1,587
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and applications of ceramic nanofibers in water remediation: A review

&
Pages 500-534 | Published online: 21 Dec 2015

References

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026.
  • Ali, I., Asim, M., and Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage. 113, 170–183.
  • Ambashta, R. D., and Sillanpää, M. (2010). Water purification using magnetic assistance: A review. J. Hazard. Mater. 180, 38–49.
  • Amna, T., Hassan, M. S., Barakat, N. A. M., Pandeya, D. R., Hong, S. T., Khil, M. S., and Kim, H. Y. (2012). Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl. Microbiol. Biotechnol. 93, 743–751.
  • Anitha, S., Brabu, B., Thiruvadigal, D. J., Gopalakrishnan, C., and Natarajan, T. S. (2013). Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym. 97, 856–863.
  • Aouat, Y., Marom, G., Avnir, D., Gelman, V., Shter, G. E., and Grader, G. S. (2013). Organically doped silver nanoparticles deposited on titania nanofibers: enhanced catalytic methanol oxidation. J. Phys. Chem. C 117, 22325–22330.
  • Arsuaga, J. M., Sotto, A., del Rosario, G., Martínez, A., Molina, S., Teli, S. B., and de Abajo, J. (2013). Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 428, 131–141.
  • Ashaghi, K. S., Ebrahimi, M., and Czermak, P. (2007). Ceramic ultra- and nanofiltration membranes for oilfield produced water treatment: a mini review. The Open Environmental Journal 1, 1–8.
  • Bai, H., Liu, Z., and Sun, D. D. (2012). Solar-light-driven photodegradation and antibacterial activity of hierarchical TiO2/ZnO/CuO material. ChemPlusChem 77, 941–948.
  • Bai, X. D., Guo, J. D., Yu, J., Wang, E. G., Yuan, J., and Zhou, W. (2000). Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers. Appl. Phys. Lett. 76, 2624.
  • Bhatnagar, A., and Sillanpää, M. (2014). Application of nanoadsorbents in water treatment. In B. I. Kharisov, O. V. Kharissova, and H. V. R. Dias (Eds.), Nanomaterials for environmental protection. Hoboken, NJ: Wiley.
  • Bolong, N., Ismail, A. F., Salim, M. R., and Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239 229–246.
  • Chen, S., Yu, M., Han, W. P., Yan, X., Liu, Y. C., Zhang, J. C., Zhang, H. D., Yuab, G. F., and Long, Y. Z. (2014). Electrospun anatase TiO2 nanorods for flexible optoelectronic devices. RSC Adv. 4, 46152–46156.
  • Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J. Mater. Process. Technol. 167, 283–293.
  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., and Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39, 4797–4807.
  • Cui, X. M., Nam, Y. S., Lee, J. Y., and Park, W. H. (2008). Fabrication of zirconium carbide (ZrC) ultra-thin fibers by electrospinning. Mater. Lett. 62, 1961–1964.
  • Dodds, W. K., Perkin, J. S., and Gerken, J. E. (2013). Human impact on freshwater ecosystem services: a global perspective. Environ. Sci. Technol. 47, 9061–9068.
  • Dong, B., Li, Z., Li, Z., Xu, X., Song, M., Zheng, W., Wang, C., Al-Deyab, S. S., and El-Newehy, M. (2010). Highly efficient LaCoO3 nanofibers catalysts for photocatalytic degradation of rhodamine B. J. Am. Ceram. Soc. 93, 3587–3590.
  • Faisal, M., Khan, S.B., Rahman, M. M., Jamal, A., Akhtar, K., and Abdullah, M. M. (2011). Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor. J. Mater. Sci. Technol. 27, 594–600.
  • Faust, B. C., Hoffmann, M. R., and Bahnemann, D. W. (1989). Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem. 93, 6371–6381.
  • Feng, J. J. (2002). The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys. Fluids 14, 3912–3926.
  • Fong, H., Chun, I., and Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40, 4585–4592.
  • Formo, E., Lee, E., Campbell, D., and Xia, Y. (2008). Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668–672.
  • Fragalà, M. E., Cacciotti, I., Aleeva, Y., Nigro, R.L., Bianco, A., Malandrino, G., Spinella, C., Pezzotti, G., and Gusmano, G. (2010). Core–shell Zn-doped TiO2–ZnO nanofibers fabricated via a combination ofelectrospinning and metal–organic chemical vapor deposition. CrystEngComm 12, 3858–3865.
