2,085
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Critical analysis of methods for the measurement of volatile fatty acids

, , &
Pages 209-234 | Published online: 29 Oct 2015

References

  • Binder, H.J. (2010). Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol., 72, 297–313.
  • Wong, J.M.W., et al. (2006). Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol., 40(3), 235–243.
  • Alur, M.D., et al. (1995). Biochemical methods for determination of spoilage of foods of animal origin – A critical-evaluation. J. Food Sci. Technol.–Mysore, 32(3), 181–188.
  • Banel, A., and Zygmunt, B. (2009). Volatile fatty acids in a landfill – Ocurrence and determination. Ecol. Chem. Eng. S-Chemia I Inzynieria Ekologiczna S 16(2), 193–206.
  • Sponza, D.T., and Agdag, O.N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochem. 39(12), 2157–2165.
  • Zhou, X.-Z., Sang, S.-X., and Cao, L.-W. (2012). Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill. J. Cent. South Univ., 19(12), 3551–3557.
  • Ji, Z., Chen, G., and Chen, Y. (2010). Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Bioresour. Technol. 101(10), 3457–3462.
  • Mendez-Acosta, H.O., et al. (2008). Robust control of volatile fatty acids in anaerobic digestion processes. Ind. Eng. Chem. Res. 47(20), 7715–7720.
  • Zygmunt, B., Banel, A., and Zaborowska, A. (2009). Occurrence and determination of volatile fatty acids in wastewater of different origin. Prog.Environ. Sci. Technol., Vol Ii, 1142–1149. Pts a and B, ed. S.C. Li, et al.
  • Punal, A., et al. (2003). Automatic control of volatile fatty acids in anaerobic digestion using a fuzzy logic based approach. Water Sci. Technol., 48(6), 103–110.
  • Peldszus, S.i.L.M.L.N.E. (2006). Chromatographic analysis of the environment (third ed., pp. 453–511). Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Zhang, S., et al. (2012). Effects of VFAs concentration on bio-hydrogen production with clostridium bifermentans 3AT-ma. 2011 2nd International Conference on Advances in Energy Engineering, Icaee 14, 518–523.
  • Jones, R.J., et al. (2015). Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour. Technol., 189, 279–284.
  • Dahiya, S., et al. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol., 182, 103–113.
  • Sans, C., et al. (1995). Volatile fatty-acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour. Technol., 51(1), 89–96.
  • Randall, A.A., et al. (1997). The effect of volatile fatty acids on enhanced biological phosphorus removal and population structure in anaerobic/aerobic sequencing batch reactors. Water Sci. Technol., 35(1), 153–160.
  • Bories, A., et al. (2007). Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification. Water Res., 41(13), 2987–2995.
  • Elefsiniotis, P. and Wareham, D.G. (2007). Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb. Technol., 41(1–2), 92–97.
  • Eggeman, T. and Verser, D. (2005). Recovery of organic acids from fermentation broths. Appl. Biochem. Biotechnol., 121, 605–618.
  • Cai, M.M., et al. (2009). Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour. Technol., 100(3), 1399–1405.
  • Kaur, A., et al. (2013). Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens. Bioelectron., 47, 50–55.
  • Ahring, B.K., Sandberg, M., and Angelidaki, I. (1995). Volatile fatty-acids as indicators of process imbalance in anaerobic digesters. Appl. Microbiol. Biotechnol., 43(3), 559–565.
  • Cobb, S.A. and Hill, D.T. (1991). Volatile fatty-acid relationships in attached growth anaerobic fermenters. Trans. Asae, 34(6), 2564–2572.
  • Peldszus, S., Huck, P.M., and Andrews, S.A. (1996). Determination of short-chain aliphatic, oxo- and hydroxyacids in drinking water at low microgram per liter concentrations. J. Chromatogr. A, 723(1), 27–34.
  • Jaffrezo, J.L., Calas, T., and Bouchet, M. (1998). Carboxylic acids measurements with ionic chromatography. Atmos. Environ., 32(14–15), 2705–2708.
