1,368
Views
143
CrossRef citations to date
0
Altmetric
Original Articles

Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives

, , &
Pages 143-208 | Published online: 07 Oct 2015

References

  • Acharya, S., Dikshit, V., and Mishra, P. (2008). Erosive wear behaviour of redmud filled metal matrix composite. J. Reinf. Plast. Compos., 27, 145–152.
  • Adam, F., Appaturi, J.N., Khanam, Z., Thankappan, R., and Nawi, M.A.M. (2013). Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium. Appl. Surf. Sci., 264, 718–726.
  • Aghajanian, M.K., Burke, J., White, D.R., and Nagelberg, A. (1989). A new infiltration process for the fabrication of metal matrix composites. Sampe Quart., 20, 43–46.
  • Ahmad, H., Hilton, M., and Mohd Noor, N. (2007). Physical properties of local palm oil clinker and fly ash. 1st Engineering Conference on Energy & Environment, Malaysia, pp. 1–5.
  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Prog. Energy Combust. Sci., 36, 327–363.
  • Aigbodion, V., and Hassan, S. (2010). The study of the precipitation process in Al–Cu–Mg/bagasse ash particulate composites. J. Alloys Comp., 501, 104–109.
  • Aigbodion, V., Hassan, S., and Agunsoye, J. (2012). Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Mater. Des., 33, 322–327.
  • Aigbodion, V., Hassan, S., Ause, T., and Nyior, G. (2010a). Potential utilization of solid waste (Bagasse Ash). J. Miner. Mater. Charact. Eng., 9, 67–77.
  • Aigbodion, V., Hassan, S., Dauda, E., and Mohammed, R. (2010b). The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/Bagasse ash particulate composites. J. Miner. Mater. Charact. Eng., 9, 907–917.
  • Aigbodion, V., Hassan, S., Dauda, E., and Mohammed, R. (2011). Experimental study of ageing behaviour of Al-Cu-Mg/bagasse ash particulate composites. Tribol. Ind., 33, 28–35.
  • Aigbodion, V.S. (2012). Development of Al-Si-Fe/Rice husk ash particulate composites synthesis by double stir casting method. Usak Univ. J. Mater. Sci., 2, 187–197.
  • Alaneme, K., and Adewuyi, E. (2013). Mechanical behaviour of Al-Mg-Si matrix composites reinforced with alumina and bamboo leaf ash. Assoc. Metall. Eng. Serbia, 177–187.
  • Appendino, P., Badini, C., Marino, F., and Tomasi, A. (1991). 6061 aluminium alloy-SiC particulate composite: a comparison between aging behavior in T4 and T6 treatments. Mater. Sci. Eng.: A 135, 275–279.
  • Asasutjarit, C., Charoenvai, S., Hirunlabh, J., and Khedari, J. (2009). Materials and mechanical properties of pretreated coir-based green composites. Compos. Part B: Eng., 40, 633–637.
  • American Coal Ash Association (A.C.A.A.). (2013). American Coal Ash Association: Fly Ash Production & Use Comparisons, Alexandria, VA, USA, 1966–2012.
  • Atefi, R., Razmavar, A., Teimoori, F., and Teimoori, F. (2012). Investigation on new eco-core metal matrix composite sandwich structure. Life Sci. J., 9, 1077–1079.
  • Atuanya, C., Ibhadode, A., and Dagwa, I. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results Phys., 2, 142–149.
  • Atuanya, C., Onukwuli, O., and Aigbodion, V. (2014). Experimental correlation of wear parameters in Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. J. Compos. Mater., 48, 1487–1496.
  • Bahrami, A., Pech-Canul, M.I., Gutierrez, C.A., and Soltani, N. (2015a). Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. J. Alloys Comp., 644, 256–266.
  • Bahrami, A., Razaghian, A., Emamy, M., Jafari Nodooshan, H., and Mousavi, G. (2011). Microstructure and Tensile Properties of Al-15wt% Mg2Si Composite after Hot Extrusion and Heat Treatment. Key Eng. Mater., 471, 1171–1176.
  • Bahrami, A., Razaghian, A., Emamy, M., and Khorshidi, R. (2012). The effect of Zr on the microstructure and tensile properties of hot-extruded Al–Mg2Si composite. Mater. Des., 36, 323.
  • Bahrami, A., Soltani, N., and Pech-Canul, M.I. (2015b). Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3-aluminum nanocomposite. J. Comp. Mater. DOI: 0021998314567010
  • Balch, D.K., and Dunand, D.C. (2002). Mechanical properties and in-situ diffraction strain measurements in aluminum-mullite microsphere syntactic foams produced by liquid metal infiltration. Proceedings of Processing and Properties of Lightweight Cellular Metals and Structures, TMS Third Global Symposium. Warrendale, PA, pp. 251–260.
  • Balch, D.K., and Dunand, D.C. (2006). Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater., 54, 1501–1511.
  • Bamgboye, A., and Jekayinfa, S. (2006). Energy consumption pattern in palm kernel oil processing operations. Agric. Eng. Int., VIII, 1–11.
  • Barroso, J., Barreras, F., Amaveda, H., and Lozano, A. (2003). On the optimization of boiler efficiency using bagasse as fuel. Fuel 82, 1451–1463.
  • Berry, E., Hemmings, R., Langley, W., Carette, G. (1989). Beneficiated fly ash: hydration, microstructure, and strength development in portland cement systems. Proceedings of the Third International Conference on the Use of Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Trondheim, Norway, VM Malhotra, Ed., ACI Special Publication SP-114, pp. 241–273.
  • Berry, E., and Malhotra, V. (1980). Fly ash for use in concrete-A critical review. ACI J. Proc., 77(2), 59–73.
  • Bhanuprasad, V.V., Bhat, R.B.V., Kuruvilla, A.K., Prasad, K.S., Pandey, A.B., and Mahajan, Y. (1991). P/M processing of Al-SiC composites. Int. J. Powder Metall., 27, 227–235.
  • Bienia, J., Walczak, M., Surowska, B., and Sobczaka, J. (2003). Microstructure and corrosion behaviour of aluminum fly ash composites. J. Optoelectron. Adv. Mater., 5, 493–502.
