709
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Microbial production of phytases for combating environmental phosphate pollution and other diverse applications

, , , &
Pages 556-591 | Published online: 10 Mar 2016

References

  • Abd-Alla, M. H. (1994). Use of organic phosphorus by Rhizobium leguminosarum biovarviceae phosphatases. Biology and Fertility of Soils, 18, 216–218.
  • Abel, K., Anderson, R. A., and Shears, S. B. (2001). Phosphatidylinositol and inositol phosphate metabolism. Journal of Cell Science, 114, 2207–2208.
  • Afinah, S., Yazid, A., Anis Shobirin, M., and Shuhaimi, M. (2010). Phytase: application in food industry. International Food Research Journal, 17, 13–21.
  • Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N. A., and Al-Qurainy, F. (2012). Role of transgenic plants in agriculture and biopharming. Biotechnology Advances, 30, 524–540.
  • Ahmad, T., Raza, S. H., Rasool, S., & Waheed, A. (2000). Technique for phytase enzyme production from aspergillus niger and its efficacy for in vitro and in vivo dephosphorylation of corn and soybean meal. Asian Australasian Journal of Animal Sciences, 13, 180–183.
  • Augspurger, N., Webel, D., Lei, X., and Baker, D. (2003). Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. Journal of Animal Science, 81, 474–483.
  • Azeem, M., Riaz, A., Chaudhary, A. N., Hayat, R., Hussain, Q., Tahir, M. I., and Imran, M. (2015). Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science, 61, 751–766.
  • Azeke, M. A., Greiner, R., and Jany, K. D. (2011). Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. Journal of Food Biochemistry, 35, 213–227.
  • Bacić, I., Druzijanić, N., Karlo, R., Skifić, I., and Jagić, S. (2010). Efficacy of IP6+ inositol in the treatment of breast cancer patients receiving chemotherapy: prospective, randomized, pilot clinical study. Journal of Experimental and Clinical Cancer Research, 29, 12.
  • Bae, H., Yanke, L., Cheng, K. J., and Selinger, L. (1999). A novel staining method for detecting phytase activity. Journal of Microbiological Methods, 39, 17–22.
  • Baş, D., and Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78, 836–845.
  • Bei, J., Chen, Z., Fu, J., Jiang, Z., Wang, J., and Wang, X. (2009). Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. Journal of Biotechnology, 139, 186–193.
  • Berikten, D., and Kivanc, M. (2014). Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Preparative Biochemistry and Biotechnology, 44, 834–848.
  • Berka, R. M., Rey, M. W., Brown, K. M., Byun, T., and Klotz, A. V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology, 64, 4423–4427.
  • Bhavsar, K., Ravi Kumar, V., and Khire, J. (2011). High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. Journal of Industrial Microbiology & Biotechnology, 38, 1407–1417.
  • Billington, D. C. (1993). The inositol phosphates: chemical synthesis and biological significance, VCH Verlagsgesellschaft mbH.
  • Böhm, K., Herter, T., Müller, J. J., Borriss, R., and Heinemann, U. (2010). Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. FEBS Journal, 277, 1284–1296.
  • Borgi, M. A., Boudebbouze, S., Aghajari, N., Szukala, F., Pons, N., Maguin, E., and Rhimi, M. (2014). The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Applied Microbiology and Biotechnology, 98, 5937–5947.
  • Borgi, M. A., Boudebbouze, S., Mkaouar, H., Maguin, E., and Rhimi, M. (2015). Bacillus phytases: Current status and future prospects. Bioengineered, 6, 233–236.
  • Böttcher, D., and Bornscheuer, U. T. (2010). Protein engineering of microbial enzymes. Current Opinion in Microbiology, 13, 274–282.
  • Caipang, C. M. A., Dechavez, R. B., and Amar, M. J. A. (2011). Potential application of microbial phytase in aquaculture. Extreme Life, Biospeology & Astrobiology, 3, 55–66.
  • Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., and Li, D. (2007). Application of microbial phytase in fish feed. Enzyme and Microbial Technology, 40, 497–507.
  • Caputo, L., Visconti, A., and De Angelis, M. (2015). Selection and use of a Saccharomyces cerevisae strain to reduce phytate content of wholemeal flour during bread-making or under simulated gastrointestinal conditions. LWT-Food Science and Technology, 63, 400–407.
  • Carey, P., Warwick, J., Harvey, B., Stein, D., and Seedat, S. (2004). Single photon emission computed tomography (SPECT) in obsessive–compulsive disorder before and after treatment with inositol. Metabolic Brain Disease, 19, 125–134.
  • Chadha, B., Harmeet, G., Mandeep, M., Saini, H., and Singh, N. (2004). Phytase production by the thermophilic fungus Rhizomucor pusillus. World Journal of Microbiology and Biotechnology, 20, 105–109.
  • Chakraborty, S. K., Kumbhar, B. K., Chakraborty, S., and Yadav, P. (2011). Influence of processing parameters on textural characteristics and overall acceptability of millet enriched biscuits using response surface methodology. Journal of Food Science and Technology, 48, 167–174.