  • Frenot, A., and Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interf. Sci. 8, 64–75.
  • Fridrikh, S. V., Yu, J. H., Brenner, M. P., and Rutledge, G. C. (2003). Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90, 144502.
  • Fujishima, A., Rao, T. N., and Tryk, D. A. (2000). Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1–21.
  • Gerba, C. P., Joseph, C. W., and Melnick, L. (1975). Viruses in water: the problem, some solutions. Environ. Sci. Technol. 9, 1122–1126.
  • Ghasemi, E., Ziyadi, H., Afshar, A. M., and Sillanpää, M. (2015). Iron oxide nanofibers: A new magnetic catalyst for azo dyes degradation in aqueous solution. Chem. Eng. J. 264, 146–151.
  • Greiner, A., and Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703.
  • Guan, H., Shao, C., Chen, B., Gong, J., and Yang, X. (2003). A novel method for making CuO superfine fibres via an electrospinning technique. Inorg. Chem. Commun. 6, 1409–1411.
  • Hanjra, M. A., Blackwell, J., Carr, G., Zhang, F., and Jackson, T. M. (2012). Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 215, 255–269.
  • Hassan, M. S., Amna, T., and Khil, M. S. (2014). Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceram. Int. 40, 423–427.
  • Hassan, M. S., Amna, T., Yang, O. B., Kim, H. C., and Khil, M. S. (2012). TiO2 nanofibers doped with rare earth elements and their photocatalytic activity. Ceram. Int. 38, 5925–5930.
  • Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemannt, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69–96.
  • Horzum, N., Muñoz-Espí, R., Glasser, G., Demir, M. M., Landfester, K., and Crespy, D. (2012). Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning. ACS Appl. Mater. Interfaces 4, 6338–6345.
  • Hou, D., Luo, W., Huang, Y., Yu, J. C., and Hu, X. (2013). Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale 5, 2028–2035.
  • Hou, H., Wang, L., Gao, F., Wei, G., Tang, B., Yang, W., and Wu, T. (2014). General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136, 16716–16719.
  • Hu, J. S., Zhong, L. S., Song, W. G and Wan, L. J. (2008). Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 20, 2977–2982.
  • Huang, K., Chu, X., Feng, W., Zhou, C., Si, W., Wu, X., Yuan, L., and Feng, S. (2014). Catalytic behavior of electrospinning synthesized La 0.75 Sr 0.25 MnO3 nanofibers in the oxidation of CO and CH4. Chem. Eng. J. 244, 27–32.
  • Huang, Y., Duan, X., Wei, Q., and Lieber, C. M. (2001). Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633.
  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253.
  • Hwang, S. H., Song, J., Jung, Y., Kweon, O. Y., Song, H., and Jang, J. (2011). Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chem. Commun. 47, 9164–9166.
  • Ikehata, K., El-Din, M.G., and Snyder, S. A. (2008). Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci. Eng. 30, 21–26.
  • Kaewsaenee, J., Visal-athaphand P., Supaphol, P., and Pavarajarn, V. (2011). Effects of magnesium and zirconium dopants on characteristics of titanium(IV) oxide fibers prepared by combined SolGel and electrospinning techniques. Ind. Eng. Chem. Res. 50, 8042–8049.
  • Katta, P., Alessandro, M., Ramsier, R. D., and Chase, G. G. (2004). Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4, 2215–2218
  • Ke, X. B., Zheng, Z. F., Liu, H. W., Zhu, H. Y., Gao, X. P., Zhang, L. X., Xu, N. P., Wang, H., Zhao, H. J., Shi, J., and Ratinac, K. R. (2008). High-flux ceramic membranes with a nanomesh of metal oxide nanofibers. J. Phys. Chem. B 112, 5000–5006.
  • Ke, X. B., Zhu, H. Y., Gao, X. P., Liu, J. W., and Zheng, Z. F. (2007). High-performance ceramic membranes with a separation layer of metal oxide nanofibers. Adv. Mater. 19, 785–790.
  • Keswick, B. H., and Gerba, C. P. (1980). Viruses in groundwater. Environ. Sci. Technol. 14, 1290–1297
  • Khajavi, R., and Abbasipour, M. (2012). Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica 19, 2029–2034.
  • Khajeh, M., Laurent, S., and Dastafkan, K. (2013). Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113, 7728–7768.
  • Khin, M. M., Nair, A. S., Babu, V. J., Murugana, R., and Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109.