  • Tam, W.F.C., et al. (2001). Use of capillary electrophoresis in the analysis of aerosol and bulk/dry deposition collected on a daily basis. Anal. Chim. Acta, 427(2), 259–269.
  • Hiraoka, H., Ishikuro, E., and Goto, T. (2010). Simultaneous analysis of organic acids and inorganic anions in silage by capillary electrophoresis. Anim. Feed Sci. Technol., 161(1–2), 58–66.
  • Souza, S.R., Tavares, M.F.M., and de Carvalho, L.R.F. (1998). Systematic approach to the separation of mono- and hydroxycarboxylic acids in environmental samples by ion chromatography and capillary electrophoresis. J. Chromatogr. A, 796(2), 335–346.
  • Garcia, A., et al. (2008). Capillary electrophoresis for short chain organic acids in faeces Reference values in a Mediterranean elderly population. J. Pharm. Biomed. Anal., 46(2), 356–361.
  • Zniszczynska, A., et al. (2011). Determination of organic acids in compound feed by ion chromatography method. Bull. Veterinary Inst. Pulawy, 55(1), 107–110.
  • Iwata, T., et al. (2009). Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids. Talanta 79(4), 1026–1030.
  • Sheveleva, M.A., and Ramenskaya, G.V. (2010). Gas chromatographyc analysis of short-chain fatty acids in the standardization of medicinal formulations based on bacterial substrates. Pharm. Chem. J., 44(6), 334–336.
  • Manni, G. and Caron, F. (1995). Calibration and determination of volatile fatty-acids in waste leachates by gas-chromatography. J. Chromatogr. A, 690(2), 237–242.
  • Siedlecka, E.M., et al. (2008). Determination of volatile fatty acids in environmental aqueous samples. Polish J. Environ. Stud., 17(3), 351–356.
  • Garcia-Villalba, R., et al. (2012). Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J. Sep. Sci., 35(15), 1906–1913.
  • Perestrelo, R., et al. (2006). Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 563(1–2), 154–164.
  • Mkhize, N.T., et al. (2014). Determination of volatile fatty acids in wastewater by solvent extraction and gas chromatography. Phys. Chem. Earth, 67–69, 86–92.
  • Alkaya, E., et al. (2009). Recovery of acids from anaerobic acidification broth by liquid–liquid extraction. Chemosphere 77(8), 1137–1142.
  • Mostafa, N.A. (1999). Production and recovery of volatile fatty acids from fermentation broth. Energy Convers. Manage., 40(14), 1543–1553.
  • Xiao, J.B., Jiang, X.Y., and Chen, X.Q. (2007). Separation and determination of organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction. J. Anal. Chem., 62(8), 756–760.
  • Cummins, M.T. and Wells, R.J. (1997). In situ derivatisation and extraction of volatile fatty acids entrapped on anion-exchange resin from aqueous solutions and urine as a test matrix using pentafluorobenzyl bromide in supercritical carbon dioxide. J. Chromatogr. B, 694(1), 11–19.
  • Levi, V., et al. (1993). Analysis of organic-acids in wines by capillary electrophoresis and HPLC. Am. Lab., 25(1), 29–32.
  • Bigham, S., et al. (2002). Sol-gel capillary microextraction. Anal. Chem., 74(4), 752–761.
  • Garcia-Esteban, M., et al. (2004). Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J. Sci. Food Agric., 84(11), 1364–1370.
  • Ayseli, M.T., Filik, G., and Selli, S. (2014). Evaluation of volatile compounds in chicken breast meat using simultaneous distillation and extraction with odour activity value. J. Food and Nutr. Res., 53(2), 137–142.
  • Liu, Y., Xu, X.L., and Zhou, G.H. (2007). Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques. Int. J. Food Sci. Technol., 42(5), 543–550.
  • Dirinck, P. and De Winne, A. (1999). Flavour characterisation and classification of cheeses by gas chromatographic-mass spectrometric profiling. J. Chromatogr. A 847(1–2), 203–208.