  • Bittner, J., Gasiorowski, S., Tondu, E., and Vasiliauskas, A. (1997). STI Fly Ash Separation System: 10% in, 1% out: 160,000 tons of STI Ash in the New England ready mix concrete market. Proceedings of International Ash Utilization Symposium University of Kentucky Center for Applied Energy Research, pp. 630–636.
  • Bose, A., Camus, G., German, R., Duquette, D., and Stoloff, N. (1993). Influence of long-range order on tensile properties of Ni3Fe and Ni3Fe-Y2O3 composites. J. Mater. Res., 8, 430–437.
  • Bridgeman, T., Darvell, L., Jones, J., Williams, P., Fahmi, R., Bridgwater, A., Barraclough, T., Shield, I., Yates, N., and Thain, S. (2007). Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86, 60–72.
  • Brubaker, S. (1967). Trends in the world aluminum industry. The John Hopkins Press for Resources for the Future, Baltimore, MD, USA, 260 pages.
  • Cao, G., Choi, H., Konishi, H., Kou, S., Lakes, R., and Li, X. (2008a). Mg–6Zn/1.5% SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci., 43, 5521–5526.
  • Cao, G., Konishi, H., and Li, X. (2008b). Mechanical properties and microstructure of SiC-reinforced Mg-(2, 4) Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Eng.: A 486, 357–362.
  • Ceschini, L., Bosi, C., Casagrande, A., and Garagnani, G. (2001). Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg–SiCp composite. Wear 251, 1377–1385.
  • Chandrasekhar, S., Pramada, P., and Majeed, J. (2006). Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J. Mater. Sci., 41, 7926–7933.
  • Chen, X.G., Lv, S.S., Ye, Y., Cheng, J.P., and Yin, S.H. (2010). Preparation and characterization of rice husk/ferrite composites. Chin. Chem. Lett., 21, 122–126.
  • Cheng, K., and How, Y. (1996). Modifying the mechanical properties of ramie and its blends. Text. Res. J., 66, 209–214.
  • Chew, P., Zahi, S., You, A., Lim, P., and Ng, M. (2011). Preparation of Cu and fly ash composite by powder metallurgy technique. AIP Conf. Proc., 1328, 208–210.
  • Christman, T., Needleman, A., and Suresh, S. (1989). An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall., 37, 3029–3050.
  • Chuah, T., Jumasiah, A., Azni, I., Katayon, S., and Thomas Choong, S. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175, 305–316.
  • Cook, A., and Werner, P. (1991). Pressure infiltration casting of metal matrix composites. Mater. Sci. Eng.: A, 144, 189–206.
  • Daoud, A. (2008). Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng.: A, 488, 281–295.
  • Das, S., Dan, T., Prasad, S., and Rohatgi, P. (1986). Aluminium alloy—rice husk ash particle composites. J. Mater. Sci. Lett., 5, 562–564.
  • David Raja Selvam, J., Robinson Smart, D., and Dinaharan, I. (2013). Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater. Des., 49, 28–34.
  • Deshmukh, P., Bhatt, J., Peshwe, D., and Pathak, S. (2012). Development and characterization of Al based MMC by using RHA and metallurgical grade SiO2 with varying percentage of Mg. J. Nanotechnol. Appl., 12, 1–10.
  • Deshmukh, P., and Pathak, S. (2012). Influence of varying SiO2% on the mechanical properties of Al based MMC. Trans. Indian Inst. Met., 65, 741–745.
  • Di, Z., Xian-qing, X., Tong-xiang, F., Bing-he, S., Sakata, T., Mori, H., and Okabe, T. (2003). Microstructure and properties of ecoceramics/metal composites with interpenetrating networks. Mater. Sci. Eng.: A 351, 109–116.
  • Dong, N.S. (2010). Reducing carbon in ash. London, UK: IEA Clean Coal Centre. 64 pages.
  • Dou, Z., Wu, G., Huang, X., Sun, D., and Jiang, L. (2007). Electromagnetic shielding effectiveness of aluminum alloy–fly ash composites. Compos. Part A: Appl. Sci. Manuf., 38, 186–191.
  • Eary, L., Rai, D., Mattigod, S., and Ainsworth, C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. J. Environ. Qual., 19, 202–214.
  • Edeerozey, A., Akil, H.M., Azhar, A., and Ariffin, M. (2007). Chemical modification of kenaf fibers. Mater. Lett., 61, 2023–2025.
  • Escalera-Lozano, R., Gutiérrez, C., Pech-Canul, M.A., and Pech-Canul, M.I. (2007). Corrosion characteristics of hybrid Al/SiCp/MgAl2O4 composites fabricated with fly ash and recycled aluminum. Mater. Charact., 58, 953–960.
  • Escalera-Lozano, R., Gutiérrez, C., Pech-Canul, M.I., and Pech-Canul, M.A. (2008). Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans. Waste Manage., 28, 389–395.
  • FAO Rice Market Monitor. Volume XVII, Issue No. 1, 2014, Rome Italy.
  • Flores-Vélez, L.M., Chávez, J., Hernández, L., and Dominguez, O. (2001). Characterization and properties of aluminum composite materials prepared by powder metallurgy techniques using ceramic solid wastes. Mater. Manuf. Processes 16, 1–16.
  • Foo, K., and Hameed, B. (2009). Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci., 152, 39–47.
  • Frage, N., Levin, L., Frumin, N., Gelbstein, M., and Dariel, M. (2003). Manufacturing B4C–(Al, Si) composite materials by metal alloy infiltration. J. Mater. Process. Technol., 143, 486–490.
  • Fuad, M.Y.A., Ismail, Z., Ishak, Z.A.M., and Omar, A.K.M. (1995). Application of rice husk ash as fillers in polypropylene: Effect of titanate, zirconate and silane coupling agents. Eur. Polym. J., 31, 885–893.
  • Fukumoto, I., Mekaru, S., Shibata, S., and Nakayama, K. (2006). Fabrication of composite material using alumina agglomerated sludge and aluminum powder by spark plasma sintering. JSME Int. J. Ser. A, 49, 91–94.
  • Gonçalves, M., and Bergmann, C. (2007). Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Constr. Build. Mater., 21, 2059–2065.