  • Chen, P. Jr., Toribara, T., and Warner, H. (1956). Microdetermination of phosphorus. Analytical Chemistry, 28, 1756–1758.
  • Chen, Q. C., and Li, B. W. (2003). Separation of phytic acid and other related inositol phosphates by high-performance ion chromatography and its applications. Journal of Chromatography A, 1018, 41–52.
  • Chen, R., Xue, G., Chen, P., Yao, B., Yang, W., Ma, Q., Fan, Y., Zhao, Z., Tarczynski, M. C., and Shi, J. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17, 633–643.
  • Chen, Y., Zou, Y., Wang, Y., and Ma, L. (2010). [Expression of phytase gene phyA in Yarrowia lipolytica po1h]. Sheng Wu Gong Cheng Xue Bao/Chinese Journal of Biotechnology, 26, 610–615.
  • Cheng, C., and Lim, B. L. (2006). Beta-propeller phytases in the aquatic environment. Archives of Microbiology, 185, 1–13.
  • Choi, Y. M., Suh, H. J., and Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry, 20, 287–292.
  • Clements, M. (2011). Improved testing and new thinking needed for phytases. Retrieved from http://www.wattagnet.com/articles/9621-improved-testing-and-new-thinking-needed-for-phytases
  • Coban, H. B., and Demirci, A. (2014). Screening of phytase producers and optimization of culture conditions for submerged fermentation. Bioprocess and Biosystems Engineering, 37, 609–616.
  • Coban, H. B., Demirci, A., and Turhan, I. (2015). Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess and Biosystems Engineering, 38, 1075–1080.
  • Cooper, J. R., and Gowing, H. S. (1983). Mammalian small intestinal phytase (EC 3.1. 3.8). British Journal of Nutrition, 50, 673–678.
  • Cowieson, A., and Cooper, R. (2010). Introduction to the event and overview of the phytase market. Paper presented at the International Phytase Summit, Washington, DC.
  • De Angelis, M., Gallo, G., Corbo, M. R., McSweeney, P. L. H., Faccia, M., Giovine, M., and Gobbetti, M. (2003). Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 87, 259–270.
  • Dechavez, R. B., Serrano, A. E. Jr., Nuñal, S., and Caipang, C. M. A. (2011). Production and characterization of phytase from Bacillus spp. as feed additive in aquaculture. AACL Bioflux, 4, 394–403.
  • Dickman, S., and Bray, R. (1940). Colorimetric determination of phosphate. Industrial & Engineering Chemistry Analytical Edition, 12, 665–668.
  • Earley, E. B., and DeTurk, E. E. (1944). Time and rate of synthesis of phytin in corn grain during the reproductive period. Agronomy Journal, 36, 803–814.
  • El-Gindy, A., Ibrahim, Z., Ali, U., and El-Mahdy, O. (2009). Extracellular phytase production by solid-state cultures of Malbranchea sulfurea and Aspergillus niveus on cost-effective medium. Research Journal of Agriculture and Biological Sciences, 5, 42–62.
  • Elhadi, A. I. E., Huda, A. H. O., Eltayeb, E. A. A., Ahmed, M. M., Mohammed, A. O., and Simon, O. (2011). Screening and production of phytase from some Bacterial genera. International Journal of Advanced Biological Research, 1, 15–21.
  • Engelen, A. J., Heeft, F. C., Randsdorp, P. H. G., Somers, W. A. C., Schaefer, J., and Vat, B. J. C. (2001). Determination of phytase activity in feed by a colorimetric enzymatic method: collaborative interlaboratory study. Journal of AOAC International, 84, 629–633.
  • Engelen, A. J., van der Heeft, F. C., Randsdorp, P., and Smit, E. (1994). Simple and rapid determination of phytase activity. Journal of AOAC International, 77, 760–764.
  • Escobin-Mopera, L., Ohtani, M., Sekiguchi, S., Sone, T., Abe, A., Tanaka, M., Meevootisom, V., and Asano, K. (2012). Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. Journal of Bioscience & Bioengineering, 113, 562–567.
  • Farhat-Khemakhem, A., Farhat, M. B., Boukhris, I., Bejar, W., Bouchaala, K., Kammoun, R., Maguin, E., Bejar, S., and Chouayekh, H. (2012). Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168. AMB Express, 2, 10.
  • Farouk, A. E. A., Greiner, R., and Hussin, A. S. M. (2012). Purification and properties of a phytate-degrading enzyme produced by Enterobacter sakazakii ASUIA279. Journal of Biotechnology and Biodiversity, 3(1).
  • Fasimoye, F. O., Olajuyigbe, F. M., and Sanni, M. D. (2014). Purification and characterization of a thermostable extracellular phytase from Bacillus licheniformis PFBL-03. Preparative Biochemistry and Biotechnology, 44, 193–205.
  • Fiske, C. H., and Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.
  • Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., and Sandberg, A. S. (2006). Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology, 20, 49–57.
  • Fu, S., Sun, J., Qian, L., and Li, Z. (2008). Bacillus phytases: present scenario and future perspectives. Applied Biochemistry & Biotechnology 151, 1–8.
