1,581
Views
55
CrossRef citations to date
0
Altmetric
Articles

Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae

, , , &
Pages 1297-1323 | Published online: 13 Sep 2016

References

  • Alber, B. E., and Ferry, J. G. (1994). A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proceedings of the National Academy of Sciences 91, 6909–6913.
  • Baba, M., Suzuki, I., and Shiraiwa, Y. (2011). Proteomic analysis of high-CO2-inducible extracellular proteins in the unicellular green alga. Chlamydomonas reinhardtii. Plant and Cell Physiology 52, 1302–1314.
  • Badger, M. R., Hanson, D., and Price, G .D. (2002). Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biology 29, 161–173.
  • Badger, M. R., Kaplan, A., and Berry, J. A. (1980). Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiology 66, 407–413.
  • Badger, M. R., and Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany 54, 609–622.
  • Barbieri, M. (2015). The first three billion years code biology (pp. 75–91). Springer International Publishing AG, Switzerland.
  • Bertrand, J.-C., Brochier-Armanet, C., Gouy, M., and Westall, F. (2015). For three billion years, microorganisms were the only inhabitants of the earth environmental microbiology: fundamentals and applications (pp. 75–106). Springer International Publishing AG, Switzerland.
  • Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., and Kennedy, J. J. (2016). El Nino and a record CO2 rise. Nature Climate Change advance online publication.
  • Blanco-Rivero, A., Shutova, T., Roman, M. J., Villarejo, A., and Martinez, F. (2012). Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PloS One 7, e49063.
  • Blankenship, R. E. (2010). Early evolution of photosynthesis. Plant Physiology 154, 434–438.
  • Bozzo, G. G., Colman, B., and Matsuda, Y. (2000). Active transport of CO2 and bicarbonate is induced in response to external CO2 concentration in the green alga Chlorella kessleri. Journal of Experimental Botany 51, 1341–1348.
  • Brueggeman, A. J., Gangadharaiah, D. S., Cserhati, M. F., Casero, D., Weeks, D. P., and Ladunga, I. (2012). Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. The Plant Cell Online 24, 1860–1875.
  • Buick, R. (1992). The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74–77.
  • Buitenhuis, E. T., De Baar, H. J. W., and Veldhuis, M. J. W. (1999). Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology 35, 949–959.
  • Burow, M. D., Chen, Z.-Y., Mouton, T. M., and Moroney, J. V. (1996). Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2. Plant Molecular Biology 31, 443–448.
  • Cameron, J. C., Wilson, S. C., Bernstein, S. L., and Kerfeld, C. A. (2013). Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155, 1131–1140.
  • Cardol, P., Vanrobaeys, F., Devreese, B., Van Beeumen, J., Matagne, R., and Remacle, C. (2004). Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1658, 212–224.
  • Chen, P., Andersson, D. I., and Roth, J. R. (1994). The control region of the pdu/cob regulon in Salmonella typhimurium. Journal of Bacteriology 176, 5474–5482.
  • Colombo, S. L., Pollock, S. V., Eger, K. A., Godfrey, A. C., Adams, J. E., Mason, C. B., and Moroney, J. V. (2002). Use of the bleomycin resistance gene to generate tagged insertional mutants of Chlamydomonas reinhardtii that require elevated CO2 for optimal growth. Functional Plant Biology 29, 231–241.
  • Couradeau, E., Benzerara, K., Garard, E., Estave, I., Moreira, D., Tavera, R., and Lapez-Garcaa, P. (2013). Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10, 5255–5266.
  • Drews, G., and Niklowitz, W. (1957). Cytology of blue algae. III. Studies on granular inclusions of Hormogonales. Arch Mikrobiol 25, 333–351.
  • Duanmu, D., Miller, A. R., Horken, K. M., Weeks, D. P., and Spalding, M. H. (2009b). Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3− transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 106, 5990–5995.
  • Duanmu, D., Wang, Y., and Spalding, M. H. (2009a). Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-dier phenotype of LCIB mutant in Chlamydomonas reinhardtii. Plant Physiology 149, 929–937.
  • Dudoladova, M. V., Kupriyanova, E. V., Markelova, A. G., Sinetova, M. P., Allakhverdiev, S. I., and Pronina, N. A. (2007). The thylakoid carbonic anhydrase associated with photosystem II is the component of inorganic carbon accumulating system in cells of halo-and alkaliphilic cyanobacterium Rhabdoderma lineare. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1767, 616–623.
  • Engel, B. D., Schaffer, M., Cuellar, L. K., Villa, E., Plitzko, J. M., and Baumeister, W. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889.
  • Eriksson, M., Karlsson, J., Ramazanov, Z., Gardestram, P., and Samuelsson, G. (1996). Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 93, 12031–12034.
  • Falkowski, P. G., and Raven, J. A. (2013). Aquatic photosynthesis. Princeton University Press, New Jersey, USA.
  • Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., Ladunga, I., Liu, P., and Spalding, M. H. (2012). Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. The Plant Cell Online 24, 1876–1893.
  • Farrelly, D. J., Brennan, L., Everard, C. D., and McDonnell, K. P. (2014). Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor. Applied Microbiology and Biotechnology 98, 3157–3164.
  • Fujiwara, S., Fukuzawa, H., Tachiki, A., and Miyachi, S. (1990). Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 87, 9779–9783.
  • Fukuzawa, H., Fujiwara, S., Yamamoto, Y., Dionisio-Sese, M. L., and Miyachi, S. (1990). cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: Regulation by environmental CO2 concentration. Proceedings of the National Academy of Sciences 87, 4383–4387.
  • Fukuzawa, H., Suzuki, E., Komukai, Y., and Miyachi, S. (1992). A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proceedings of the National Academy of Sciences 89, 4437–4441.
  • Galmes, J., Andralojc, P. J., Kapralov, M. V., Flexas, J., Keys, A. J., Molins, A., Parry, M. A. J., and Conesa, M.Ã. (2014). Environmentally driven evolution of RuBisCO and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). New Phytologist 203, 989–999.
  • Gao, H., Wang, Y., Fei, X., Wright, D. A., and Spalding, M. H. (2015). Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. The Plant Journal 82, 1–11.
  • Giordano, M., Norici, A., Forssen, M., Eriksson, M., and Raven, J. A. (2003). An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiology 132, 2126–2134.
  • Hanson, D. T., Franklin, L. A., Samuelsson, G., and Badger, M. R. (2003). The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to RuBisCO and not photosystem II function in vivo. Plant Physiology 132, 2267–2275.
  • Heinhorst, S., Cannon, G. C., and Shively, J. M. (2014). Carboxysomes and their structural organization in prokaryotes nanomicrobiology (pp. 75–101). Springer International Publishing AG, Switzerland.
  • Higgins, C. F. (2001). ABC transporters: physiology, structure and mechanism: an overview. Research in Microbiology 152, 205–210.
  • Hohmann-Marriott, M. F., and Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology 62, 515–548.
  • IEA. (2008). World Energy Outlook 2008.
  • Im, C. S., and Grossman, A. R. (2002). Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. The Plant Journal 30, 301–313.
  • Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L.M.C.F., and Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification 48, 306–310.
  • Jiang, H.-B., Cheng, H.-M., Gao, K.-S., and Qiu, B.-S. (2013). Inactivation of Ca2+/H+ exchanger in Synechocystis sp. Strain PCC 6803 promotes cyanobacterial calcification by upregulating CO2 concentrating mechanisms. Applied and Environmental Microbiology 79, 4048–4055.
  • Jiang, H.-B., Song, W.-Y., Cheng, H.-M., and Qiu, B.-S. (2015). The hypothetical protein Ycf46 is involved in regulation of CO2 utilization in the cyanobacterium Synechocystis sp. PCC 6803. Planta 241, 145–155.
  • Kaplan, A., and Reinhold, L. (1999). CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Biology 50, 539–570.
  • Karlsson, J., Clarke, A. K., Chen, Z. Y., Hugghins, S. Y., Park, Y. I., Husic, H. D., Moroney, J. V., and Samuelsson, G. (1998). A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. The EMBO Journal 17, 1208–1216.
  • Kimpel, D. L., Togasaki, R. K., and Miyachi, S. (1983). Carbonic anhydrase in Chlamydomonas reinhardtii I. Localization. Plant and Cell Physiology 24, 255–259.
  • Kupriyanova, E., Villarejo, A., Markelova, A., Gerasimenko, L., Zavarzin, G., Samuelsson, G., Los, D. A., and Pronina, N. (2007). Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology 153, 1149–1156.
  • Kupriyanova, E. V., Cho, S. M., Park, Y.-I., Pronina, N. A., and Los, D. A. (2016). The complete genome of a cyanobacterium from a soda lake reveals the presence of the components of CO2-concentrating mechanism. Photosynthesis Research, 1–15 (doi:10.1007/s11120-016-0235-0).
  • Kupriyanova, E. V., Sinetova, M. A., Cho, S. M., Park, Y.-I., Los, D. A., and Pronina, N. A. (2013). CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. Photosynthesis Research 117, 133–146.
  • Kupriyanova, E. V., Sinetova, M. A., Markelova, A. G., Allakhverdiev, S. I., Los, D. A. and Pronina, N. A. (2011). Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. Journal of Photochemistry and Photobiology B: Biology, 103, 78–86.
  • Kustu, S., and Inwood, W. (2006). Biological gas channels for NH3 and CO2 : evidence that Rh (Rhesus) proteins are CO2 channels. Transfusion Clinique et Biologique 13, 103–110.
