3,853
Views
127
CrossRef citations to date
0
Altmetric
Articles

From polymer waste to potential main industrial products: Actual state of recycling and recovering

&
Pages 905-946 | Published online: 04 Jun 2016

References

  • Abdelaal, M. Y., Sobahi, T. R., and Makki, M. S. I. (2011). Chemical transformation of pet waste through glycolysis. Constr Build Mater, 25, 3267–3271. doi: 10.1016/j.conbuildmat.2011.03.013
  • Achilias, D. S. (2007). Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer. Eur Polym J, 43, 2564–2575. doi: 10.1016/j.eurpolymj.2007.02.044
  • Achilias, D. S., Andriotis, L., Koutsidis, I. A., Louka, D. A., Nianias, N. P., Siafaka, P., … Tsintzou, G. (2012). Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In: D. S. Achilias (Ed.), Material Recycling - Trends and Perspectives, (pp. 1–63). Rijeka, Croatia: InTech.
  • Achilias, D. S., Antonakou ΕV, Koutsokosta, E., and Lappas, A. A. (2009). Chemical recycling of polymers from waste electric and electronic equipment. J Appl Polym Sci, 114, 212–221. doi: 10.1002/app.30533
  • Achilias, D. S., and Karayannidis, G. (2004). The chemical recycling of PET in the framework of sustainable development. Water, Air, Soil Pollut Focus, 4, 385–396. doi: 10.1023/B:WAFO.0000044812.47185.0f
  • Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., and Antonakou, E. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater, 149, 536–542. doi: 10.1016/j.jhazmat.2007.06.076
  • Achilias, D. S., Tsintzou, G. P., Nikolaidis, A. K., Bikiaris, D. N., and Karayannidis, G. P. (2011). Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym Int, 60, 500–506. doi: 10.1002/pi.2976
  • Aguado, A., Martínez, L., Becerra, L., and Robertson, I. (2014). Chemical depolymerization of PET complex waste: hydrolysis vs. glycolysis. J Mater Cycles Waste Manag, 16, 201-210. doi: 10.1007/s10163-013–0177-y
  • Aguado, J., Serrano, D. P., Escola, J. M., and Peral, A. (2009). Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. J Anal Appl Pyrolysis, 85, 352–358. doi: 10.1016/j.jaap.2008.10.009
  • Akpanudoh, N. S., Gobin, K., and Manos, G. (2005). Catalytic degradation of plastic waste to liquid fuel over commercial cracking catalysts: Effect of polymer to catalyst ratio/acidity content. J Mol Catal A Chem, 235, 67–73. doi: 10.1016/j.molcata.2005.03.009
  • Al-Sabagh, A. M., Yehia, F. Z., Eissa, A. M. F., Moustafa, M. E., Eshaq, G., Rabie, A. M., and ElMetwally, A. E. (2014). Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polym Degrad Stab, 110, 364–377. doi: http://dx.doi.org/10.1016/j.polymdegradstab.2014.10.005
  • Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., and ElMetwally, A. E. (2015). Greener routes for recycling of polyethylene terephthalate. Egypt J Pet., doi: 10.1016/j.ejpe.2015.03.001
  • Al-Salem, S. M., Lettieri, P., and Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag, 29, 2625–2643. doi: 10.1016/j.wasman.2009.06.004
  • Al-Salem, S. M., Lettieri, P., and Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energy Combust Sci, 36, 103–129. doi: 10.1016/j.pecs.2009.09.001
  • Antonakou, E. V., and Achilias, D. S. (2013). Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valorization, 4, 9–21. doi: 10.1007/s12649-012-9159-x
  • Arena, U., Di Gregorio, F. (2014). Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor. Energy, 68, 735–743. doi: 10.1016/j.energy.2014.01.084
  • Asahi, N., Sakai, K., Kumagai, N., Nakanishi, T., Hata, K., Katoh, S., and Moriyoshi, T. (2004). Methanolysis investigation of commercially available polyurethane foam. Polym Degrad Stab, 86, 147–151. doi: 10.1016/j.polymdegradstab.2004.04.002
  • Aznar, M. P., Caballero, M. A., Sancho, J. A., and Francés, E. (2006). Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol, 87, 409–420. doi: 10.1016/j.fuproc.2005.09.006
  • Beneš, H., Černá, R., Ďuračková, A., and Látalová, P. (2012a). Utilization of natural oils for decomposition of polyurethanes. J Polym Environ, 20, 175–185. doi: 10.1007/s10924-011-0339-8
  • Beneš, H., Vlček, T., Černá, R., Hromádková, J., Walterová, Z., and Svitáková, R. (2012b). Polyurethanes with bio-based and recycled components. Eur J Lipid Sci Technol, 114, 71–83. doi: 10.1002/ejlt.201000123
  • Błędzki, A. K. (1997). Recycling of polymeric materials. Warszawa, Poland: WNT.