  • Weier, A.J., Glatz, B.A., and Glatz, C.E. (1992). Recovery of propionic and acetic-acids from fermentation broth by electrodialysis. Biotechnol. Progr., 8(6), 479–485.
  • Vertova, A., et al. (2009). Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes. J. Appl. Electrochem., 39(11), 2051–2059.
  • Clark, T.J. and Bunch, J.E. (1997). Determination of volatile acids in tobacco, tea, and coffee using derivatization-purge and trap gas chromatography-selected ion monitoring mass spectrometry. J. Chromatogr. Sci., 35(5), 206–208.
  • Jurado-Sanchez, B., Ballesteros, E., and Gallego, M. (2012). Determination of carboxylic acids in water by gas chromatography-mass spectrometry after continuous extraction and derivatisation. Talanta 93, 224–232.
  • Mills, G.A., Walker, V., and Mughal, H. (1999). Headspace solid-phase microextraction with 1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids. J. Chromatogr. B, 730(1), 113–122.
  • Albert, D.B. and Martens, C.S. (1997). Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar. Chem., 56(1–2), 27–37.
  • Coenen, A., et al. (1992). Comparison of several methods for the determination of trace amounts of polar aliphatic monocarboxylic acids by high-performance liquid-chromatography. J. Chromatogr., 593(1–2), 243–252.
  • Kibler, M. and Bachmann, K. (1999). New derivatization method for carboxylic acids in aqueous solution for analysis by capillary electrophoresis and laser-induced fluorescence detection. J. Chromatogr. A, 836(2), 325–331.
  • Pind, P.F., Angelidaki, I., and Ahring, B.K. (2003). A new VFA sensor technique for anaerobic reactor systems. Biotechnol. Bioeng., 82(1), 54–61.
  • Boe, K., Batstone, D.J., and Angelidaki, I. (2007). An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol. Bioeng., 96(4), 712–721.
  • Cruwys, J.A., et al. (2002). Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatogr. A, 945(1–2), 195–209.
  • Banel, A., et al. (2011). Development of headspace-gas chromatography-flame ionization detection procedure to determine volatile fatty acids in zoo organic waste leachates. Water Sci. Technol., 63(12), 2873–2877.
  • Abalos, M., Bayona, J.M., and Pawliszyn, J. (2000). Development of a headspace solid-phase microextraction procedure for the determination of free volatile fatty acids in waste waters. J. Chromatogr. A, 873(1), 107–115.
  • Abalos, M. and Bayona, J.M. (2000). Application of gas chromatography coupled to chemical ionisation mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples. J. Chromatogr. A, 891(2), 287–294.
  • Olivero, S.J.P. and Trujillo, J.P.P. (2011). A new method for the determination of short-chain fatty acids from the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry. Anal. Chim. Acta, 696(1–2), 59–66.
  • Feng, L., Huang, Y.M., and Wang, H. (2008). Solid-phase microextraction in combination with GC-FID for quantification of the volatile free fatty acids in wastewater from constructed wetlands. J. Chromatogr. Sci., 46(7), 577–584.
  • Aznar, M. and Arroyo, T. (2007). Analysis of wine volatile profile by purge-and-trap-gas chromatography-mass spectrometry – Application to the analysis of red and white wines from different Spanish regions. J. Chromatogr. A, 1165(1–2), 151–157.
  • Idris, N.F., Kamarulzaman, N.H., and Nor, Z.M. (2012). Determination of volatile fatty acids from raw natural rubber drying activity by thermal desorption-gas chromatography. Nose 2012: 3rd International Conference on Environmental Odour Monitoring and Control 30, 175–180.
  • Sato, H., et al. (2001). Analysis of malodorous volatile substances of human waste: Feces and urine. J. Health Sci., 47(5), 483–490.