  • Grigoreva, G., Volfson, G., Malts, N., and Shmorgunenko, N. (1977). The Use of Bauxite Red Mud. Tsvetn. Met., 34–35.
  • Gronostajski, J., Marciniak, H., Matuszak, A., and Samuel, M. (2001). Aluminium–ferro-chromium composites produced by recycling of chips. J. Mater. Process. Technol., 119, 251–256.
  • Guluzade, R., Avcı, A., Turan Demirci, M., and Faruk Erkendirci, Ö. (2013). Fracture toughness of recycled AISI 1040 steel chip reinforced AlMg1SiCu aluminum chip composites. Mater. Des., 52, 345–352.
  • Guo, R., and Rohatgi, P. (1998). Chemical reactions between aluminum and fly ash during synthesis and reheating of Al-fly ash composite. Metal. Mater. Trans. B., 29, 519–525.
  • Guo, R., Rohatgi, P., and Nath, D. (1997). Preparation of aluminium-fly ash particulate composite by powder metallurgy technique. J. Mater. Sci., 32, 3971–3974.
  • Hall, D., and Scrase, J. (1998). Will biomass be the environmentally friendly fuel of the future? Biomass Bioenergy 15, 357–367.
  • Hassan, S., and Aigbodion, V. (2015). Effects of eggshell on the microstructures and properties of Al-Cu-Mg/Eggshell particulate composites. J. King Saud Univ.-Eng. Sci., 27(1), 49–56.
  • Heimann, R.B. (2010). Classic and advanced ceramics: from fundamentals to applications. Germany: John Wiley & Sons, 539 pages.
  • Hrairi, M., Ahmed, M., and Nimir, Y. (2009). Compaction of fly ash–aluminum alloy composites and evaluation of their mechanical and acoustic properties. Adv. Powder Technol., 20, 548–553.
  • Huang, Z., Yu, S., Liu, J., and Zhu, X. (2011). Microstructure and mechanical properties of in situ Mg2Si/AZ91D composites through incorporating fly ash cenospheres. Mater. Des., 32, 4714–4719.
  • Hwang, J.Y., Huang, X., and Hein, A.M. (1994). Synthesizing mullite from beneficiated fly ash. JOM J. Miner. Met. Mater. Soc., 46, 36–39.
  • Itskos, G., Rohatgi, P.K., Moutsatsou, A., DeFouw, J.D., Koukouzas, N., Vasilatos, C., and Schultz, B.F. (2012). Synthesis of A356 Al–high-Ca fly ash composites by pressure infiltration technique and their characterization. J. Mater. Sci., 47, 4042–4052.
  • Jailani, H.S., Rajadurai, A., Mohan, B., Kumar, A.S., and Sornakumar, T. (2009). Multi-response optimisation of sintering parameters of Al–Si alloy/fly ash composite using Taguchi method and grey relational analysis. Int. J. Adv. Manuf. Technol., 45, 362–369.
  • Jaroenworaluck, A., Pijarn, N., Kosachan, N., and Stevens, R. (2012). Nanocomposite TiO2–SiO2 gel for UV absorption. Chem. Eng. J., 181, 45–55.
  • Jiang, Z.W., Luo, H.F., and Li, Z.J. (2012). The effect of suspension casting on the properties of fly ash particle reinforced Al matrix composites. Adv. Mater. Res., 581, 794–797.
  • Karayannis, V., and Moutsatsou, A. (2012). Synthesis and Characterization of Nickel-Alumina Composites from Recycled Nickel Powder. Adv. Mater. Sci. Eng., 2012, 9.
  • Karayannis, V., and Sotiriou, C. (2006). Composites from scrap? The future could be bright for MMCs. Met. Powder Rep., 61, 18–23.
  • Kawatra, S.K., and Ripke, S.J. (2002). Pelletizing steel mill desulfurization slag. Int. J. Miner. Process., 65, 165–175.
  • Khezri, S.M., Shariat, S.M., and Tabibian, S. (2012). Evaluation of extracting titanium dioxide from water-based paint sludge in auto-manufacturing industries and its application in paint production. Toxicol. Ind. Health 29, 697–703.
  • Kim, B.R., Kalis, E.M., Salmeen, I.T., Kruse, C.W., Demir, I., Carlson, S.L., and Rostam-Abadi, M. (1996). Evaluating paint-sludge chars for adsorption of selected paint solvents. J. Environ. Eng., 122, 532–537.
  • Kim, B.R., and Pingel, L.J. (1989). Removal of toluene from air using PAC/water slurry reactor. J. Environ. Eng., 115, 1025–1045.
  • Knibbs, N., and Pehrson, A. (1939). Utilizing colliery shale, etc., in making cementitious products, US patent, US 2135542.
  • Kondoh, K., and Luangvaranunt, T. (2003). New process to fabricate magnesium composites using SiO2 glass scraps. Mater. Trans., 44, 2468–2474.
  • Kondoh, K., Oginuma, H., Tuzuki, R., and Aizawa, T. (2003). Magnesium matrix composite with solid-state synthesized Mg2Si dispersoids. Mater. Trans., 44, 611–618.
  • Kondoh, K., Oginuma, H., Umeda, J., and Umeda, T. (2005). Innovative reuse of agricultural wastes as industrial raw materials to form magnesium composites. Mater. Trans., 46, 2586.
  • Kountouras, D., Tsouknidas, A., Kiourtsidis, G., and Skolianos, S. (2013). Fly Ash Permeability During Liquid AA7075 Infiltration, as a Reutilization Method for Novel MMCs. J. Mater. Eng. Perform., 22, 2210–2218.
  • Kouzeli, M., San Marchi, C., and Mortensen, A. (2002). Effect of reaction on the tensile behavior of infiltrated boron carbide–aluminum composites. Mater. Sci. Eng.: A, 337, 264–273.
  • Kumagai, S., and Sasaki, J. (2009). Carbon/silica composite fabricated from rice husk by means of binderless hot-pressing. Bioresour. Technol., 100, 3308–3315.
  • Kumar, A., and Swamy, R. (2011). Evaluation of mechanical properties of Al6061, fly ash and e-glass fiber reinforced hybrid metal matrix composites. ARPN J. Eng. Appl. Sci., 6, 40–44.