  • Kim, I. D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M and Tuller, H. L. (2006). Ultrasensitive chemiresistors based on Electrospun TiO2 nanofibers. Nano Lett. 6, 2009–2013.
  • Kim, J., and Bruggen, B. V. (2010). The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollution 158, 2335–2349.
  • Koca, A., and Şahin, M. (2002). Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int. J. Hydrogen Energy 27, 363–367.
  • Krishna, A. K., and Mohan, K. R. (2014). Risk assessment of heavy metals and their source distribution in waters of a contaminated industrial site. Environ. Sci. Pollut. Res. 21, 3653–3669.
  • Kumar, S. U., Matai, I., Dubey, P., Bhushan, B., Sachdeva, A., and Gopinath, P. (2014). Differentially cross-linkable core–shell nanofibers for tunable delivery of anticancer drugs: synthesis, characterization and their anticancer efficacy. RSC Adv. 4, 38263–38272.
  • Lakshmi, B. B., Patrissi, C. J., and Martin, C. R. (1997). Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 9, 2544–2550.
  • Lee, S. S., Bai, H., Liu, Z., and Sun, D. D. (2013). Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res. 47, 4059–4073.
  • Li, D., McCann, J. T., and Xia, Y. (2006). Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89, 1861–1869.
  • Li, D., and Xia, Y. (2003). Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560.
  • Li, D., and Xia, Y. (2004a). Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters 4, 933–938.
  • Li, D., and Xia, Y. (2004b). Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170.
  • Li, H., Pan, W., Zhang, W., Huang, S., and Wu, H. (2013). TiN nanofibers: a new material with high conductivity and transmittance for transparent conductive electrodes. Adv. Funct. Mater. 23, 209–214.
  • Li, J. Y., Sun, Y., Tan, Y., Xu, F. M., Shi, X. L., and Ren, N. (2008). Zirconium nitride (ZrN) fibers prepared by carbothermal reduction and nitridation of electrospun PVP/zirconium oxychloride composite fibers. Chem. Eng. J. 144, 149–152.
  • Li, W., Cao, C. Y., Chen, C. Q., Zhao, Y., Song, W. G., and Jiang, L. (2011). Fabrication of nanostructured metal nitrides with tailored composition and morphology. Chem. Commun. 47, 3619–3621.
  • Li, W., Zhao, S., Qi, B., Du, Y., Wang, X., and Huo, M. (2009). Fast catalytic degradation of organic dye with air and MoO3: Ce nanofibers under room condition. Appl. Catal., B 92, 333–340.
  • Li, X., Wang, F., Qian, Q., Liu, X., Xiao, L., and Chen, Q. (2012). Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion. Mater. Lett. 66, 370–373.
  • Li, Y., Qian, F., Xiang, J., and Lieber, C. M. (2006). Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27.
  • Lin, D., Wu, H., and Pan, W. (2007). Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires. Adv. Mater. 19, 3968–3972.
  • Lin, D., Wu, H., Zhang, R., and Pan, W. (2009). Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater. 21, 3479–3484.
  • Linsebigler, A.L., Lu, G., and Yates, J. T. (1995). Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758.
  • Liu, G., Liu, S., Lu, Q., Sun, H., and Xiu, Z. (2014). Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind. Eng. Chem. Res. 53, 13023–13029.
  • Liu, H., Yang, J., Liang, J., Huang, Y., and Tang, C. (2008). ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J. Am. Ceram. Soc. 91, 1287–1291.
  • Liu, L., Liu, Z., Bai, H., and Sun, D. D. (2012). Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res. 46, 1101–1112.
  • Liu, R., Huang, Y., Xiao, A., and Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. J. Alloys Compd. 503, 103–110.
  • Liu, R., Ye, H., Xiong, X., and Liu, H. (2010). Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater. Chem. Phys. 121, 432–439.
  • Liu, Y., Zhang, M., Li, L., and Zhang, X. (2014). One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X = Mo, W) nanosheets. Appl. Catal., B 160, 757–766.
  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., and Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 157, 561–568.
  • Lou, X. W., and Zeng, H. C. (2003). An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 42, 6169–6171.
  • Lu, M., Shao, C., Wang, K., Lu, N., Zhang, X., Zhang, P., Zhang, M., Li, X., and Liu, Y. (2014). p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 6, 9004–9012.
  • Lu, X. F., Wang, C., and Wei, Y. (2009). One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5, 2349–2370.