  • Gaind, S., and Singh, S. (2015). Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. International Biodeterioration & Biodegradation, 99, 15–22.
  • Garrett, J. B., Kretz, K. A., O'Donoghue, E., Kerovuo, J., Kim, W., Barton, N. R., Hazlewood, G. P., Short, J. M., Robertson, D. E., and Gray, K. A. (2004). Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Applied and Environmental Microbiology, 70, 3041–3046.
  • George, T. S., Richardson, A. E., Li, S. S., Gregory, P. J., and Daniell, T. J. (2009). Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiology Ecology, 70, 433–445.
  • Gizzi, G., Thyregod, P., von Holst, C., Bertin, G., Vogel, K., Faurschou-Isaksen, M., Betz, R., Murphy, R., and Andersen, B. B. (2008). Determination of phytase activity in feed: interlaboratory study. Journal of AOAC International, 91, 259–267.
  • Golovan, S. P., Hayes, M. A., Phillips, J. P., and Forsberg, C. W. (2001). Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotechnology, 19, 429–433.
  • Graf, E., and Dintzis, F. R. (1982). Determination of phytic acid in foods by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 30, 1094–1097.
  • Greiner, R., and Alminger, M. L. (1999). Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). Journal of the Science of Food and Agriculture, 79, 1453–1460.
  • Greiner, R., and Konietzny, U. (1996). Construction of a bioreactor to produce special breakdown products of phytate. Journal of Biotechnology, 48, 153–159.
  • Greiner, R., and Konietzny, U. (2006). Phytase for food application. Food Technology and Biotechnology, 44, 123–140.
  • Greiner, R., Silva, L. G., and Couri, S. (2009). Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9. Brazilian Journal of Microbiology, 40, 795–807.
  • Gu, W., Huang, H., Meng, K., Yang, P., Fu, D., Luo, H., Wang, Y., Yao, B., and Zhan, Z. (2009). Gene cloning, expression, and characterization of a novel phytase from Dickeya paradisiaca. Applied Biochemistry & Biotechnology, 157, 113–123.
  • Guerrero-Olazarán, M., Rodríguez-Blanco, L., Carreon-Treviño, J. G., Gallegos-López, J. A., and Viader-Salvadó, J. M. (2010). Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Applied and Environmental Microbiology, 76, 5601–5608.
  • Gulati, H., Chadha, B., and Saini, H. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiologica et Immunologica Hungarica, 54, 121–138.
  • Gunashree, B., and Venkateswaran, G. (2010). Enhanced phytase production through interspecific protoplast fusion of Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 auxotrophic mutants. Enzyme and Microbial Technology, 46, 562–567.
  • Guo, M. J., Zhuang, Y. P., Chu, J., Zhang, S. L., Xiong, A. S., Peng, R. H., and Yao, Q. H. (2007). Production and purification of a novel thermostable phytase by Pichia pastoris FPHY34. Process Biochemistry, 42, 1660–1665.
  • Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., and Zelder, O. (2005). Biotechnological production and applications of phytases. Applied Microbiology & Biotechnology, 68, 588–597.
  • Han, Y., Wilson, D. B., and gen Lei, X. (1999). Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 65, 1915–1918.
  • Harland, B. F., and Morris, E. R. (1995). Phytate: a good or a bad food component? Nutrition Research, 15, 733–754.
  • Harland, B. F., and Oberleas, D. (1977). A modified method for phytate analysis using an ion-exchange procedure: application to textured vegetable proteins. Cereal Chemistry, 54, 827–832.
  • Haros, M., Bielecka, M., Honke, J., and Sanz, Y. (2007). Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. International Journal of Food Microbiology, 117, 76–84.
  • Heinonen, J. K., and Lahti, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313–317.
  • Henriksen, A. (1965). An automatic method for determining low-level concentrations of phosphates in fresh and saline waters. Analyst, 90, 29–34.
  • Heubner, W., and Stadler, H. (1914). Oder eine Titration Methode zur Bestimmung des phytins. Biochemistry Zootechnical, 64, 422–437.
  • Hill, J. E., Richardson, A. E., Turner, B., Richardson, A., and Mullaney, E. (2007). Isolation and assessment of microorganisms that utilize phytate. In B. L. Turner, A. E. Richardson, and E. J. Mullaney (Eds.), Inositol phosphates: Linking agriculture and the environment (61–77). Wallingford, England: CABI.
  • Hong, S. W., Chu, I. H., and Chung, K. S. (2011). Purification and biochemical characterization of thermostable phytase from newly isolated Bacillus subtilis CF92. Journal of the Korean Society for Applied Biological Chemistry, 54, 89–94.
  • Hosseinkhani, B., and Hosseinkhani, G. (2010). Analysis of phytase producing bacteria (Pseudomonas sp.) from poultry faeces and optimization of this enzyme production. African Journal of Biotechnology, 8, 4229–4232.
  • Huang, H., Luo, H., Wang, Y., Fu, D., Shao, N., Yang, P., Meng, K., and Yao, B. (2009a). Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. Journal of Microbiology & Biotechnology, 19, 1085.