  • Kumar, P., Kumaran, S., Rao, T.S., and Natarajan, S. (2010). High temperature sliding wear behavior of press-extruded AA6061/fly ash composite. Mater. Sci. Eng.: A, 527, 1501–1509.
  • Lancaster, L., Lung, M.H., and Sujan, D. (2013). Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability. World Acad. Sci., Eng. Technol., 73, 1136–1144.
  • LaBotz, R.J., and Mason, D.R. (1963). The thermal conductivities of Mg2Si and Mg2Ge. J. Electrochem. Soc., 110, 121–126.
  • Laurent, V., Chatain, D., and Eustathopoulos, N. (1987). Wettability of SiC by aluminium and Al-Si alloys. J. Mater. Sci., 22, 244–250.
  • Lee, T., Othman, R., and Yeoh, F.-Y. (2013). Development of photoluminescent glass derived from rice husk. Biomass Bioenergy 59, 380–392.
  • Li, H., and Ebrahimi, F. (2003). Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater. Sci. Eng.: A, 347, 93–101.
  • Li, R., Zhong, Z., Jin, B., and Zheng, A. (2012). Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production. Bioresour. Technol., 119, 324–330.
  • Li, S., Fu, S., Zhou, B., Zeng, Q., and Bao, X. (1994). Reformed bamboo and reformed bamboo/aluminium composite. J. Mater. Sci., 29, 5990–5996.
  • Li, S., Zhou, B., Tang, Z., and Zeng, Q. (1996). Reformed bamboo and reformed bamboo/aluminium composite Part II impact properties. J. Mater. Sci., Lett., 15, 129–131.
  • Lin, Y.J., and Lin, S.Y. (2007). Fabrication of Ceramic-Metal Composites by Melt Infiltration of Moso-Bamboo-Derived Porous SiC. Key Eng. Mater., 351, 37–42.
  • Lin, Y.J., and Lo, X.W. (2011). Fabrication of SiC and SiC/Aluminum-Silicon Composites from Rattan Charcoal. Key Eng. Mater., 479, 119–123.
  • Llorente, M., and García, J. (2006). Concentration of elements in woody and herbaceous biomass as a function of the dry ashing temperature. Fuel 85, 1273–1279.
  • Lokeshappa, B., and Dikshit, A.K. (2011). Disposal and Management of Flyash, International Conference on Life Science and Technology, IPCBEE, Singapore, pp. 11–14.
  • Lu, Y., Weng, L., and Cao, X. (2006). Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd. Polym., 63, 198–204.
  • Luangvaranunt, T., Dhadsanadhep, C., Umeda, J., Nisaratanaporn, E., and Kondoh, K. (2010). Aluminum-4 mass% copper/alumina composites produced from aluminum copper and rice husk ash silica powders by powder forging. Mater. Trans., 51, 756–761.
  • Luong, D.D., Gupta, N., Daoud, A., and Rohatgi, P.K. (2011a). High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites. JOM 63, 53–56.
  • Luong, D.D., Gupta, N., and Rohatgi, P.K. (2011b). The high strain rate compressive response of Mg-Al alloy/fly Ash cenosphere composites. JOM 63, 48–52.
  • Macke, A., Schultz, B., and Rohatgi, P. (2012). Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Adv. Mater. Process., 170, 19–23.
  • Madakson, P., Yawas, D., and Apasi, A. (2012). Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int. J. Eng. Sci. Technol., 4, 1190–1198.
  • Mahendra, K., and Radhakrishna, K. (2007). Fabrication of Al-4.5% Cu alloy with fly ash metal matrix composites and its characterization. Mater. Sci. Poland 25, 57–68.
  • Maleque, M., Atiqah, A., Talib, R., and Zahurin, H. (2012). New natural fibre reinforced aluminium composite for automotive brake pad. Int. J. Mech. Mater. Eng., 7, 166–170.
  • Malik, P.K. (2003). Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigm., 56, 239–249.
  • Mantry, S., Behera, D., Mishra, S.K., Debasish, D., Jha, B.B., and Mishra, B.K. (2013). Erosive wear analysis of plasma-sprayed Cu Slag–Al composite coatings. Tribol. Trans., 56, 196–202.
  • Marin, E., Lekka, M., Andreatta, F., Fedrizzi, L., Itskos, G., Moutsatsou, A., Koukouzas, N., and Kouloumbi, N. (2012). Electrochemical study of Aluminum-Fly Ash composites obtained by powder metallurgy. Mater. Charact., 69, 16–30.
  • Martı́nez-Fernández, J., Valera-Feria, F., and Singh, M., (2000). High temperature compressive mechanical behavior of biomorphic silicon carbide ceramics. Scripta Materiala 43, 813–818.
  • Martirena, F., Middendorf, B., Day, R.L., Gehrke, M., Roque, P., Martínez, L., and Betancourt, S. (2006). Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw. Cem. Concr. Res., 36, 1056–1061.
  • Masiá, A., Buhre, B., Gupta, R., and Wall, T. (2007). Use of TMA to predict deposition behaviour of biomass fuels. Fuel 86, 2446–2456.
  • Matsunaga, T., Kim, J., Hardcastle, S., and Rohatgi, P. (2002). Crystallinity and selected properties of fly ash particles. Mater. Sci. Eng.: A, 325, 333–343.
  • Mehta, P. (1989). Pozzolanic and cementitious by-products in concrete-another look. Proceedings of Third CANMENT/ACI International Conference, pp. 1–43.
  • Mishra, R.S., Ma, Z., and Charit, I. (2003). Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng.: A, 341, 307–310.
  • Mishra, R.S., Mahoney, M., McFadden, S., Mara, N., and Mukherjee, A. (1999). High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Materialia 42, 163–168.
  • Mohanty, A., Misra, M., and Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ., 10, 19–26.
  • Murr, L.E. (1975). Interfacial phenomena in metals and alloys. Reading, MA, United States: Addison-Wesley Publishing Company.
  • Naik, T.R., and Kraus, R.N. (2003). A new source of pozzolanic material. Concr. Int., 25, 55–62.