  • Borda, J., Pásztor, G., and Zsuga, M. (2000). Glycolysis of polyurethane foams and elastomers. Polym Degrad Stab, 68, 419–422. doi: 10.1016/S0141-3910(00)00030-6
  • Buekens, A. G., and Schoeters, J. G. (1998). Technical methods in plastics pyrolysis. Macromol Symp, 135, 63–81. doi: 10.1002/masy.19981350110
  • Butler, E., Devlin, G., and McDonnell, K. (2011). Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research. Waste and Biomass Valorization, 2, 227–255. doi: 10.1007/s12649-011-9067-5
  • Chiu, S., Tsai, C., and Chang, Y. (2008). Monomer recovery from polycarbonate by methanolysis. e-Polymers, 8, 1516–1528.
  • Chuayjuljit, S., Norakankorn, C., and Pimpan, V. (2002). Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. J Met Mater Miner, 12, 19–22.
  • Colomines, G., Robin, J. J., and Tersac, G. (2005). Study of the glycolysis of PET by oligoesters. Polymer (Guildf), 46, 3230–3247. doi: 10.1016/j.polymer.2005.02.047
  • Cui, J., and Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: A review. J Hazard Mater, 99, 243–263. doi: 10.1016/S0304-3894(03)00061-X
  • Czupryński, B., Liszkowska, J., Paciorek-Sadowska, J., Kotarska, K., and Lewandowski, R. (2010). Recykling surowcowy sztywnych pianek poliuretanowo-poliizocyjanurowych. Inżynieria i Apar Chem, 49, 33–34.
  • Datta, J. (2012a). Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim, 109, 517–520. doi: 10.1007/s10973-012–2530-0
  • Datta, J. (2012b). Glikoliza poliuretanów. Gdańsk, Poland: Wydawnictwo Politechniki Gdańskiej.
  • Datta, J., and Kacprzyk, M. (2008). Thermal analysis and static strength of polyurethanes obtained from glycolysates. J Therm Anal Calorim, 93, 753–757. doi: 10.1007/s10973-008-9140-x
  • Datta, J., and Pasternak, S. (2005). Oligourethane glycols obtained in glycolysis of polyurethane foam as semi-finiszed products for cast urethane elastomers preparation. Polimery, 50, 352–357.
  • Datta, J., and Pniewska, K. (2008). Syntheses and properties of polyurethanes got from glycolysis products obtained from wadte polyurethane foams. Polimery, 53, 27–32.
  • Datta, J., and Rohn, M. (2007a). Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim, 88, 437–440. doi: 10.1007/s10973-006-8041-0
  • Datta, J., and Rohn, M. (2007b). Glycolysis of polyurethane wastes. Part I. Glycolysis agents and catalysts. Polimery, 52, 579–582.
  • Datta, J., and Rohn, M. (2007c). Glycolysis of polyurethane wastes. Part II. Purification and use of glycolysis products. Polimery, 52, 625–710.
  • Datta, J., and Rohn, M. (2008). Structure, thermal stability and mechanical properties of polyurethanes based on glycolysate from polyurethane foam waste, prepared with use of 1,6-hexanediol as a glycol. Polimery, 53, 871–875.