  • Ma, G., Yan, H., Shi, J., Zong, X., Lei, Z., and Li, C. (2008). Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J. Catal. 260, 134–140.
  • Ma, Z., Chen, W., Hu, Z., Pan, X., Peng, M., Dong, G., Zhou, S., Zhang, Q., Yang, Z., and Qiu, J. (2013). Luffa-sponge-like glass−TiO2 composite fibers as efficient photocatalysts for environmental remediation. ACS Appl. Mater. Interfaces 5, 7527–7536.
  • Macauley, J. J., Qiang, Z., Adams, C. D., Surampalli, R., and Mormile, M. R. (2006). Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Res. 40, 2017–2026.
  • Madrakian, T., Afkhami, A., and Ahmadi, M. (2012). Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim. Acta, Part A 99, 102–109.
  • Mahapatra, A., Mishra, B. G., and Hota, G. (2013a). Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 258, 116–123.
  • Mahapatra, A., Mishra, B. G., and Hota, G. (2013b). Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Ind. Eng. Chem. Res. 52, 1554–1561.
  • Mali, S. S., Kim, H., Jang, W. Y., Park, H. S., Patil, P. S., and Hong, C. K. (2013). Novel Synthesis and characterization of mesoporous ZnO nanofibers by electrospinning technique. ACS Sustainable Chem. Eng. 1, 1207–1213.
  • Malwal, D., and Gopinath, P. (2015). Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation. Environ. Sci.: Nano 2, 78–85.
  • Martínez-Huitle, C. A., and Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340.
  • Matai, I., Sachdev, A., Dubey, P., Kumar, S. U., Bhushan, B., and Gopinath, P. (2014). Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf., B 115, 359–367.
  • Matthews, J. A., Wnek, G. E., Simpson, D. G., and Bowlin, G. L. (2002). Electrospinning of Collagen Nanofibers. Biomacromolecules 3, 232–238.
  • Minh, N. H., Minh, T. B., Kajiwara, N., Kunisue, T., Subramanian, A., Iwata, H., Tana, T. S., Baburajendran, R., Karuppiah, S., Viet, P. H., Tuyen, B. C., and Tanabe, S. (2006). Contamination by persistent organic pollutants in dumping sites of Asian developing countries: implication of emerging pollution sources. Arch. Environ. Contam. Toxicol. 50, 474–481.
  • Misra, V., and Pandey, S. D. (2005). Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environ. Int. 31, 417–431.
  • Nakata, K., Watanabe, N., Yuda, Y., Tryk, D. A., Ochiai, T., Murakami, T., Koide, Y., and Fujishima, A. (2009). Electrospun fibers composed of Al2O3-TiO2 nanocrystals. J. Ceram. Soc. Jpn. 117, 1203–1207.
  • Nassar, N. N. (2010). Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184, 538–546.
  • Panda, P. K., and Ramakrishna, S. (2007). Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci. 42, 2189–2193.
  • Panizza, M., and Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541–6569.
  • Pant, B., Pant, H. R., Barakat, N. A. M., Park, M., Han, T.H., Lim, B. H., and Kim, H. Y. (2014). Incorporation of cadmium sulfide nanoparticles on the cadmium titanate nanofibers for enhanced organic dye degradation and hydrogen release. Ceram. Int. 40, 1553–1559.
  • Park, J. Y., Choi, S. W., Lee, J. W., C. Lee and Kim, S. S. (2009). Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92, 2551–2554.
  • Paul, B., Locke, A., Martens, W. N., and Frost, R. L. (2012). Decoration of titania nanofibres with anatase nanoparticles as efficient photocatalysts for decomposing pesticides and phenols. J. Colloid Interface Sci. 386, 66–72.
  • Pei, C. C., and Leung, W. W. F. (2013). Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation. Sep. Purif. Technol. 114, 108–116.
  • Pender, M. J., and Sneddon, L. G. (2000). An efficient template synthesis of aligned boron carbide nanofibers using a single-source molecular precursor. Chem. Mater. 12, 280–283.
  • Pfister, S., Bayer, P., Koehler, A., and Hellweg, S. (2011). Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768.
  • Polavarapu, L., and Liz-Marzán, L. M. (2013). Toward low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 15, 5288–5300.
  • Qi, S., Zuo, R., Wang, Y., and Chan, H. W. L. W. (2013). Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers. J. Mater. Sci. 48, 4143–4150.