  • Naik, T.R., and Singh, S. (1998). Fly ash generation and utilization-an overview. Published in the book titled “Recent Trend in Fly Ash Utilization”, Ministry of Environment and Forests, Government of India.
  • Nakouzi, S., Mielewski, D., Ball, J., Kim, B., Salemeen, I., Bauer, D., and Narula, C. (1998). A novel approach to paint sludge recycling: Reclaiming of paint sludge components as ceramic composites and their applications in reinforcement of metals and polymers. J. Mater. Res., 13, 53–60.
  • Narasimha Murthy, I., Venkata Rao, D., and Babu Rao, J. (2012). Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method. Mater. Des., 35, 55–65.
  • Nelson, R., Dinaharan, I., and Vijay, S. (2013). Design and development of Fly ash reinforced aluminium matrix composite using friction stir process (FSP), Energy Efficient Technologies for Sustainability (ICEETS), 2013 International Conference on. IEEE, pp. 883–887.
  • Niyomwas, S. (2009). Synthesis and characterization of silicon-silicon carbide composites from rice husk ash via self-propagating high temperature synthesis. J. Met. Mater. Miner., 19, 21–25.
  • Niyomwas, S. (2012). Effect of silica sources on synthesis of alumina-mullite-silicon carbide composite. Adv. Mater. Res., 488, 607–611.
  • Nodooshan, H.J., Liu, W., Wu, G., Bahrami, A., Pech-Canul, M.I., and Emamy, M. (2014). Mechanical and tribological characterization of Al-Mg2Si composites after yttrium addition and heat treatment. J. Mater. Eng. Perform., 23, 1146–1156.
  • Nwabueze, T.U., and Otunwa, U. (2006). Effect of supplementation of African breadfruit (Treculia africana) hulls with organic wastes on growth characteristics of Saccharomyces cerevisiae. Afr. J. Biotechnol., 5, 1494–1498.
  • O'Brien, R.C. (1988). Fatigue properties of P/M materials. Society of Automotive Engineers (SAE) Congress., Detroit, MI, USA.
  • Obasuyi, J., and Nwokoro, S. (2006). Physical and chemical characteristics of breadfruit (Artocarpus altilis) seeds collected from three locations in Edo State, Nigeria. Pak. J. Nutr., 5, 212–214.
  • Okubo, K., Fujii, T., and Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A: Appl. Sci. Manuf., 35, 377–383.
  • Ortega-Celaya, F., Pech-Canul, M.I., López-Cuevas, J., Rendón-Ángeles, J., and Pech-Canul, M.A. (2007). Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp. J. Mater. Process. Technol., 183, 368–373.
  • Osabor, V., Ogar, D., Okafor, P., and Egbung, G. (2009). Profile of the African bread fruit (Treculia africana). Pak. J. Nutr., 8, 1005–1008.
  • Osman, S., and Ahmad, M. (2013). Flexural and impact properties of bamboo-aluminum sandwich composites. Adv. Mater. Res., 608, 1728–1731.
  • Palanisamy, S., Ramanathan, S., and Rangaraj, R. (2013). Analysis of dry sliding wear behaviour of Aluminium-Fly Ash composites: the Taguchi approach. Adv. Mech. Eng., 2013, 1–10.
  • Patel, M., Karera, A., and Prasanna, P. (1987). Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J. Mater. Sci., 22, 2457–2464.
  • Payá, J., Monzó, J., Borrachero, M.V., Díaz-Pinzón, L., and Ordóñez, L.M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. J. Chem. Technol. Biotechnol., 77, 321–325.
  • Pech-Canul, M.I., Katz, R.N., and Makhlouf, M. (2000a). Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys. J. Mater. Process. Technol., 108, 68–77.
  • Pech-Canul, M.I., Katz, R.N., and Makhlouf, M. (2000b). Optimum parameters for wetting silicon carbide by aluminum alloys. Metall. Mater. Trans., A., 31, 565–573.
  • Pech-Canul, M.I., and Aifantis, E. (2014). A revamped paradigm of composite materials: from ancient-to-modern concepts and applications. In F. Kongoli, (Ed.), Sustainable industrial processing summit/SHECHTMAN international symposium, Montreal. QC, Canada, pp. 449–458.
  • Pech-Canul, M.I., and aldez, S. (2015). Contemporary concepts and applications in the field of composites materials, SAMPE. Society for the Advancement of Material and Process Engineering, Baltimore, MD.
  • Pech-Canul, M.I., Katz, R.N., Makhlouf, M., and Pickard, S. (2000c). The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys. J. Mater. Sci., 35, 2167–2173.
  • Pech-Canul, M.I., Escalera-Lozano, R., Pech-Canul, M.A., Rendón-Angeles, J., and López-Cuevas, J. (2007). Degradation processes in Al/SiCp/MgA2O4composites prepared from recycled aluminum with fly ash and rice hull ash. Mater. Corros., 58, 833–840.
  • Pond, R.B. (1989). Metal composites with fly ash incorporated therein and a process for producing the same. US patents: US4888054 A.
  • Prabriputaloong, K., and Piggott, M. (1974). The reaction between silica and aluminum. J. Electrochem. Soc., 121, 430–434.
  • Prasad, D.S., and Krishna, A.R. (2010). Fabrication and characterization of A356.2-rice husk ash composite using stir casting technique. Int. J. Eng. Sci. Technol., 2, 7603–7608.
  • Prasad, D.S., and Krishna, A.R. (2012). Tribological properties of A356.2/RHA composites. J. Mater. Sci. Technol., 28, 367–372.
  • Prasad, N., and Acharya, S. (2006). Development and characterization of metal matrix composite using red Mud an industrial waste for wear resistant applications. National Institute of Technlogy-India, Ph.D. Thesis.
  • Prasad, S., and Krishna, R. (2011). Production and mechanical properties of A356.2/RHA composites. Int. J. Adv. Sci. Technol., 33, 51–58.
  • Qian, J.M., Jin, Z.H., and Wang, X.W. (2004a). Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal. Ceram. Int., 30, 947–951.
  • Qian, J.M., Wang, J.P., Qiao, G.J., and Jin, Z.H. (2004b). Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc., 24, 3251–3259.