  • Huang, H., Luo, H., Yang, P., Meng, K., Wang, Y., Yuan, T., Bai, Y., and Yao, B. (2006). A novel phytase with preferable characteristics from Yersinia intermedia. Biochemical and Biophysical Research Communications, 350, 884–889.
  • Huang, H., Shao, N., Wang, Y., Luo, H., Yang, P., Zhou, Z., Zhan, Z., and Yao, B. (2009b). A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Applied Microbiology & Biotechnology, 83, 249–259.
  • Hussin, A. S. M., Farouk, A. E. A., and Greiner, R. (2012). Optimization of cultivation conditions for the production of phytate-degrading enzymes by Enterobacter sakazakii ASUIA279 isolated from Malaysian maize root. Journal of Biotechnology and Biodiversity, 3(2).
  • In, M. J., Jang, E. S., Kim, Y. J., and Oh, N. S. (2004). Purification and properties of an extracellular acid phytase from Pseudomonas fragi Y9451. Journal of Microbiology & Biotechnology, 14, 1004–1008.
  • In, M. J., Seo, S. W., Kim, D. C., and Oh, N. S. (2009). Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain. Process Biochemistry, 44, 122–126.
  • IPS Program Committee. (2010). Analysis of phytate and phytase summary - Moving toward improved efficacy testing for phytases. In Proceedings of the 1st International Phytase Summit 2010 (pp. 5–6). Washington DC: Author.
  • Ishiguro, T., Ono, T., Nakasato, K., Tsukamoto, C., and Shimada, S. (2003). Rapid measurement of phytate in raw soymilk by mid-infrared spectroscopy. Bioscience, Biotechnology, and Biochemistry, 67, 752–757.
  • Jain, R., Zaidi, K. U., Parveen, N., and Saxena, A. (2011). Optimization of Cultural Conditions for the Production of Antibiotic by Streptomyces sp. VRY-1. Recent Research in Science and Technology, 3, 81–87.
  • Jorquera, M., Martínez, O., Maruyama, F., Marschner, P., and de la Luz Mora, M. (2008). Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes and Environments, 23, 182–191.
  • Joseph, I., and Raj, R. P. (2007). Isolation and characterization of phytase producing Bacillus strains from mangrove ecosystem. Journal of the Marine Biological Association of India, 49, 177–182.
  • Joshi, S., and Satyanarayana, T. (2015). In vitro engineering of microbial enzymes with multifarious applications: Prospects and perspectives. Bioresource Technology, 176, 273–283.
  • Kammoun, R., Farhat, A., Chouayekh, H., Bouchaala, K., and Bejar, S. (2012). Phytase production by Bacillus subtilis US417 in submerged and solid state fermentations. Annals of Microbiology, 62, 155–164.
  • Kemme, P. A., Jongbloed, A. W., Mroz, Z., and Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science, 75, 2129–2138.
  • Kerovuo, J., Rouvinen, J., and Hatzack, F. (2000). Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochemical Journal, 352, 623.
  • Khullar, E., Shetty, J. K., Rausch, K. D., Tumbleson, M., and Singh, V. (2011). Use of phytases in ethanol production from E-Mill corn processing. Cereal Chemistry, 88, 223–227.
  • Konietzny, U., and Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science & Technology, 37, 791–812.
  • Konietzny, U., and Greiner, R. (2004). Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 35, 12–18.
  • Kumar, A., Sharma, S., and Mishra, S. (2010a). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation, 29, 297–306.
  • Kumar, A., Sharma, S., Mishra, S., and Dames, J. F. (2015a). Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Biosystems, 149, 260–269.
  • Kumar, A., and Singh, S. (2013). Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33, 365–378.
  • Kumar, J., Kumar, A., Ali, D., Singh, S., Sharma, P., and Sharma, D. (2011). Isolation and screening of phytase producing fungi from soil and production of phytase in submerged and solid state fermentation. Advances in Plant Sciences, 24, 313–316.
  • Kumar, V., Singh, D., Sangwan, P., and Gill, P. K. (2015b). Applied environmental biotechnology: Present scenario and future trends. New York, NY: Springer.
  • Kumar, V., Sinha, A. K., Makkar, H. P. S., and Becker, K. (2010b). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, 945–959.
  • Lan, G., Abdullah, N., Jalaludin, S., and Ho, Y. (2011). Purification and characterization of a phytase from Mitsuokella jalaludinii, a bovine rumen bacterium. African Journal of Biotechnology, 10, 12766–12776.
  • Latta, M., and Eskin, M. (1980). A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 28, 1313–1315.
  • Leeson, S., Namkung, H., Cottrill, M., and Forsberg, C. (2000). Efficacy of new bacterial phytase in poultry diets. Canadian Journal of Animal Science, 80, 527–528.
  • Lei, X., Ku, P., Miller, E., and Yokoyama, M. (1993a). Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. Journal of Animal Science, 71, 3359–3367.
  • Lei, X., Ku, P., Miller, E., Yokoyama, M., and Ullrey, D. (1993b). Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs. Journal of Animal Science, 71, 3368–3375.
  • Lei, X., and Stahl, C. (2000). Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research, 17, 97–112.
  • Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., and Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Annual Review Animal Bioscience, 1, 283–309.
  • Lessl, J. T., Ma, L. Q., Rathinasabapathi, B., and Guy, C. (2013). Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation. Environmental Science & Technology, 47, 2204–2211.
  • Li, X., Chi, Z., Liu, Z., Li, J., Wang, X., and Hirimuthugoda, N. Y. (2008). Purification and characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Marine Biotechnology, 10, 190–197.
  • Lim, B. L., Yeung, P., Cheng, C., and Hill, J. E. (2007). Distribution and diversity of phytate-mineralizing bacteria. ISME Journal, 1, 321–330.
  • Liu, J., Bollinger, D., Ledoux, D., and Veum, T. (1998). Lowering the dietary calcium to total phosphorus ratio increases phosphorus utilization in low-phosphorus corn-soybean meal diets supplemented with microbial phytase for growing-finishing pigs. Journal of Animal Science, 76, 808–813.
  • Liu, M., Potvin, G., Gan, Y., Huang, Z., and Zhang, Z. (2011). Medium Optimization for the Production of Phytase by Recombinant Pichia pastoris Grown on Glycerol. International Journal of Chemical Reactor Engineering, 9, 1–15.
  • Luo, Y., Xie, W., and Cui, Q. (2010). Effects of phytases and dehulling treatments on in vitro iron and zinc bioavailability in faba bean (Vicia faba L.) flour and legume fractions. Journal of Food Science, 75, C191–C198.
  • Ma, Z. Y., Pu, S. C., Jiang, J. J., Huang, B., Fan, M. Z., and Li, Z. Z. (2011). A novel thermostable phytase from the fungus Aspergillus aculeatus RCEF 4894: gene cloning and expression in Pichia pastoris. World Journal of Microbiology and Biotechnology, 27, 679–686.
  • Maddox, I., and Richert, S. (1977). Use of response surface methodology for the rapid optimization of microbiological media. Journal of Applied Microbiology, 43, 197–204.
  • Madeira, J. V., Macedo, J. A., and Macedo, G. A. (2011). Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresource Technology, 102, 7343–7348.
  • Marlida, Y., Delfita, R., Adnadi, P., and Ciptaan, G. (2010). Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pakistan Journal of Nutrition, 9, 471–474.
  • Marounek, M., Břeňová, N., Suchorská, O., and Mrázek, J. (2009). Phytase activity in rabbit cecal bacteria. Folia Microbiologica, 54, 111–114.
  • Mittal, A., Singh, G., Goyal, V., Yadav, A., and Kumar, N. (2011). Optimization of medium components for phytase production on orange peel flour by Klebsiella sp. DB3 using response surface methodology. Innovative Romanian Food Biotechnology, 9, 35–44.
  • Modha, H., and Pal, D. (2011). Optimization of Rabadi-like fermented milk beverage using pearl millet. Journal of Food Science and Technology, 48, 190–196.
  • Mosblech, A., Thurow, C., Gatz, C., Feussner, I., and Heilmann, I. (2011). Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. The Plant Journal, 65, 949–957.
  • Mudge, S. R., Smith, F. W., and Richardson, A. E. (2003). Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Science, 165, 871–878.
  • Nampoothiri, K. M., Tomes, G. J., Roopesh, K., Szakacs, G., Nagy, V., Soccol, C. R., and Pankey, A. (2004). Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Applied Biochemistry and Biotechnology, 118, 205–214.
  • Nascimento, J., Souza, F., Porto, T. S., Mussatto, S. I., Teixeira, J., and Porto, A. L. (2013). Effect of pH and temperature on phytase and biomass production by submerged fermentation with Aspergillus niger var. phoenicis URM 4924. Retrieved from http://repositorium.sdum.uminho.pt/handle/1822/27403
  • Neves, M. L. C., Silva, M. F., Souza-Motta, C. M., Spier, M. R., Soccol, C. R., Porto, T. S., Moreira, K. A., and Porto, A. L. F. (2011). Lichtheimia blakesleeana as a new potencial producer of phytase and xylanase. Molecules, 16, 4807–4817.
  • Nuobariene, L., Hansen, Å. S., and Arneborg, N. (2012). Isolation and identification of phytase-active yeasts from sourdoughs. LWT-Food Science and Technology, 48, 190–196.
  • Nurul Husna, S., Norhaizan, M. E., Hairuszah, I., Abdah, M. A., Norazalina S., and Norsharina, I. (2010). Rice bran phytic acid (IP6) induces growth inhibition, cell cycle arrest and apoptosis on human colorectal adenocarcinoma cells. Journal of Medicinal Plants Research, 21, 2283–2289.
  • Oberleas, D. (1964). Dietary factors affecting zinc availability. PhD thesis, University of Missouri-Columbia.
  • Oberleas, D., and Harland, B. (2007). Validation of a column liquid chromatographic method for phytate. Journal of AOAC International, 90, 1635–1638.
  • Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., and Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology & Biotechnology, 63, 362–372.
  • Pandee, P., Summpunn, P., Wiyakrutta, S., Isarangkul, D., and Meevootisom, V. (2011). A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. Journal of Microbiology, 49, 257–264.