  • Qin, N., Liu, Y., Wu, W., Shen, L., Chen, X., Li, Z., and Wu, L. (2015). One-dimensional CdS/TiO2 nanofiber composites as efficient visible- light-driven photocatalysts for selective organic transformation: synthesis, characterization, and performance. Langmuir 31, 1203–1209.
  • Qu, F., Feng, C., Li, C., Li, W., and Ruan, S. (2014). Preparation and xylene-sensing properties of Co3O4 nanofibers. Int. J. Appl. Ceram. Technol. 11, 619–625.
  • Qu, F., Feng, C., Li, C., Li, W., Wen, S., Rua, S., and Zhang, H. (2014). Preparation and xylene-sensing properties of Co3O4 nanofibers. Int. J. Appl. Ceram. Technol. 11, 619–625.
  • Qu, X., Brame, J., Li, Q., and Alvarez, P.J.J. (2013). Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843.
  • Quintero, F., Mann, A. B., Pou, J., Lusquiños, F., and Riveiro, A. (2007). Rapid production of ultralong amorphous ceramic nanofibers by laser spinning. Appl. Phys. Lett. 90, 153109–153111.
  • Rajendran, R. B., Imagawa, T., Tao, H., and Ramesh, R. (2005). Distribution of PCBs, HCHs and DDTs, and their ecotoxicological implications in Bay of Bengal, India. Environ. Int. 31, 503–512.
  • Ramakrishna, S., Fujihara, K., Teo, W. E., Yong, T., Ma, Z., and Ramaseshan, R. (2006). Electrospun nanofibers: solving global issues. Mater. Today 9, 40–50.
  • Ramaseshan, R., Sundarrajan, S., Jose, R., and Ramakrishna, S. (2007). Nanostructured ceramics by electrospinning. J. Appl. Phys. 102, 111101.
  • Ramasundaram, S., Yoo, H. N., Song, K. G., Lee, J., Choi, K. J., and Hong, S. W. (2013). Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds. J. Hazard. Mater. 258, 124–132.
  • Ren, D., Colosi, L. M., and Smith, J. A. (2013). Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment. Environ. Sci. Technol. 47, 11206–11213.
  • Ren, T., He, P., Niu, W., Wu, Y., Ai, L., and Gou, X. (2013). Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ. Sci. Pollut. Res. 20, 155–162.
  • Richardson, S. D., and Ternes, T. A. (2014). Water analysis: emerging contaminants and current issues. Anal. Chem. 86, 2813–2848.
  • Romero, J. C. (1970). The movement of bacteria and viruses through porous media. Groundwater 8, 37–48.
  • Sahay, R., Kumar, P. S., Aravindan, V., Sundaramurthy, J., Ling, W. C., Mhaisalkar, S. G., Ramakrishna, S., and Madhavi, S. (2012). High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C 116, 18087–18092.
  • Samadi, M., Shivaee, H. A., Zanetti, M., Pourjavadi, A., and Moshfegh, A. (2012). Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. J. Mol. Catal. A: Chem. 359, 42–48.
  • Saquing, C. D., Tang, C., Monian, B., Bonino, C. A., Manasco, J. L., Alsberg, E., and Khan, S. A. (2013). Alginate-polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind. Eng. Chem. Res. 52, 8692–8704.
  • Sarkar, D., Mukherjee, S., and Chattopadhyay, K.K. (2013). Synthesis, characterization and high natural sunlight photocatalytic performance of cobalt doped TiO2 nanofibers. Physica E 50, 37–43.
  • Saud, P. S., Pant, B., Park, M., Chae, S. H., Park, S.J., EI-Newehy, M., Al-Deyab, S. S., and Kim, H. Y. (2015). Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceram. Int. 41, 1771–1777.
  • Schaider, L. A., Rudel, R. A., Ackerman, J. M., Dunagan, S. C., and Brody, J. G. (2014). Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 468, 384–393.
  • Scheierling, S. M., Bartone, C. R., Mara, D. D., Drechsel, P. (2011). Toward an agenda for improving wastewater use in agriculture. Water Int. 36, 420–440.
  • Shao, C., Yang, X., Guan, H., Liu, Y., and Gong, J. (2004). Electrospun nanofibers of NiO/ZnO composite. Inorg. Chem. Commun. 7, 625–627.