  • Rahman, I., and Ismail, J. (1993). Preparation and characterization of a spherical gel from a low-cost material. J. Mater. Chem., 3, 931–934.
  • Rajan, T., Pillai, R., Pai, B., Satyanarayana, K., and Rohatgi, P. (2007). Fabrication and characterisation of Al–7Si–0.35 Mg/fly ash metal matrix composites processed by different stir casting routes. Compos. Sci. Technol., 67, 3369–3377.
  • Rajesh, S., Rajakarunakaran, S., and Pandian, R.S. (2012). Modeling and optimization of sliding specific wear and coefficient of friction of aluminum based red mud metal matrix composite using taguchi method and response surface methodology. Mater. Phys. Mech., 15, 150–166.
  • Ramachandra, M., and Radhakrishna, K. (2007). Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite. Wear 262, 1450–1462.
  • Ramesh, C., Seshadri, S., and Iyer, K. (1991). Wear resistance of nickel-fly ash composite coatings. Wear 145, 189–195.
  • Ramme, B.W., and Tharaniyil, M.P. (2000). Wisconsin electric power company coal combustion products utilization handbook. WI, United States: Wisconsin Electric Power Company.
  • Rattanasak, U., Chindaprasirt, P., and Suwanvitaya, P. (2010). Development of high volume rice husk ash alumino silicate composites. Int. J. Miner. Metall. Mater., 17, 654–659.
  • Razaghian, A., Bahrami, A., and Emamy, M. (2012). The influence of Li on the tensile properties of extruded in situ Al–15% Mg2Si composite. Mater. Sci. Eng.: A, 532, 346–353.
  • Reddy, S.P., Ramana, B., and Reddy, A.C. (2013). Sintering characteristics of Al-Pb/Fly ash metal matrix composites. Trans. Indian Inst. Met., 66, 87–95.
  • Rodriguez-Lugo, V., Rubio, E., Gomez, I., Torres-Martinez, L., and Castano, V. (2002). Synthesis of silicon carbide from rice husk. Int. J. Environ. Pollut., 18, 378–387.
  • Rohatgi, P., Daoud, A., Schultz, B., and Puri, T. (2009). Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites. Compos. Part A: Appl. Sci. Manuf., 40, 883–896.
  • Rohatgi, P., Gomy, Z., Sobczak, J., and Sobczak, N. (1993a). Influence of Squeeze Pressure of AlSi9Zn3Cu3Fe1MnMg (52K) Aluminum Alloy-Fly Ash Composites. Trans. Foundry Res. Inst., XLIII (3), 143–160.
  • Rohatgi, P., Guo, R., Iksan, H., Borchelt, E., and Asthana, R. (1998). Pressure infiltration technique for synthesis of aluminum–fly ash particulate composite. Mater. Sci. Eng.: A, 244, 22–30.
  • Rohatgi, P., Guo, R., and Keshavaram, B. (1995a). Cast aluminum alloy-fly ash composites, Key Eng. Mater., 283–292.
  • Rohatgi, P., Guo, R., Keshavaram, B., and Golden, D. (1996). Cast aluminum, fly ash composites for engineering applications. American Foundrymen’s Society, Inc.(USA), 575–579.
  • Rohatgi, P., Gupta, N., and Alaraj, S. (2006a). Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique. J. Compos. Mater., 40, 1163–1174.
  • Rohatgi, P., Keshavaram, B., Huang, P., Guo, R., Golden, D., Reinhardt, S., and Odor, D. (1993b). Microstructure and properties of cast aluminum fly ash particle composites. Proceedings of the Tenth International Ash Use Symposium. ACAA. Palo Alto, CA, pp. 76–71.
  • Rohatgi, P., Kim, J., Gupta, N., Alaraj, S., and Daoud, A. (2006b). Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Compos. Part A: Appl. Sci. Manuf., 37, 430–437.
  • Rohatgi, P., Sobczak, J., and Sobczak, N. (1995b). Structure and properties of squeeze cast aluminum alloy-fly ash composites. In D. Hui (Ed.), Proceedings ICCE-2, New Orleans, LA, USA, pp. 689–690.
  • Rohatgi, P.K. (1993). Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals. US patents, US5228494 A.
  • Rohatgi, P.K. (1994). Low-cost, fly ash-containing aluminum-matrix composites. JOM 46, 55–59.
  • Rohatgi, P.K., Gupta, N., Schultz, B.F., and Luong, D.D. (2011). The synthesis, compressive properties, and applications of metal matrix syntactic foams. JOM 63, 36–42.
  • Roy, W.R., Thiery, R.G., Schuller, R.M., and Suloway, J. (1981). Coal fly ash: a review of the literature and proposed classification system with emphasis on environental impacts. Urbana (USA): Illinois State Geological Survey.
  • Mallik, S., and Ekere. N. (2013). Metal matrix composites as thermal management materials for automotive applications. In Magagnin, L. (Ed.), Engineered metal matrix composites: Forming methods, material properties and industrial applications. New York: Nova Science Publishers, Inc., pp. 113–126.
  • Sai, N.V., Komaraiah, M., and Raju, A.S.R. (2008). Preparation and properties of sintered copper–tin composites containing copper coated or uncoated fly ash. Mater. Manuf. Processes 23, 651–657.
  • Samoshina, M., Aksenov, A., and Kaevitser, E. (2008). Structure and properties of mechanically alloyed composite materials from hard-recycling scrap of Al alloys. Rev. Adv. Mater. Sci., 18, 305–311.
  • Samuel, M. (2003). Reinforcement of recycled aluminum-alloy scrap with Saffil ceramic fibers. J. Mater. Process. Technol., 142, 295–306.
  • Saravanan, S., Senthilkumar, M., and Shankar, S. (2013). Effect of particle size on tribological behavior of rice husk ash–reinforced aluminum alloy (AlSi10Mg) matrix composites. Tribol. Trans., 56, 1156–1167.
  • Sarkar, S., Sen, S., Mishra, S., Kudelwar, M., and Mohan, S. (2010). Studies on aluminum—fly ash composite produced by impeller mixing. J. Reinfor. Plast. Compos., 29, 144–148.