  • Park, I., and Cho, J. (2011). The phytase from antarctic bacterial isolate, Pseudomonas sp. JPK1 as a potential tool for animal agriculture to reduce manure phosphorus excretion. African Journal of Agricultural Research, 6, 1398–1406.
  • Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D. B., and van Loon, A. P. G. M. (1997). Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica et Biophysica Acta (BBA)–Gene Structure and Expression, 1353, 217–223.
  • Patergnani, S., Suski, J. M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Missiroli, S., and Poletti, F. (2011). Calcium signaling around mitochondria associated membranes (MAMs). Cell Communication and Signaling, 9, 19.
  • Prasad, C., Mandal, A., Gowda, N., Sharma, K., Pattanaik, A., Tyagi, P., and Elangovan, A. (2015). Enhancing phosphorus utilization for better animal production and environment sustainability. Current Science, 108, 1315.
  • Promdonkoy, P., Tang, K., Sornlake, W., Harnpicharnchai, P., Kobayashi, R. S., Ruanglek, V., Upathanpreecha, T., Vesaratchavest, M., Eurwilaichitr, L., and Tanapongpipat, S. (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiology Letters, 290, 18–24.
  • Puhl, A. A., Greiner, R., and Selinger, L. B. (2009). Stereospecificity of myo-inositol hexakisphosphate hydrolysis by a protein tyrosine phosphatase-like inositol polyphosphatase from Megasphaera elsdenii. Applied Microbiology and Biotechnology, 82, 95–103.
  • Quan, C. S., Tian, W. J., Fan, S. D., and Kikuchi, J. I. (2004). Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. Journal of Bioscience & Bioengineering, 97, 260–266.
  • Qvirist, L., Carlsson, N.-G., and Andlid, T. (2015). Assessing phytase activity–methods, definitions and pitfalls. Journal of Biological Methods, 2, e16.
  • Rahi, P., Vyas, P., Sharma, S., and Gulati, A. (2009). Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian Journal of Microbiology, 49, 128–133.
  • Rani, R., and Ghosh, S. (2011). Production of phytase under solid-state fermentation using Rhizopus oryzae: Novel strain improvement approach and studies on purification and characterization. Bioresource Technology, 102, 10641–10649.
  • Rao, D., Rao, K., Reddy, T., and Reddy, V. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Critical Reviews in Biotechnology, 29, 182–198.
  • Rather, J. B. (1917). The determination of phytin phosphorus n plant products. Journal of the American Chemical Society, 39, 2506–2515.
  • Ravindran, V. (2012). Poultry feed availability and nutrition in developing countries. Retrieved from http://www.fao.org/3/a-al703e.pdf
  • Reddy, N., Sathe, S., and Salunkhe, D. (1982). Phytates in legumes and cereals. Advances in Food Research, 28, 92.
  • Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28, 897–906.
  • Richardson, A. E., Barea, J. M., McNeill, A. M., and Prigent-Combaret, C. (2009a). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.
  • Richardson, A. E., Hadobas, P. A., and Hayes, J. E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 25, 641–649.
  • Richardson, A. E., Hocking, P. J., Simpson, R. J., and George, T. S. (2009b). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60, 124–143.
  • Ries, E. F., and Alves Macedo, G. (2011). Improvement of phytase activity by a new Saccharomyces cerevisiae strain using statistical optimization. Enzyme Research, 2011, Article ID 796394.
  • Roopashri, A. N., and Varadaraj, M. C. (2014). Soy whey based medium for optimized phytase activity in Saccharomyces cerevisiae MTCC 5421 and α-D-galactosidase and antibacterial activities in Lactobacillus plantarum MTCC 5422 by response surface methodology. Journal of Food Science and Technology, 51, 519–526.
  • Roopesh, K., Ramachandran, S., Nampoothiri, K. M., Szakacs, G., and Pandey, A. (2006). Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology, 97, 506–511.
  • Rounds, M., and Nielsen, S. (1993). Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates. Journal of Chromatography A, 653, 148–152.
  • Samotus, B., and Schwimmer, S. (1962). Indirect method for determination of phytic acid in plant extracts containing reducing substances. Biochimica et Biophysica Acta, 57, 389.
  • Sandberg, A. S., Brune, M., Carlsson, N. G., Hallberg, L., Skoglund, E., and Rossander-Hulthén, L. (1999). Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. American Journal of Clinical Nutrition, 70, 240–246.
  • Sanikommu, S., Pasupuleti, M., and Vadalkonda, L. (2014). Comparison of phosphate estimating methods in the presence of phytic acid for the determination of phytase activity. Preparative Biochemistry and Biotechnology, 44, 231–241.
  • Sariyska, M., Gargova, S., Koleva, L., and Angelov, A. (2005). Aspergillus niger phytase: Purification and characterization. Biotechnology and Biotechnological Equipment, 19, 98–105.
  • Sasirekha, B., Bedashree, T., and Champa, K. (2012). Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. European Journal of Experimental Biology, 2, 95–104.