  • Lou, D.W., Lee, X.Q., and Pawliszyn, J. (2008). Extraction of formic and acetic acids from aqueous solution by dynamic headspace-needle trap extraction–Temperature and pH optimization. J. Chromatogr. A, 1201(2), 228–234.
  • Banel, A., et al. (2012). Determination of SCFAs in water using GC-FID. Selection of the separation system. Anal. Chim. Acta, 716, 24–27.
  • Zhao, G.H., et al. (2007). Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography. J. Chromatogr. B–Anal. Technol. Biomed. Life Sci., 846(1–2), 202–208.
  • Banel, A., et al. (2012). Distillation cleanup preceded GC determination of short-chain monocarboxylic acids in aqueous and solid samples of wastewater origin. Ecol. Chem. Eng. S-Chemia I Inzynieria Ekologiczna S 19(3), 423–431.
  • Ullah, M.A., et al. (2014). The gas chromatographic determination of volatile fatty acids in wastewater samples: Evaluation of experimental biases in direct injection method against thermal desorption method. Anal. Chim. Acta 820, 159–167.
  • Tangerman, A. and Nagengast, F.M. (1996). A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal. Biochem., 236(1), 1–8.
  • Alanis, P., et al. (2010). Emissions of volatile fatty acids from feed at dairy facilities. Atmos. Environ., 44(39), 5084–5092.
  • Cuervo, A., et al. (2013). Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res., 33(10), 811–816.
  • Banel, A. and Zygmunt, B. (2011). Application of gas chromatography-mass spectrometry preceded by solvent extraction to determine volatile fatty acids in wastewater of municipal, animal farm and landfill origin. Water Sci. Technol., 63(4), 590–597.
  • Alewijn, M., Shwinski, E.L., and Wouters, J.T.M. (2003). A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese. Int. Dairy J., 13(9), 733–741.
  • Karagul-Yuceer, Y., Cadwallader, K.R., and Drake, M. (2002). Volatile flavor components of stored nonfat dry milk. J. Agric. Food. Chem., 50(2), 305–312.
  • Jurado-Sanchez, B., Ballesteros, E., and Gallego, M. (2010). Determination of carboxylic acids in water by gas chromatography using several detectors after flow preconcentration. J. Chromatogr. A, 1217(47), 7440–7447.
  • Zumbusch, P.V., et al. (1994). Online monitoring of organic-substances with high-pressure liquid-chromatography (HPLC) during the anaerobic fermentation of waste-water. Appl. Microbiol. Biotechnol., 42(1), 140–146.
  • Saccani, G., et al. (1995). Use of ion chromatography for the measurement of organic-acids in fruit juices. J. Chromatogr. A, 706(1–2), 395–403.
  • Ammann, A.A. and Ruttimann, T.B. (1995). Simultaneous determination of small organic and inorganic anions in environmental water samples by ion-exchange chromatography. J. Chromatogr. A, 706(1–2), 259–269.
  • Domingos, J.S.S., et al. (2012). A comprehensive and suitable method for determining major ions from atmospheric particulate matter matrices. J. Chromatogr. A, 1266, 17–23.
  • Glod, B.K., et al. (1995). Potentiometric detection using a metalic copper electrode in reversed-phase and ion-exclusion chromatography with eluents containing ion-interaction reagents. J. Chromatogr. A, 699(1–2), 31–37.
  • de Sa, L.R.V., et al. (2011). Simultaneous analysis of carbohydrates and volatile fatty acids by HPLC for monitoring fermentative biohydrogen production. Int. J. Hydrogen Energy, 36(23), 15177–15186.
  • Page, L.H., et al. (2014). Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosyst. Eng., 118, 16–28.
  • Castellari, M., et al. (2001). Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-Refractive index double detection. J. Chromatogr. Sci., 39(6), 235–238.
  • Lopez, E.F. and Gomez, E.F. (1996). Simultaneous determination of the major organic acids, sugars, glycerol, and ethanol by HPLC in grape musts and white wines. J. Chromatogr. Sci., 34(5), 254–257.