  • Sasaki, G., Yoshida, M., Yanagisawa, O., Fuyama, N., and Fujii, T. (2003). Mechanical properties and microstructure of Al18B4O33/magnesium alloy composites prepared by compo-casting. Mater. Sci. Forum, 777–782.
  • Sato, A., and Mehrabian, R. (1976). Aluminum matrix composites: Fabrication and properties. Metal. Mater. Trans. B.,Mater. Trans., 7, 443–451.
  • Semlak, K., and Rhines, F. (1958). The rate of infiltration of metals. Trans. Metall. Soc. AIME, 212, 325–331.
  • Shackelford, J.F., and Alexander, W. (2010). CRC materials science and engineering handbook. CRC press: Boca Raton, FL, USA.
  • Shanmughasundaram, P., Subramanian, R., and Prabhu, G. (2011). Some studies on aluminium–fly ash composites fabricated by two step stir casting method. Eur. J. Sci. Res., 63, 204–218.
  • Shihong, L., Benlian, Z., Qiyun, Z., and Xianrong, B. (1994). A new kind of super-hybrid composite material for civil use-ramie fibre/Al. Composites 25, 225–228.
  • Shuhadah, S., Supri, M., and Kamaruddin, H. (2008). Thermal analysis water absorption and morphology properties of eggshell powder filled low density polyethylene composites. Proceeding of MUCET 2008. Kangar, Perlis: UniMAP, 15–16.
  • Sieber, H., Rambo, C., Cao, J., Vogli, E., and Greil, P. (2001). Manufacturing of porous oxide ceramics by replication of plant morphologies. Key Eng. Mater., 206, 2009–2012.
  • Siva Prasad, D., Rama Krishna, A. (2011). Production and mechanical properties of A356. 2/RHA composites. Int. J. Adv. Sci. Technol., 33, 51–57.
  • Siva, S.V., Ganguly, R., Srinivasarao, G., and Sahoo, K. (2013a). Machinability of aluminum metal matrix composite reinforced with in-situ ceramic composite developed from mines waste colliery shale. Mater. Manuf. Processes, 28, 1082–1089.
  • Siva, S.V., Sahoo, K., Ganguly, R., Dash, R., Singh, S., Satpathy, B., and Srinivasarao, G. (2013b). Preparation of aluminum metal matrix composite with novel in situ ceramic composite particulates, developed from waste colliery shale material. Metal. Mater. Trans. B., 44, 800–808.
  • Sobhanardakani, S., Parvizimosaed, H., and Olyaie, E. (2013). Heavy metals removal from wastewaters using organic solid waste—rice husk. Environ. Sci. Pollut. Res., 1–7.
  • Soltani, N., Bahrami, A., Moghimi, F., Pech-Canul, M.I., and Hajaghasi, A. (2012). The simultaneous efect of extrusion and T6 treatment on the mechanical properties of Al-15wt.% Mg2Si composite. HTM J. Heat Treat. Mater., 67, 378–385.
  • Soltani, N., Bahrami, A., and Pech-Canul, M.I. (2013a). The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg2Si composite. Metall. Mater. Trans. A, 44, 4366–4373.
  • Soltani, N., Bahrami, A., Pech-Canul, M.I., and González, L.A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J., 264, 899–935.
  • Soltani, N., Jafari Nodooshan, H., Bahrami, A., Pech-Canul, M.I., Liu, W., and Wu, G. (2014a). Effect of hot extrusion on wear properties of Al–15wt.% Mg2Si in situ metal matrix composites. Mater. Des., 53, 774–781.
  • Soltani, N., Pech-Canul, M.I., and Bahrami, A. (2013b). Effect of 10Ce-TZP/Al2O3 nanocomposite particle amount and sintering temperature on the microstructure and mechanical properties of Al/(10Ce-TZP/Al2O3) nanocomposites. Mater. Des., 50, 85–91.
  • Soltani, N., Sadrnezhaad, S.K., and Bahrami, A. (2014b). Manufacturing Wear-Resistant 10Ce-TZP/Al2O3Nanoparticle Aluminum Composite by Powder Metallurgy Processing. Mater. Manuf. Processes 29, 1237–1244.
  • Sreekumar, V.M., Pillai, R.M., Pai, B.C., and Chakraborty, M. (2008). Microstructural development in Al/MgAl2O4in situ metal matrix composite using value-added silica sources. Sci. Technol. Adv. Mater., 9, 015004.
  • Surappa, M. (2008). Dry sliding wear of fly ash particle reinforced A356 Al composites. Wear 265, 349–360.
  • Thakur, R., and Das, S. (1994). Red mud: analysis and utilisation. Publications & Information Directorate, New Delhi Publications & Information Directorate, New Delhi, India.
  • Thy, P., Jenkins, B., Grundvig, S., Shiraki, R., and Lesher, C. (2006). High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85, 783–795.
  • Tolle, D., Arthur, M., and Pomeroy, S. (1982). Fly ash use for agriculture and land reclamation: A critical literature review and identification of additional research needs. RP-1224–5. Columbus. Ohio: Battelle Columbus Laboratories.
  • Toro, P., Quijada, R., Arias, J.L., and Yazdani-Pedram, M. (2007a). Mechanical and Morphological Studies of Poly (propylene)-Filled Eggshell Composites. Macromol. Mater. Eng., 292, 1027–1034.
  • Toro, P., Quijada, R., Yazdani-Pedram, M., and Arias, J.L. (2007b). Eggshell, a new bio-filler for polypropylene composites. Mater. Lett., 61, 4347–4350.
  • Tsuzuki, R., and Kondoh, K. (2006). Formation of Mg2Si/MgO/Mg Composites by Using Wasted Glasses. Mater. Trans., 47, 983.
  • Ugheoke, B.I., Onche, E.O., Namessan, O.N., and Asikpo, G.A. (2006). Property optimization of kaolin-rice husk insulating fire-bricks. Leonardo Electron. J. Pract. Technol., 5, 167–178.
  • Uju, W., and Oguocha, I. (2012). A study of thermal expansion of Al–Mg alloy composites containing fly ash. Mater. Des., 33, 503–509.