  • Selle, P. H., and Ravindran, V. (2007). Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135, 1–41.
  • Selle, P. H., and Ravindran, V. (2008). Phytate-degrading enzymes in pig nutrition. Livestock Science, 113, 99–122.
  • Shao, N., Huang, H., Meng, K., Luo, H., Wang, Y., Yang, P., and Yao, B. (2008). Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. Journal of Microbiology & Biotechnology, 18, 1221.
  • Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F. F., Sharon, M., and He, S. Y. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 468, 400–405.
  • Shetty, J. K., Paulson, B., Pepsin, M., Chotani, G., Dean, B., and Hruby, M. (2008). Phytase in fuel ethanol production offers economical and environmental benefits. International Sugar Journal, 110, 160–174.
  • Shi, X. W., Sun, M. L., Zhou, B., and Wang, X. Y. (2009). Identification, characterization, and overexpression of a phytase with potential industrial interest. Canadian Journal of Microbiology, 55, 599–604.
  • Shivange, A. V., Serwe, A., Dennig, A., Roccatano, D., Haefner, S., and Schwaneberg, U. (2012). Directed evolution of a highly active Yersinia mollaretii phytase. Applied Microbiology and Biotechnology, 95, 405–418.
  • Singh, B., Kunze, G., and Satyanarayana, T. (2011). Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnology Molecular Biology Review, 6, 69–87.
  • Singh, B., and Satyanarayana, T. (2008). Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresource Technology, 99, 2824–2830.
  • Singh, B., and Satyanarayana, T. (2010). Applications of phytase of thermophilic mould, Sporotrichum thermophile: A review. Journal of Scientific & Industrial Research, 69, 411–414.
  • Singh, B., and Satyanarayana, T. (2011). Phytases from thermophilic molds: Their production, characteristics and multifarious applications. Process Biochemistry, 46, 1391–1398.
  • Siren, M. (1995). Method of treating pain using inositol triphosphate. U.S. Patent 5,407,924.
  • Siren, M. (1986). New myo-inositol triphosphoric acid isomer. Pat. SW 52950.
  • Siren, M. (1998). Use of an ester of inositol trisphosphate for the preparing of medicaments. U.S. Patent 5,846,957.
  • Siren, M., Lofkvist, B., and Edvinsson, L. (1992). Method of treating cardiovascular diseases using inositol trisphosphate. U.S. Patent 5,128,332.
  • Solbak, A., Steer, B., Dycaico, M., Kline, K. A., Trefzer, A., Todaro, T., El-Farrah, F., Alvarado, A., and Frey, G. (2015). Methods for using a thermostable phytase in ethanol production. Google Patents. Retrieved from http://www.google.com/patents/US20140017750
  • Somlyo, A. P., and Somlyo, A. V. (1994). Signal transduction and regulation in smooth muscle. Nature, 372, 231–236.
  • Spier, M., Fendrich, R., Almeida, P., Noseda, M., Greiner, R., Konietzny, U., Woiciechowski, A., Soccol, V., and Soccol, C. (2011). Phytase produced on citric byproducts: purification and characterization. World Journal of Microbiology and Biotechnology, 27, 267–274.
  • Stahl, C., Roneker, K., Pond, W., and Lei, X. (2004). Effects of combining three fungal phytases with a bacterial phytase on plasma phosphorus status of weanling pigs fed a corn-soy diet. Journal of Animal Science, 82, 1725–1731.
  • Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R., and O'Shea, E. K. (2003). Regulation of chromatin remodeling by inositol polyphosphates. Science Signalling, 299, 114–116.
  • Tahir, A., Mateen, B., Saeed, S., and Uslu, H. (2010). Studies on the production of commercially important phytase from Aspergillus niger st-6 isolated from decaying organic soil. Micología Aplicada Internacional, 22, 51–57.
  • Tangendjaja, B., Buckle, K., and Wootton, M. (1980). Analysis of phytic acid by high-performance liquid chromatography. Journal of Chromatography, 197, 274–277.
  • Téllez, L. S., Moldes, A., Alonso, J., and Vazquez, M. (2003). Optimization of lactic acid production by Lactobacillus delbrueckii through response surface methodology. Journal of Food Science, 68, 1454–1458.
  • Thyagarajan, R., and Namasivayam, S. K. R. (2010). Influence of carbon source on phytase production by Aspergillus niger. International Journal of Biological Technology, 1, 78–80.
  • Tran, T. T., Hashim, S. O., Gaber, Y., Mamo, G., Mattiasson, B., and Hatti-Kaul, R. (2011). Thermostable alkaline phytase from Bacillus sp. MD2: Effect of divalent metals on activity and stability. Journal of Inorganic Biochemistry, 105, 1000–1007.
  • Tran, T. T., Mamo, G., Mattiasson, B., and Hatti-Kaul, R. (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 37, 279–287.
  • Tsen, J. H., Lin, Y. P., and King, V. (2009). Response surface methodology optimisation of immobilised Lactobacillus acidophilus banana puree fermentation. International Journal of Food Science & Technology, 44, 120–127.