  • Shi, H., Zhou, M., Song, D., Pan, X., Fu, J., Zhou, J., Ma, S., and Wang, T. (2014). Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities. Ceram. Int. 40, 10383–10393.
  • Sigmund, W., Yuh, J., Park, H., Maneeratana, V., Pyrgiotakis, G., Daga, A., Taylor, J., and Nino, J.C. (2006). Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89, 395–407.
  • Sill, T. J., and von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006.
  • Singh, P., Mondal, K., and Sharma, A. (2013). Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Interface Sci. 394, 208–215.
  • Siriwong, C., Wetchakun, N., Inceesungvorn, B., Channei, D., Samerjai, T., and Phanichphant, S. (2012). Doped-metal oxide nanoparticles for use as photocatalysts. Prog. Cryst. Growth Charact. Mater. 58, 145–163.
  • Sobsey, M. D., Stauber, C. E., Casanova, L. M., Brown, J. M., and Elliott, A. A. (2008). Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 42, 4261–4267.
  • Stevik, T. K., Aa, K., Ausland, G., and Hanssen, J. F. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38, 1355–1367.
  • Stoimenov, P. K., Klinger, R. L., Marchin, G. L., and Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686
  • Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., and Ramkumar, S.S. (2005). Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557–569.
  • Sun, D., Chang, C., Li, S., and Lin, L. (2006). Near-field electrospinning. Nano Lett. 6, 839–842.
  • Tan, S. H., Inai, R., Kotaki, M., and Ramakrishna, S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46, 6128–6134.
  • Tang, Y., Cong, H., Wang, Z., and Cheng, H.M. (2005). Synthesis of rectangular cross-section AlN nanofibers by chemical vapor deposition. Chem. Phys. Lett. 416, 171–175.
  • Teo, W. E., and Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89–R106.
  • Thavasi, V., Singh, G., and Ramakrishna, S. (2008). Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 1, 205–221.
  • Toskas, G., Cherif, C., Hund, R. D., Laourine, E., Fahmi, A., and Mahltig, B. (2011). Inorganic/organic (SiO2)/PEO hybrid electrospun nanofibers produced from a modified sol and their surface modification possibilities. ACS Appl. Mater. Interfaces 3, 3673–3681.
  • Varghese, O. K., and Grimes, C. A. (2003). Metal oxide nanoarchitectures for environmental sensing. J. Nanosci. Nanotechnol. 3, 277–293.
  • Vatanpour, V., Madaeni, S. S., Khataee, A. R., Salehi, E., Zinadini, S., and Monfared, H. A. (2012). TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292, 19–29.
  • Vu, D., Li, X., Li, Z., and Wang, C. (2013). Phase-structure effects of electrospun TiO2 nanofiber membranes on As(III) adsorption, J. Chem. Eng. Data 58, 71–77.
  • Wang, C., Shao, C., Zhang, X., and Liu, Y. (2009). SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 48, 7261–7268.
  • Wang, Y., Zhang, J., Liu, L., Zhu, C., Liu, X., and Su, Q. (2012). Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater. Lett. 75, 95–98.
  • Wang, Z., Li, Z., Zhang, H., and Wang, C. (2009). Improved photocatalytic activity of mesoporous ZnO–SnO2 coupled nanofibers. Catal. Commun. 11, 257–260.
  • Winward, G. P., Avery, L. M., Stephenson, T., and Jefferson, B. (2008). Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Res. 42, 483–491.
  • Wolfe, R. L. (1990). Ultraviolet disinfixtion of potable water. Environ. Sci. Technol. 24, 768–773
  • Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H. (2003). One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389.
  • Xiao, G., Huang, X., Liao, X., and Shi, B. (2013). One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis. J. Phys. Chem. C 117, 9739–9746.
  • Xu, J., Wang, W., Shang, M., Gao, E., Zhang, Z., and Ren, J. (2011). Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 196, 426–430.
  • Yang, D., Lu, B., Zhao, Y., and Jiang, X. (2007). Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19, 3702–3706.
  • Yang, D., Paul, B., Xu, W., Yuan, Y., Liu, E., Ke, X., Wellard, R. M., Guo, C., Xu, Y., Sun, Y., and Zhu, H. (2010). Alumina nanofibers grafted with functional groups: A new design in efficient sorbents for removal of toxic contaminants from water. Water Res. 44, 741–750.
  • Yang, D., Zheng, Z., Liu, H., Zhu, H., Ke, X., Xu, Y., Wu, D., and Sun, Y. (2008). Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J. Phys. Chem. C 112, 16275–16280.
