3571–3576.
  • Yang, K., and Xing, B. (2009). Adsorption of fulvic acid by carbon nanotubes from water. Environ. Poll. 157, 1095–1100.
  • Yin, Y., Yu, S., Liu, J., and Jiang, G. (2014). Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles. Environ. Sci. Technol. 48, 2671–2679.
  • Zhang, L., Petersen, E.J., and Huang, Q. (2011). Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids. Peat. Environ. Sci. Technol. 45, 1356–1362.
  • Zhang, Y., Chen, Y., Westerhoff, P., Crittenden, J. 2009. Impact of natural organic matter and divalent cations on the stability of aqueous nanomaterials. Water Res. 43, 4249–4257.
  • Zhang, C., Liu, T., Gao, J.N., Su, Y.P., and Shi, C.M. (2010). Recent development and application of magnetic nanomaterials for cell labeling and imaging. Mini-Rev. Med. Chem. 10, 194–203.
  • Zhang, W., Yao, Y., Sullivan, N., and Chen, Y. (2011). Modeling the primary size effects of citrate-coated silver nanomaterials on their ion release kinetics. Environ. Sci. Technol. 45, 4422–4428.
  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., and Crittenden, J.C. (2008). Stability of commercial metal oxide nanomaterials in water. Water Res. 42, 2204–2212.
  • Zhao, J., Wang, Z., White, J.C., and Xing, B. (2014). Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48, 9995–10009.
  • Zhou, X., Shu, L., Zhao, H., Guo, X., Wang, X., Tao, S., and Xing, B. (2012). Suspending multi-walled carbon nanotubes by humic acids from a peat soil. Environ. Sci. Technol. 46, 7252–7259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.