  • De La Puente, G., Klocker, C., and Sedran, U. (2002). Conversion of waste plastics into fuels recycling polyethylene in FCC. Appl Catal B Environ, 36, 279–285. doi: 10.1016/S0926-3373(01)00287–9
  • Deirram, N., and Rahmat, A. R. (2012). Hydrolysis degradation of polycarbonate using different co–solvent under microwave irradiation. APCBEE Procedia, 3, 172–176. doi: 10.1016/j.apcbee.2012.06.065
  • Ding, J., Chen, J., Ji, Y., Ni, P., Li, Z., and Xing, L. (2014). Kinetics of alcoholysis of poly(ethylene terephthalate) in sub- and super-critical isooctyl alcohol to produce dioctyl terephthalate. J Anal Appl Pyrolysis, 106, 99–103. doi: 10.1016/j.jaap.2014.01.005
  • Duch, M. W., and Allgeier, A. M. (2007). Deactivation of nitrile hydrogenation catalysts: New mechanistic insight from a nylon recycle process. Appl Catal A Gen, 318, 190–198. doi: 10.1016/j.apcata.2006.11.003
  • Durmuş, A., Naci Koç, S., Selda Pozan, G., and Kaşgöz, A. (2005). Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Appl Catal B Environ, 61, 316–322. doi: 10.1016/j.apcatb.2005.06.009
  • Ekart, M. P., Murdoch, W. S., and Pell, T. M. (2002). Glycolysis process for recycling of post-consumer PET. U.S. Patent No. 6,410,607.
  • El-Hameed, R. S. A. (2011). Aminolysis of polyethylene terephthalate waste as corrosion inhibitor for carbon steel in HCl corrosive medium. Adv Appl Sci Res, 2, 483–499.
  • Elsaeed, S. M., and Farag, R. K. (2009). Synthesis, characterization, and chemical degradation of segmented polyurethanes with butylamine for chemical recycling. J Appl Polym Sci, 112, 3327–3336. doi: 10.1002/app.29527
  • European Parliament and Council of the European Union. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off J Eur Union L, 312, 1–30. doi: 2008/98/EC.; 32008L0098
  • Garforth, A. A., Ali, S., Hernández-Martínez, J., and Akah, A. (2004). Feedstock recycling of polymer wastes. Curr Opin Solid State Mater Sci, 8, 419–425. doi: 10.1016/j.cossms.2005.04.003
  • Głowińska, E., and Włoch, M. (2014). Rheology of glycolyzates produced by conversion of polyetherurethane wastes. Przem Chem, 93, 1308–1310. doi: dx.medra.org/10.12916/przemchem.2014.1308
  • Gobin, K., and Manos, G. (2004). Polymer degradation to fuels over microporous catalysts as a novel tertiary plastic recycling method. Polym Degrad Stab, 83, 267–279. doi: 10.1016/S0141-3910(03)00272-6
  • Goto, J., and Santorelli, M. (2010). Recycling. In L. Pilato (Ed.), Phenolic resins: A century of progress (517–524). Berlin, Germany: Springer.
  • Goto, M. (2009). Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids, 47, 500–507. doi: 10.1016/j.supflu.2008.10.011
  • Goto, M., Sasaki, M., and Hirose, T. (2006). Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J Mater Sci, 41, 1509–1515. doi: 10.1007/s10853-006-4615-2
  • Grause, G., Buekens, A., Sakata, Y., Okuwaki, A., and Yoshioka, T. (2011). Feedstock recycling of waste polymeric material. J Mater Cycles Waste Manag, 13, 265–282. doi: 10.1007/s10163-011-0031-z
  • Güçlü, G., Yalçınyuva, T., Özgümüş, S., and Orbay, M. (2003). Simultaneous glycolysis and hydrolysis of polyethylene terephthalate and characterization of products by differential scanning calorimetry. Polymer (Guildf), 44, 7609–7616. doi: 10.1016/j.polymer.2003.09.062
  • Hájeková, E., and Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. J Anal Appl Pyrolysis, 74, 270–281. doi: http://dx.doi.org/10.1016/j.jaap.2004.11.016
  • Hamad, K., Kaseem, M., and Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. Polym Degrad Stab, 98, 2801–2812. doi: 10.1016/j.polymdegradstab.2013.09.025
  • Hata, S., Goto, H., Yamada, E., and Oku, A. (2002). Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer (Guildf), 43, 2109–2116. doi: 10.1016/S0032-3861(01)00800-X
  • Heidari, S., and Tahvildari, K. (2013). Preparation and characterization of diols and polyols based on aminolysis of poly (ethylene terephthalate) wastes with alkanolamines. J Appl Chem Res, 7, 33–42.