  • Yang, D., Liu, H., Zheng, Z., Sarina, S., and Zhu, H. (2013). Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale 5, 2232–2242.
  • Yang, G., Yan, W., Wang, J., Zhang, Q., and Yang, H. (2014). Fabrication and photocatalytic activities of SrTiO3 nanofibers by sol–gel assisted electrospinning. J. Sol-Gel Sci. Technol. 71, 159–167.
  • Yang, X., Shao, C., Guan, H., Li, X., and Gong, J. (2004). Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg. Chem. Commun. 7, 176–178.
  • Yang, X., Shao, C., Liu, Y., Mu, R., and Guan, H. (2005). Nanofibers of CeO2 via an electrospinning technique. Thin Solid Films 478, 228–231.
  • Yang, Y., Xu L., Su, C., Che, J., Sun, W., and Gao, H. (2014). Electrospun ZnO/Bi2O3 nanofibers with enhanced photocatalytic activity. J. Nanomater. 2014, Article ID 130539.
  • Yousef, A., Barakat, N. A. M., Amna, T., Al-Deyab, S.S., Hassan, M.S., Abdel-hay A., and Kim, H. Y. (2012). Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2nanofibers: A multifunctional nanomaterial via one-step electrospinning. Ceram. Int. 38, 4525–4532.
  • Yousef, A., Barakat, N. A. M., Khalil, K. A., Unnithan, A. R., Panthi, G., Pant, B., and Kim, H. Y. (2012). Photocatalytic release of hydrogen from ammonia borane-complex using Ni(0)-doped TiO2/C electrospun nanofibers. Colloids Surf., A 410, 59–65.
  • Yousef, A., Barakat, N. A. M., and Kim, H. Y. (2013). Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane. Appl. Catal., A 467, 98–106.
  • Yu, J., Yu, H., Cheng, B., Zhao, X., and Zhang, Q. (2006). Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J. Photochem. Photobiol., A 182, 121–127.
  • Yuh, J., Nino, J. C., and Sigmund, W. M. (2005). Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 59, 3645–3647.
  • Zelenski, C. M., and Dorhout, P. K. (1998). Template synthesis of near-monodisperse1 microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120, 734–742.
  • Zhan, S., Chen, D., Jiao, X., and Song, Y. (2007). Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chem. Commun. 2007, 2043–2045.
  • Zhan, S., Zhu, D., Ren, G., Shen, Z., Qiu, M., Yang, S., Yu, H., and Li, Y. (2014). Coaxial-electrospun magnetic core−Shell Fe@TiSi nanofibers for the rapid purification of typical dye wastewater. ACS Appl. Mater. Interfaces 6, 16841–16850.
  • Zhang, L., Li, Y., Zhang, Q., and Wang, H. (2014). Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties. Appl. Surf. Sci. 319, 21–28.
  • Zhang, P., Shao, C., Zhang, M., Guo, Z., Mu, J., Zhang, Z., Zhang, X., and Liu, Y. (2012). Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. J. Hazard. Mater. 217, 422–428.
  • Zhang, Y., He, X., Li, J., Miao, Z., and Huang, F. (2008). Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B 132, 67–73.
  • Zhang, Y., Li, J., Li, Q., Zhu, L., Liu, X., Zhong, X., Meng, J., and Cao, X. (2007). Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scr. Mater. 56, 409–412.
  • Zhang, Z., Gekhtman, D., Dresselhaus, M. S., and Ying, J. Y. (1999). Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mater. 11, 1659–1665.
  • Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., and Liu, Y. (2010). Electrospun nanofibers of p-type NiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interface 2, 2915–2923.
  • Zhao, G., Liu, S., Lu, Q., and Song, L. (2012). Controllable synthesis of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances. Ind. Eng. Chem. Res. 51, 10307–10312.
  • Zheng, Y., and Wang, W. (2014). Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge. J. Solid State Chem. 210, 206–212.
  • Zhou, X., Qiu, Y., Yu, J., Yin, J., and Gao, S. (2011). Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction. Int. J. Hydrogen Energy 36, 7398–7404.
  • Zou, Z., Ye, J., Sayama, K., and Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627.
  • Zukalova, M., Prochazka, J., Bastl, Z., Duchoslav, J., Rubacek, L., Havlicek, D., and Kavan, L. (2010). Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem. Mater. 22, 4045–4055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.