  • Umeda, J., Kondoh, K., Kawakami, M., and Imai, H. (2009). Powder metallurgy magnesium composite with magnesium silicide in using rice husk silica particles. Powder Technol., 189, 399–403.
  • Uthayakumar, M., Kumaran, S.T., and Aravindan, S. (2013). Dry sliding friction and wear studies of fly ash reinforced AA-6351 metal matrix composites. Adv. Tribol., 2013.
  • Valentine, T. (1977). On the use of critical energy techniques for the measurement of surface energies of ceramics: Part II. The temperature variant method. Mater. Sci. Eng., 30, 211–218.
  • Viala, J., Peillon, N., Bosselet, F., and Bouix, J. (1997). Phase equilibria at 1000°C in the AlCSiTi quaternary system: An experimental approach. Mater. Sci. Eng.: A, 229, 95–113.
  • Vijay, S., and Dinaharan, I. (2013). Design and development of Fly ash reinforced aluminium matrix composite using friction stir process (FSP), International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, Nagercoil, pp. 883–887.
  • Vlaev, L., Markovska, I., and Lyubchev, L. (2003). Non-isothermal kinetics of pyrolysis of rice husk. Thermochim. Acta 406, 1–7.
  • Washburn, E.W. (1921). The dynamics of capillary flow. Phys. Rev., 17, 273.
  • Wiselogel, A., Agblevor, F., Johnson, D., Deutch, S., Fennell, J., and Sanderson, M. (1996). Compositional changes during storage of large round switchgrass bales. Bioresour. Technol., 56, 103–109.
  • Wu, G., Dou, Z., Jiang, L., and Cao, J. (2006). Damping properties of aluminum matrix–fly ash composites. Mater. Lett., 60, 2945–2948.
  • Wu, G., Dou, Z., Sun, D., Jiang, L., Ding, B., and He, B. (2007). Compression behaviors of cenosphere–pure aluminum syntactic foams. Scr. Mater., 56, 221–224.
  • Xian-qing, X., Tong-xiang, F., Di, Z., and Ren-jie, W. (2002). Increasing the mechanical properties of high damping woodceramics by infiltration with a magnesium alloy. Compos. Sci. Technol., 62, 1341–1346.
  • Xie, X., Zhang, D., Fan, T., Sakata, T., Mori, H., Okabe, T., and Hirose, T. (2002a). The fabrication of composites with interpenetrating networks based on woodceramics. Mater. Lett., 56, 102–107.
  • Xie, X.Q., Fan, T.X., Zhang, D., Sakata, T., and Mori, H. (2002b). Mechanical properties and damping behavior of woodceramics/ZK60A Mg alloy composite. Mater. Res. Bull. 37, 1133–1140.
  • Yang, Y., Lan, J., and Li, X. (2004). Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng.: A, 380, 378–383.
  • Yoshikawa, N., Nakano, Y., Sato, K., and Taniguchi, S. (2005). Fabrication of composite materials using Al scrap and wasted glass. Mater. Trans., 46, 2582–2585.
  • Yoshikawa, N., Yamaguchi, H., Kitahara, G., and Taniguchi, S. (2003). Utilization of Al scrap for fabrication of Al (alloy)/Al2O3composite material. Mater. Trans.,-JIM 44, 1271–1275.
  • Yu, Q., Sawayama, K., Sugita, S., Shoya, M., and Isojima, Y. (1999). The reaction between rice husk ash and Ca (OH)2 solution and the nature of its product. Cem. Concr. Res., 29, 37–43.
  • Yusoff, S. (2006). Renewable energy from palm oil–innovation on effective utilization of waste. J. Clean. Prod., 14, 87–93.
  • Zahi, S., and Daud, A. (2011). Fly ash characterization and application in Al–based Mg alloys. Mater. Des., 32, 1337–1346.
  • Zamri, Y., Shamsul, J., and Amin, M. (2011). Potential of palm oil clinker as reinforcement in aluminium matrix composites for tribological applications. Int. J. Mech. Mater. Eng., 6, 10–17.
  • Zawrah, M., Zayed, M., and Ali, M.R. (2012). Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material. J. Hazard. Mater., 227, 250–256.
  • Zhang, D., Sun, B.H., Xie, X.Q., and Fan, T.X. (2003). Microstructure and properties analysis of composites based on woodceramics. Key Eng. Mater., 249, 31–36.
  • Zhang, D., Zhang, W., Gu, J., Zhu, S., Su, H., Liu, Q., Fan, T., Ding, J., and Guo, Q. (2010). Bio-inspired functional materials templated from nature materials. Kona Powder Part. J., 28, 116–130.
  • Zhang, J.Z. (2012). Research of composite material properties based on waste glass and scrap aluminum. Adv. Mater. Res., 468, 2868–2871.
  • Zhu, D., Gao, M., Pan, H., Hong, Z., Zhao, B., Li, S., Ge, H., Liu, Y., and Pan, Y. (2012a). Fabrication and mechanical properties of SiCw/MoSi2-SiC composites by liquid Si infiltration of pyrolyzed rice husk preforms with Mo additions. Int. J. Refract. Met. Hard Mater., 35, 152–158.
  • Zhu, D., Gao, M., Pan, H., Liu, Y., Wang, X., Pan, Y., Oliveira, F.J., and Vieira, J.M. (2013). Reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks and SiC powder. Ceram. Int., 39, 3831–3842.
  • Zhu, D., Gao, M., Zhang, S., Wu, H., Pan, Y., Liu, Y., Pan, H., Oliveira, F.J., and Vieira, J.M. (2012b). A high-strength SiCw/SiC–Si composite derived from pyrolyzed rice husks by liquid silicon infiltration. J. Mater. Sci., 47, 4921–4927.
  • Žikin, A., Hussainova, I., Katsich, C., Kulu, P., and Goljandin, D. (2013). Wear behaviour of recycled hard particle reinforced NiCrBSi hardfacings deposited by plasma transferred arc (PTA) process. Key Eng. Mater., 527, 179–184.
  • Zimakov, S., Pihl, T., Kulu, P., Antonov, M., and Mikli, V. (2003). Applications of recycled hardmetal powder. Proc. Estonian Acad. Sci.: Eng., 304–316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.