  • Morales, M.L., Gonzalez, A.G., and Troncoso, A.M. (1998). Ion-exclusion chromatographic determination of organic acids in vinegars. J. Chromatogr. A, 822(1), 45–51.
  • Dias, J.C., et al. (2009). Determination of short-chain fatty acids in dietary fiber extracts using ion-exclusion chromatography with suppressed conductivity detection. J. Pharm. Biomed. Anal., 49(4), 1128–1132.
  • Ferreira, F.N., et al. (2012). Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography. J. Chromatogr. A, 1223, 79–83.
  • Helaleh, M.I.H., et al. (2002). Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection. J. Chromatogr. A, 956(1–2), 201–208.
  • Ito, K., et al. (2004). Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column. J. Chromatogr. A, 1039(1–2), 141–145.
  • Yamamoto, A., et al. (2004). Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography. J. Sep. Sci., 27(4), 325–329.
  • Fischer, K., et al. (1995). Determination of monomeric sugar and carboxylic-acids by ion-exclusion chromatography. J. Chromatogr. A, 706(1–2), 361–373.
  • Stein, J., et al. (1992). Simple and rapid method for determination of short-chain fatty-acids in biological-materials by high-performance liquid-chromatography with ultraviolet detection. J. Chromatogr. Biomed. Appl., 576(1), 53–61.
  • Eiteman, M.A. and Chastain, M.J. (1997). Optimization of the ion-exchange analysis of organic acids from fermentation. Anal. Chim. Acta, 338(1–2), 69–75.
  • Stromberg, N. and Sahlin, E. (2012). Determination of the short-chain fatty acid pattern in biodiesel using high throughput syringe solvent extraction and ion exclusion chromatography. Fuel 97, 531–535.
  • Lodi, S. and Rossin, G. (1995). Determination of some organic-acids in sugar factory products. J. Chromatogr. A, 706(1–2), 375–383.
  • Fischer, K., et al. (1997). Analysis of aliphatic carboxylic acids and amino acids in effluents of landfills, composting plants and fermentation plants by ion-exclusion and ion-exchange chromatography. J. Chromatogr. A, 770(1–2), 229–241.
  • Xu, N., et al. (1997). Ion-exclusion chromatographic determination of carboxylic acids used to support the microbially mediated reductive dechlorination of tetrachloroethene. Environ. Toxicol. Chem., 16(11), 2242–2248.
  • Ohta, K. and Ohashi, M. (2003). Separation of C-1-C-5 aliphatic carboxylic acids on a highly sulfonated styrene-divinylbenzene copolymer resin column with a C-6 aliphatic carboxylic acid solution as the mobile phase. Anal. Chim. Acta, 481(1), 15–21.
  • Niven, S.J., Beal, J.D. and Brooks, P.H. (2004). The simultaneous determination of short chain fatty acid, monosaccharides and ethanol in fermented liquid pig diets. Anim. Feed Sci. Technol., 117(3–4), 339–345.
  • Vonach, R., Lendl, B., and Kellner, R. (1998). High-performance liquid chromatography with real-time Fourier-transform infrared detection for the determination of carbohydrates, alcohols and organic acids in wines. J. Chromatogr. A, 824(2), 159–167.
  • Destandau, E., et al. (2005). Development and validation of a reversed-phase liquid chromatography method for the quantitative determination of carboxylic acids in industrial reaction mixtures. J. Chromatogr. A, 1088(1–2), 49–56.
  • Farajzadeh, M.A. and Assadi, A. (2009). Liquid-gas-liquid technique for microextraction and preconcentration of short chain fatty acids from aqueous samples. J. Sep. Sci., 32(7), 1027–1035.
  • Mathew, S., et al. (1997). An HPLC method for estimation of volatile fatty acids in ruminal fluid. Indian J. Anim. Sci., 67(9), 805–807.
  • Turkia, H., et al. (2013). Online capillary electrophoresis for monitoring carboxylic acid production by yeast during bioreactor cultivations. Anal. Chem., 85(20), 9705–9712.