  • Hirao, K., Nakatsuchi, Y., and Ohara, H. (2010). Alcoholysis of poly(l-lactic acid) under microwave irradiation. Polym Degrad Stab, 95, 925–928. doi: 10.1016/j.polymdegradstab.2010.03.027
  • Hoang, C. N., and Dang, Y. H. (2013). Aminolysis of poly(ethylene terephthalate) waste with ethylenediamine and characterization of a,u-diamine products. Polym Degrad Stab, 98, 697–708. doi: 10.1016/j.polymdegradstab.2012.12.026
  • Hodzic, A. (2004). Re-use, recycling and degradation of composites. In C. Baillie (Ed.), Green composites: Polymer composites and the environment, (252–271). Cambridge, England: Woodhead.
  • Hu, L., Oku, A., and Yamada, E. (1998). Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer (Guildf), 39, 3841–3845. doi: 10.1016/S0032-3861(97)10298-1
  • Imran, M., Kim, B. K., Han, M., Cho, B. G., and Kim, D. H. (2010). Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab, 95, 1685–1693. doi: 10.1016/j.polymdegradstab.2010.05.026
  • Jain, A., and Soni, R. K. (2007). Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res, 14, 475–481. doi: 10.1007/s10965-007-9131-9
  • Johnson, O. B. (1977). Method for continuous hydrolysis of polyurethane foam in restricted tubular reaction zone and recovery. U.S. Patent No. 4,025,559.
  • Jung, S. H., Kim, S. J., and Kim, J. S. (2013). The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile-butadiene-styrene using a fluidized bed reactor. Fuel Process Technol, 116, 123–129. doi: 10.1016/j.fuproc.2013.05.004
  • Kaminsky, W., Predel, M., and Sadiki, A. (2004). Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab, 85, 1045–1050. doi: 10.1016/j.polymdegradstab.2003.05.002
  • Kamo, T., Wu, B., Egami, Y., Yasuda, H., and Nakagome, H. (2011). Influence of mixed molten carbonate composition on hydrogen formation by steam gasification. J Mater Cycles Waste Manag, 13, 50–55. doi: 10.1007/s10163-010-0307-8
  • Karayannidis, G. P., and Achilias, D. S. (2007). Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng, 292, 128–146. doi: 10.1002/mame.200600341
  • Karayannidis, G. P., Achilias, D. S., Sideridou, I. D., and Bikiaris, D. N. (2005). Alkyd resins derived from glycolized waste poly(ethylene terephthalate). Eur Polym J, 41, 201–210. doi: 10.1016/j.eurpolymj.2004.10.001
  • Kim, J.-W., Mun, T.-Y., Kim, J.-O., and Kim, J.-S. (2011). Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and a high caloric value. Fuel, 90, 2266–2272. doi: 10.1016/j.fuel.2011.02.021
  • Kim, K. J., Dhevi, D. M., Lee, J. S., Cho, Y. D., and Choe, E. K. (2006). Mechanism of glycolysis of nylon 6,6 and its model compound by ethylene glycol. Polym Degrad Stab, 91, 1545–1555. doi: 10.1016/j.polymdegradstab.2005.09.019
  • Kishimoto, Y., Kajihara, T., and Kato, S. (1999). Study on the alcoholysis of aromatic polyesters and related esters using a high-pressure calorimeter. Polym Bull, 300, 295–300. doi: 10.1007/s002890050466
  • Kurokawa, H., Ohshima, M., Sugiyama, K., and Miura, H. (2003). Methanolysis of polyethylene terephthalate (PET) in the presence of aluminum tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym Degrad Stab, 79, 529–533. doi: http://dx.doi.org/10.1016/S0141-3910(02)00370–1
  • Lettieri, P., and Al-Salem, S. M. (2011). Thermomechanical treatment of plastic solid waste. In T. M. Letcher and D. A. Vallero (Eds.), Waste: A handbook for management, (234–242). San Diego, CA: Academic Press.