  • Ullah, A. H. J., and Phillippy, B. Q. (1988). Immobilization of Aspergillus ficuum phytase: Product characterization of this bioreactor. Preparative Biochemistry, 18, 483–489.
  • Ushasree, M. V., Vidya, J., and Pandey, A. (2014). Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. Process Biochemistry, 49, 1440–1447.
  • Vance, C. P., Uhde-Stone, C., and Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423–447.
  • Vats, P., and Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35, 3–14.
  • Vats, P., Bhattacharyya, M. S., and Banerjee, U. C. (2005). Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: A biological approach. Critical reviews in Environmental Science and Technology, 35, 469–486.
  • Vijayaraghavan, P., Primiya, R. R., and Prakash Vincent, S. G. (2013). Thermostable alkaline phytase from Alcaligenes sp. in improving bioavailability of phosphorus in animal feed: in vitro analysis. ISRN Biotechnology, 2013, Article ID 394305.
  • Vohra, A., Kaur, P., and Satyanarayana, T. (2011). Production, characteristics and applications of the cell-bound phytase of Pichia anomala. Antonie van Leeuwenhoek, 99, 51–55.
  • Vohra, A., and Satyanarayana, T. (2002). Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochemistry, 37, 999–1004.
  • Vucenik, I., and Shamsuddin, A. K. M. (2003). Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. Journal of Nutrition, 133, 3778S–3784S.
  • Wasaki, J., Maruyama, H., Tanaka, M., Yamamura, T., Dateki, H., Shinano, T., Ito, S., and Osaki, M. (2009). Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants. Soil Science and Plant Nutrition, 55, 107–113.
  • Watanabe, T., Ikeda, H., Masaki, K., Fujii, T., and Iefuji, H. (2009). Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. Journal of Bioscience & Bioengineering, 108, 225–230.
  • Watson, P. J., Fairall, L., Santos, G. M., and Schwabe, J. W. R. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 481, 335–340.
  • Weaver, J. D., Ullah, A. H. J., Sethumadhavan, K., Mullaney, E. J., and Lei, X. G. (2009). Impact of assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases. Journal of Agricultural and Food Chemistry, 57, 5315–5320.
  • Wyss, M., Pasamontes, L., Rémy, R., Kohler, J., Kusznir, E., Gadient, M., Müller, F., and van Loon, A. P. G. M. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology, 64, 4446–4451.
  • Xiao, K., Harrison, M. J., and Wang, Z. Y. (2005). Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta, 222, 27–36.
  • Xu, L., Zhang, G., Wang, H., and Ng, T. B. (2012). Purification and characterization of phytase with a wide pH adaptation from common edible mushroom Volvariella volvacea (Straw mushroom). Indian Journal of Biochemistry and Biophysics, 49, 49–54.
  • Yadav, B., and Tarafdar, J. (2007). Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian Journal of Microbiology, 47, 57–63.
  • Yadav, R., and Tarafdar, J. (2003). Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biology and Biochemistry, 35, 745–751.
  • Yao, M. Z., Zhang, Y. H., Lu, W. L., Hu, M. Q., Wang, W., and Liang, A. H. (2012). Phytases: crystal structures, protein engineering and potential biotechnological applications. Journal of Applied Microbiology, 112, 1–14.
  • Yip, W., Wang, L., Cheng, C., Wu, W., Lung, S., and Lim, B. L. (2003). The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochemical and Biophysical Research Communications, 310, 1148–1154.
  • Yoon, S. J., Choi, Y. J., Min, H. K., Cho, K. K., Kim, J. W., Lee, S. C., and Jung, Y. H. (1996). Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technology, 18, 449–454.
  • Yoon, S. M., Kim, S. Y., Li, K. F., Yoon, B. H., Choe, S., and Kuo, M. M. C. (2011). Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Applied Microbiology & Biotechnology, 91, 553–563.
  • Zeng, Z., Wang, D., Piao, X., Li, P., Zhang, H., Shi, C., and Yu, S. (2014). Effects of adding super dose phytase to the phosphorus-deficient diets of young pigs on growth performance, bone quality, minerals and amino acids digestibilities. Asian-Australasian Journal of Animal Sciences, 27(2), 237.
  • Zhang, G., Dong, X., Wang, Z., Zhang, Q., Wang, H., and Tong, J. (2010). Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresource Technology, 101, 4125–4131.
  • Zhang, R., Yang, P., Huang, H., Shi, P., Yuan, T., and Yao, B. (2011a). Two types of phytases (histidine acid phytase and β-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (Coleoptera) larvae. Current Microbiology, 63, 408–415.
  • Zhang, R., Yang, P., Huang, H., Yuan, T., Shi, P., Meng, K., and Yao, B. (2011b). Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115. Applied Microbiology and Biotechnology, 92, 317–325.
  • Zinin, N. V., Serkina, A. V., Gelfand, M. S., Shevelev, A. B., and Sineoky, S. P. (2004). Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiology Letters, 236, 283–290.
  • Zuo, R., Chang, J., Yin, Q., Chen, L., Chen, Q., Yang, X., Zheng, Q., Ren, G., and Feng, H. (2010). Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiological Research, 165, 329–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.