  • Karlsson, S., Wolrath, H., and Dahlen, J. (1999). Influence of filtration, preservation and storing on the analysis of low molecular weight organic acids in natural waters. Water Res., 33(11), 2569–2578.
  • DeBacker, B.L. and Nagels, L.J. (1996). Potentiometric detection for capillary electrophoresis: Determination of organic acids. Anal. Chem., 68(24), 4441–4445.
  • Chen, J., Preston, B.P., and Zimmerman, M.J. (1997). Analysis of organic acids in industrial samples–Comparison of capillary electrophoresis and ion chromatography. J. Chromatogr. A, 781(1–2), 205–213.
  • Soga, T. and Ross, G.A. (1999). Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J. Chromatogr. A, 837(1–2), 231–239.
  • Klampfl, C.W. and Katzmayr, M.U. (1998). Determination of low-molecular-mass anionic compounds in beverage samples using capillary zone electrophoresis with simultaneous indirect ultraviolet and conductivity detection. J. Chromatogr. A, 822(1), 117–123.
  • Klampfl, C.W., et al. (1998). Determination of low-molecular-mass ionic compounds in electrodeposition coatings by capillary electrophoresis with conductivity detection. J. Chromatogr. A, 804(1–2), 357–362.
  • PantsarKallio, M., Kuitunen, M., and Manninen, P.K.G. (1997). Application of capillary electrophoresis for determination of organic acids in waste waters. Chemosphere 35(7), 1509–1518.
  • Tenberken, B. and Bachmann, K. (1997). Development of new methods for the analysis of single cloud-, fog- and raindrops by capillary electrophoresis. J. Chromatogr. A, 775(1–2), 372–377.
  • Fung, Y.S. and Tung, H.S. (2001). Application of capillary electrophoresis for organic acid analysis in herbal studies. Electrophoresis 22(11), 2242–2250.
  • Buchberger, W., et al. (1997). Determination of fermenting acids in silage by capillary electrophoresis. J. Chromatogr. A, 766(1–2), 197–203.
  • Mato, I., et al. (2006). Simultaneous determination of organic acids in beverages by capillary zone electrophoresis. Anal. Chim. Acta, 565(2), 190–197.
  • Izco, J.M., Tormo, M., and Jimenez-Flores, R. (2002). Rapid simultaneous determination of organic acids, free amino acids, and lactose in cheese by capillary electrophoresis. J. Dairy Sci., 85(9), 2122–2129.
  • Dabekzlotorzynska, E. and Dlouhy, J.F. (1994). Capillary zone electrophoresis with indirect UV detection of organic-anions using 2,6-naphthalenedicarboxylic acid. J. Chromatogr. A, 685(1), 145–153.
  • Farre, J., Borrull, F., and Calull, M. (1997). Application of capillary electrophoresis in the quality control of osmotically treated water. Chromatographia 44(5–6), 235–239.
  • Fung, Y.S. and Lau, K.M. (1998). Development and validation of analytical methodology using capillary electrophoresis for separation and determination of anions in rainwater. Talanta 45(4), 641–656.
  • Desauziers, V., Avezac, M., and Fanlo, J.L. (2000). Simple analysis of odorous fatty acids in distillery effluents by capillary electrophoresis. Analusis 28(2), 163–167.
  • Poels, I. and Nagels, L.J. (1999). Conducting polymer and oligomer micro-electrodes for the potentiometric detection of anions in capillary electrophoresis. Anal. Chim. Acta, 401(1–2), 21–27.
  • Poels, I. and Nagels, L.J. (1999). Potentiometric detection in capillary electrophoresis with a conducting oligomer electrode. Anal. Chim. Acta, 385(1–3), 417–422.
  • Huang, X.H., et al. (1989). Quantitative-analysis of low-molecular weight carboxylic-acids by capillary zone electrophoresis conductivity detection. Anal. Chem., 61(7), 766–770.