  • Lin, Y. H., and Yang, M. H. (2005). Catalytic reactions of post-consumer polymer waste over fluidised cracking catalysts for producing hydrocarbons. J Mol Catal A Chem, 231, 113–122. doi: 10.1016/j.molcata.2005.01.003
  • Liu, F., Chen, J., Li, Z., Ni, P., Ji, Y., and Meng, Q. (2013a). Alcoholysis of poly(ethylene terephthalate) to produce dioctyl terephthalate with sub- and super-critical isooctyl alcohol. J Anal Appl Pyrolysis, 99, 16–22. doi: doi:10.1016/j.jaap.2012.11.008
  • Liu, F., Li, Z., Yu, S., Cui, X., and Ge, X. (2010). Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J Hazard Mater, 174, 872–875. doi: 10.1016/j.jhazmat.2009.09.007
  • Liu, F.-S., Li, Z., Yu, S.-T., Cui, X., Xie, C., and Ge, X. (2009). Methanolysis and hydrolysis of polycarbonate under moderate conditions. J Polym Environ, 17, 208–211. doi: 10.1007/s10924-009-0140-0
  • Liu, L., Tang, L., Wu, Y., Ni, Y., and Zhu, Z. (2013b). Degradation process investigation of thermoplastic polyurethane elastomer in supercritical methanol. Polym Degrad Stab, 98, 2520–2528. doi: 10.1016/j.polymdegradstab.2013.09.010
  • Liu, S., Wang, Z., Li, L., Yu, S., Xie, C., and Liu, F. (2013c). Butanol alcoholysis reaction of polyethylene terephthalate using acidic ionic liquid as catalyst. J Appl Polym Sci, 130, 1840–1844. doi: 10.1002/app.39246
  • Liu, S., Zhou, L., Li, L., Yu, S., Liu, F., Xie, C., and Song, Z. (2013d). Isooctanol alcoholysis of waste polyethylene terephthalate in acidic ionic liquid. J Polym Res, 20:310. doi: 10.1007/s10965-013-0310-6
  • López-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Arnaiz, S., and Gutiérrez-Ortiz, J. I. (2010). Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym Degrad Stab, 95, 1022–1028. doi: 10.1016/j.polymdegradstab.2010.03.007
  • López-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Flores-Giraldo, L., and Gutiérrez-Ortiz, J. I. (2011). Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem Eng J, 168, 312–320. doi: 10.1016/j.cej.2011.01.031
  • Mahoney, L. R. (1980). Ammonia, diamine and polymer recovery. U.S. Patent No. 4,196,148.
  • Mahoney, L. R., Weiner, S. A., and Ferris, F. C. (1974). Hydrolysis of Polyurethane Foam Waste. Environ Sci Technol, 8, 135–139. doi: 10.1021/es60087a010
  • Maier, C., and Calafut, T. (1998). Recycling. In: Polypropylene: The definitive user's guide and databook, (75–78). Norwich, England: Elsevier.
  • Mansour, S., and Ikladious, N. (2002). Depolymerization of poly(ethylene terephthalate) wastes using 1,4-butanediol and triethylene glycol. Polym Test, 21, 497–505. doi: 10.1016/S0142-9418(01)00115–5
  • Meissner, E., Wróblewska, A., and Milchert, E. (2004). Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polym Degrad Stab, 83, 163–172. doi: 10.1016/S0141-3910(03)00259–3
  • Mendes, L. C., Dias, M. L., and Rodrigues, T. C. (2011). Chemical recycling of PET waste with multifunctional pentaerythrytol in the melt state. J Polym Environ, 19, 254–262. doi: 10.1007/s10924-010-0276-y
  • Michaud, J.-C., Farrant, L., Jan, O., Kjær, B., and Bakas, I. (2010). Environmental benefits of recycling - 2010 update. Retrieved from http://www.recyclingstar.org/wp-content/uploads/2014/08/Environmental_benefits_of_recycling_2010_update.pdf
  • Mishra, S., and Goje, A. S. (2003). Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder. Polym Int, 52, 337–342. doi: 10.1002/pi.1147
  • Molero, C., de Lucas, A., and Rodríguez, J. F. (2008). Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: Study on the influence of reaction parameters. Polym Degrad Stab, 93, 353–361. doi: 10.1016/j.polymdegradstab.2007.11.026
  • Molero, C., de Lucas, A., and Rodríguez, J. F. (2009a). Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stab, 94, 533–539. doi: 10.1016/j.polymdegradstab.2009.01.021
  • Molero, C., de Lucas, A., and Rodríguez, J. F. (2009b). Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manag, 11, 130–132. doi: 10.1007/s10163-008-0224-2
  • Mormann, W., and Frank, P. (2006). (Supercritical) ammonia for recycling of thermoset polymers. Macromol Symp, 242, 165–173. doi: 10.1002/masy.200651024
  • Nikje, M. M. A. (2011). Glycolysis of polycarbonate wastes with microwave irradiation. Polimery/Polymers, 56, 381–384.