  • Coelho, L.H.G. and Gutz, I.G.R. (2011). Automation of an analysis system with microvolume porous membrane sampling, capillary electrophoresis separation and contactless conductivity detection for near-real-time monitoring of traces of low-molecular-weight carboxylic acids in air. J. Braz. Chem. Soc., 22(11), 2157–2164.
  • Nogueira, T. and do Lago, C.L. (2011). Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection. Microchem. J., 99(2), 267–272.
  • Buchauer, K. (1998). A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes. Water Sa 24(1), 49–56.
  • Lahav, O. and Loewenthal, R.E. (2000). Measurement of VFA in anaerobic digestion: The five-point titration method revisited. Water Sa 26(3), 389–392.
  • Hey, T., et al. (2013). Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale primary sludge hydrolysate. Water Sa 39(1), 17–22.
  • Lahav, O. and Morgan, B.E. (2004). Titration methodologies for monitoring of anaerobic digestion in developing countries–A review. J. Chem. Technol. Biotechnol., 79(12), 1331–1341.
  • Lutzhoft, H.C.H., et al. (2014). Comparison of VFA titration procedures used for monitoring the biogas process. Water Res., 54, 262–272.
  • Feitkenhauer, H., von Sachs, E., and Meyer, U. (2002). On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res., 36(1), 212–218.
  • Moosbrugger, R.E., et al. (1993). A 5 pH point titration method for determining the carbonate and SCFA weak acid bases in anaerobic systems. Water Sci. Technol., 28(2), 237–245.
  • Lahav, O., Morgan, B.E., and Loewenthal, R.E. (2002). Rapid, simple, and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol., 36(12), 2736–2741.
  • Ai, H.N., et al. (2011). A nine-point pH titration method to determine low-concentration VFA in municipal wastewater. Water Sci. Technol., 63(4), 583–589.
  • Montgomery H.A.C., Dymock, J. F., and Thom, N. S. (1962). The rapid colorimetric determination of organic AIDS and their salts in sewage-sludge liquor. The Analyst 87, 949.
  • Zhao, G.H., Nyman, M., and Jonsson, J.A. (2006). Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr., 20(8), 674–682.
  • Madrid, J., Megias, M.D., and Hernandez, F. (1999). Determination of short chain volatile fatty acids in silages from artichoke and orange by-products by capillary gas chromatography. J. Sci. Food Agric., 79(4), 580–584.
  • Fan, H., et al. (2005). Analysis of carbonic acid in water samples by ion-exclusion chromatography with pure water as eluent. Anal. Sci., 21(2), 121–123.
  • Manning, D.A.C. and Bewsher, A. (1997). Determination of anions in landfill leachates by ion chromatography. J. Chromatogr. A, 770(1–2), 203–210.
  • Izco, J.M., Tormo, M., and Jimenez-Flores, R. (2002). Development of a CE method to analyze organic acids in dairy products: Application to study the metabolism of heat-shocked spores. J. Agric. Food. Chem., 50(7), 1765–1773.
  • Hagberg, J., et al. (2000). Application of capillary zone electrophoresis for the analysis of low molecular weight organic acids in environmental samples. Int. J. Environ. Anal. Chem., 78(3–4), 385–396.
  • Roder, A. and Bachmann, K. (1995). Simultaneous determination of organic and inorganic anions in the sub-mu-mol/L range in rain water by capillary zone electrophoresis. J. Chromatogr. A, 689(2), 305–311.
  • Chi, F.H., Lin, P.H.P., and Leu, M.H. (2005). Quick determination of malodor-causing fatty acids in manure by capillary electrophoresis. Chemosphere 60(9), 1262–1269.
  • Siren, H., Maattanen, A., and Riekkola, M.L. (1997). Determination of small anions by capillary electrophoresis using indirect UV detection with sulphonated nitrosonaphthol dyes. J. Chromatogr. A, 767(1–2), 293–301.
  • Kenney, B.F. (1991). Determination of organic-acids in food samples by capillary electrophoresis. J. Chromatogr., 546(1–2), 423–430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.