  • Nikje, M. M. A., and Garmarudi, A. B. (2010). Ive. Iran Polym J, 19, 287–295.
  • Nikje, M. M. A., and Mohammadi, F. H. A. (2009). Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microvawe radiation. Polimery, 54, 541–545.
  • Nikje, M. M. A., and Nikrah, M. (2007). Glycerin as a new glycolysing agent for chemical recycling of cold cure polyurethane foam wastes in “split-phase” condition. Polym Bull, 58, 411–423. doi: 10.1007/s00289-006-0683-3
  • Nikje, M. M. A., Nikrah, M., and Haghshenas, M. (2007). Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull, 59, 91–104. doi: 10.1007/s00289-007-0753-1
  • Nikles, D. E., and Farahat, M. S. (2005). New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: A review. Macromol Mater Eng, 290, 13–30. doi: 10.1002/mame.200400186
  • Panda, A. K., and Singh, R. (2011). Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene. J Fuel Chem Technol, 39, 198–202. doi: 10.1016/S1872-5813(11)60017-0
  • Parab, Y. S., Pingale, N. D., and Shukla, S. R. (2012). Aminolytic depolymerization of poly (ethylene terephthalate) bottle waste by conventional and microwave irradiation heating. J Appl Polym Sci, 125, 1103–1107. doi: 10.1002/app.34855
  • Pardal, F., and Tersac, G. (2006). Comparative reactivity of glycols in PET glycolysis. Polym Degrad Stab, 91, 2567–2578. doi: 10.1016/j.polymdegradstab.2006.05.016
  • Partini, M., and Pantani, R. (2007). FTIR analysis of hydrolysis in aliphatic polyesters. Polym Degrad Stab, 92, 1491–1497. doi: 10.1016/j.polymdegradstab.2007.05.009
  • Paszun, D., and Spychaj, T. (1997). Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res, 36, 1373–1383. doi: 10.1021/ie960563c
  • Piemonte, V., Sabatini, S., and Gironi, F. (2013). Chemical recycling of PLA: A great opportunity towards the sustainable development? J Polym Environ, 21, 640–647. doi: 10.1007/s10924-013-0608-9
  • Pingale, N. D., and Shukla, S. R. (2009). Microwave-assisted aminolytic depolymerization of PET waste. Eur Polym J, 45, 2695–2700. doi: 10.1016/j.eurpolymj.2009.05.028
  • PlasticsEurope. (2009). The compelling facts about plastics 2009: An analysis of European plastics production, demand and recovery for 2008. Retrieved from http://www.plasticseurope.org/Documents/Document/20100225141556-Brochure_UK_FactsFigures_2009_22sept_6_Final-20090930-001-EN-v1.pdf
  • PlasticsEurope. (2007). The compelling facts about plastics: An analysis of plastics production, demand and recovery for 2005 in Europe. Retrieved from http://www.plasticseurope.org/Documents/Document/20100309151634-Statistics2005FINALWebsiteVersionwithoutBackgroundColour080507-20070508-008-EN-v1.pdf
  • PlasticsEurope. (2008a). The compelling facts about plastics: An analysis of plastics productions, demand and recovery for 2006 in Europe. Retrieved from http://www.plasticseurope.org/Documents/Document/20100309151634-20022006figures080123-20080128-001-EN-v1.pdf
  • PlasticsEurope. (2008b). The compelling facts about plastics 2007: An analysis of plastics production, demand and recovery for 2007 in Europe,. Retrieved from http://www.plasticseurope.org/Documents/Document/20100309151634-Final_FactsFigures2007_PublishedOct2008_final-20081020-002-EN-v1.pdf
  • PlasticsEurope. (2010). Plastics - the facts 2010: An analysis of European plastics production, demand and recovery for 2009. Retrieved from http://www.plasticseurope.org/documents/document/20101006091310-final_plasticsthefacts_28092010_lr.pdf
  • PlasticsEurope. (2011). Plastics - the facts 2011: An analysis of European plastics production, demand and recovery for 2010. Retrieved from http://www.plasticseurope.org/Document/plastics—the-facts-2011.aspx
  • PlasticsEurope. (2012). Plastics - the facts 2012: An analysis of European plastics production, demand and waste data for 2011. Retrieved from http://www.plasticseurope.org/Document/plastics-the-facts-2012.aspx
  • PlasticsEurope. (2013). Plastics - the facts 2013: An analysis of European latest plastics production, demand and waste data. Retrieved from http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx
  • PlasticsEurope. (2015). Plastics - the facts 2014/2015: An analysis of European plastics production, demand and waste data. Retrieved from http://www.plasticseurope.org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf
  • Pusztaszeri, S. F. (1982). Method for recovery of therephtalic acid from polyester scrap. U.S. Patent No. 4355175.
  • Sadegehi, G. M. M., Shamsi, R., and Sayaf, M. (2011). From aminolysis product of PET waste to novel biodegradable polyurethanes. J Polym Environ, 19, 522–534. doi: 10.1007/s10924-011-0283-7
  • Sasse, F., and Emig, G. (1998). Chemical recycling of polymer materials. Chem Eng Technol, 21, 777–789. doi: 10.1002/(SICI)1521–4125(199810)21:10<777::AID-CEAT777>3.0.CO;2-L
  • Shah, R. V., Borude, V. S., and Shukla, S. R. (2013). Recycling of PET waste using 3-amino-1-propanol by conventional or microwave irradiation and synthesis of bis-oxazin there from. J Appl Polym Sci, 127, 323–328. doi: 10.1002/app.37900
  • Shah, R. V., and Shukla, S. R. (2012). Effective aminolytic depolymerization of poly(ethylene terephthalate) waste and synthesis of bisoxazoline therefrom. J Appl Polym Sci, 125, 3666–3675. doi: 10.1002/app.36649
  • Shamsi, R., Abdouss, M., Sadeghi, G. M. M., and Taromi, F. A. (2009). Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties. Polym Int, 58, 22–30. doi: 10.1002/pi.2488
  • Simón, D., Borreguero, A. M., de Lucas, A., and Rodríguez, J. F. (2014). Glycolysis of flexible polyurethane wastes containing polymeric polyols. Polym Degrad Stab, 109, 115–121. doi: 10.1016/j.polymdegradstab.2014.07.009
  • Simón, D., García, M. T., De Lucas, A., Borreguero, A. M., and Rodríguez, J. F. (2013). Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters. Polym Degrad Stab, 98, 144–149. doi: 10.1016/j.polymdegradstab.2012.10.017
  • Sinha, V., Patel, M. R., and Patel, J. V. (2010). Pet waste management by chemical recycling: A review. J Polym Environ, 18, 8–25. doi: 10.1007/s10924-008-0106-7
  • Song, X., Wang, H., Zheng, X., and Yu, S. (2014). Methanolysis of poly(lactic acid) using acidic functionalized ionic liquids as catalysts. J Appl Polym Sci, 131, 40817/1–40817/6. doi: 10.1002/app.40817
  • Song, X., Zhang, X., Wang, H., Liu, F., Yu, S., and Liu, S. (2013). Methanolysis of poly(lactic acid) (PLA) catalyzed by ionic liquids. Polym Degrad Stab, 98, 2760–2764. doi: 10.1016/j.polymdegradstab.2013.10.012
  • Tawfik, M. E., and Eskander, S. B. (2010). Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products. Polym Degrad Stab, 95, 187–194. doi: 10.1016/j.polymdegradstab.2009.11.026
  • Thompson, R. C., Swan, S. H., Moore, C. J., and vom Saal, F. S. (2009). Our plastic age. Philos Trans R Soc Lond B Biol Sci, 364, 1973–1976. doi: 10.1098/rstb.2009.0054
  • Troev, K., Grancharov, G., Tsevi, R., and Tsekova, A. (2000). A novel approach to recycling of polyurethanes: chemical degradation of flexible polyurethane foams by triethyl phosphate. Polymer (Guildf), 41, 7017–7022. doi: 10.1016/S0032-3861(00)00054-9
  • Tsintzou, G. P., and Achilias, D. S. (2013). Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste and Biomass Valorization, 4, 3–7. doi: 10.1007/s12649-012-9125-7
  • Tsuji, H., Daimon, H., and Fujie, K. (2003). A new strategy for recycling and preparation of poly(L-lactic acid): hydrolysis in the melt. Biomacromolecules, 4, 835–40. doi: 10.1021/bm034060j
  • Tsuji, T., and Hatayama, A. (2009). Gasification of waste plastics by steam reforming in a fluidized bed. J Mater Cycles Waste Manag, 11, 144–147. doi: 10.1007/s10163-008-0227-z
  • Vasile, C., Brebu, M. A., Karayildirim, T., Yanik, J., and Dariee, H. (2007). Feedstock recycling from plastics and thermosets fractions of used computers. II. Pyrolysis oil upgrading. Fuel, 86, 477–485. doi: 10.1016/j.fuel.2006.08.010
  • Wasielewski, R., and Piechaczek, M. (2009). Directions of waste plastics recovery in countries of European Union The. Arch Gospod Odpad i Ochr Środowiska, 11, 1–12.
  • Westerhout, R. W. J., Kuipers, J. A. M., and Van Swaaij, W. P. M. (1998). Experimental determination of the yield of pyrolysis products of polyethene and polypropene. Influence of reaction conditions. Ind Eng Chem Res, 37, 841–847. doi: 10.1021/ie970384a
  • Wilk, V., and Hofbauer, H. (2013a). Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel, 107, 787–799. doi: 10.1016/j.fuel.2013.01.068
  • Wilk, V., and Hofbauer, H. (2013b). Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel, 107, 787–799. doi: 10.1016/j.fuel.2013.01.068
  • Williams, E. A., and Williams, P. T. (1997). The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. J Chem Technol Biotechnol, 70, 9–20. doi: 10.1002/(SICI)1097-4660(199709)70:1<9::AID-JCTB700>3.0.CO;2-E
  • Williams, T. G. J. L., Heidrich, O., and Sallis, P. J. (2010). A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system. Resour Conserv Recycl, 55, 118–128. doi: 10.1016/j.resconrec.2010.08.002
  • Wong, S. L., Ngadi, N., Abdullah, T. A. T., and Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renew Sustain Energy Rev, 50, 1167–1180. doi: 10.1016/j.rser.2015.04.063
  • Wu, C.-H., Chang, C.-Y., Cheng, C.-M., and Huang, H.-C. (2003). Glycolysis of waste flexible polyurethane foam. Polym Degrad Stab, 80, 103–111. doi: 10.1016/S0141-3910(02)00390-7
  • Xi, G., Lu, M., and Sun, C. (2005). Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polym Degrad Stab, 87, 117–120. doi: 10.1016/j.polymdegradstab.2004.07.017
  • Ylä-Mella, J. (2005). Recycling of polymers. Environmental Catalysis, 9, 1-9.
  • Yoshioka, T., Sato, T., and Okuwaki, A. (1994). Hydrolysis of waste PET by sulfuric acid at 150°C for a chemical recycling. J Appl Polym Sci, 52, 1353–1355. doi: 10.1002/app.1994.070520919
  • Zhou, C., Fang, W., Xu, W., Cao, A., and Wang, R. (2014). Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J Clean Prod, 80, 80–86. doi: 10.1016/j.jclepro.2014.05.083
  • Zia, K. M., Bhatti, H. N., and Ahmad Bhatti, I. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React Funct Polym, 67, 675–692. doi: 10.1016/j.reactfunctpolym.2007.05.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.