  • Ma, W., and Ogawa, T. (2015). Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 67, 3–8.
  • Maeda, S., Badger, M. R., and Price, G. D. (2002). Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Molecular Microbiology 43, 425–435.
  • Mangan, N. M., and Brenner, M. P. (2014). Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife 3, e02043.
  • Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., and Marchal-Drouard, L. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250.
  • Meyer, M., and Griffiths, H. (2013). Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. Journal of Experimental Botany 64, 769–786.
  • Mikhodyuk, O. S., Zavarzin, G. A., and Ivanovsky, R. N. (2008). Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp. Microbiology 77, 412–418.
  • Mitchell, M. C., Meyer, M. T., and Griffiths, H. (2014). Dynamics of carbon-concentrating mechanism induction and protein Relocalization during the dark-to-light transition in Synchronized Chlamydomonas reinhardtii. Plant Physiology 166, 1073–1082.
  • Mitra, M., Lato, S. M., Ynalvez, R. A., Xiao, Y., and Moroney, J. V. (2004). Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiology 135, 173–182.
  • Miura, K., Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F., Asamizu, E., Nakamura, Y., Tabata, S., and Yamato, K. T. (2004). Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiology 135, 1595–1607.
  • Moroney, J. V., Husic, H. D., and Tolbert, N. E. (1985). Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiology 79, 177–183.
  • Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., DiMario, R. J., Yang, J., and Mukherjee, B. (2011). The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research 109, 133–149.
  • Moroney, J. V., and Ynalvez, R. A. (2007). Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell 6, 1251–1259.
  • Nordhaus, W. D. (1991). Economic approaches to greenhouse warming. MIT Press, Cambridge MA, USA, 33–36.
  • Ohnishi, N., Mukherjee, B., Tsujikawa, T., Yanase, M., Nakano, H., Moroney, J. V., and Fukuzawa, H. (2010). Expression of a Low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. The Plant Cell Online 22, 3105–3117.
  • Omata, T., Gohta, S., Takahashi, Y., Harano, Y., and Maeda, S.-I. (2001). Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. Journal of Bacteriology 183, 1891–1898.
  • Omata, T., Price, G. D., Badger, M. R., Okamura, M., Gohta, S., and Ogawa, T. (1999). Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proceedings of the National Academy of Sciences 96, 13571–13576.
  • Palenik, B., Grimwood, J., Aerts, A., Rouzo, P., Salamov, A., Putnam, N., Dupont, C., Jorgensen, R., Derelle, E., and Rombauts, S. (2007). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences 104, 7705–7710.
  • Park, Y.-I., Karlsson, J., Rojdestvenski, I., Pronina, N., Klimov, V., Aquist, G., and Samuelsson, G. (1999). Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. FEBS Letters 444, 102–105.
  • Peers, G., and Niyogi, K. K. (2008). Pond scum genomics: The genomes of Chlamydomonas and Ostreococcus. The Plant Cell Online 20, 502–507.
  • Price, G. D. (2011). Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynthesis Research 109, 47–57.
  • Price, G. D., Badger, M. R., Woodger, F. J., and Long, B. M. (2008). Advances in understanding the cyanobacterial CO2−concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany 59, 1441–1461.
  • Price, G. D., Pengelly, J. J. L., Forster, B., Du, J., Whitney, S. M., von Caemmerer, S., Badger, M. R., Howitt, S. M., and Evans, J. R. (2013). The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. Journal of Experimental Botany 64, 753–768.
  • Price, G. D., Woodger, F. J., Badger, M. R., Howitt, S. M., and Tucker, L. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proceedings of the National Academy of Sciences 101, 18228–18233.
  • Pulz, O., and Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65, 635–648.
  • Qiu, H., Yoon, H. S., and Bhattacharya, D. (2013). Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes. Frontiers in Plant Science 4.
  • Rae, B. D., Long, B. M., Whitehead, L. F., Forster, B., Badger, M. R., and Price, G. D. (2013). Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. Journal of Molecular Microbiology and Biotechnology 23, 300–307.
  • Raven, J. A. (1997). CO2 concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant, Cell & Environment 20, 147–154.
  • Raven, J. A., Beardall, J., and Giordano, M. (2014). Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121, 111–124.
  • Raven, J. A., Johnston, A. M., Kaœbler, J. E., Korb, R., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., and Clayton, M. N. (2002). Seaweeds in cold seas: evolution and carbon acquisition. Annals of Botany 90, 525–536.
  • Rawat, M., and Moroney, J. V. (1995). The regulation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase activase by light and CO2 in Chlamydomonas reinhardtii. Plant Physiology 109, 937–944.
  • Riding, R. (2006). Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic Cambrian changes in atmospheric composition. Geobiology 4, 299–316.
  • Rocap, G., Distel, D. L., Waterbury, J. B., and Chisholm, S. W. (2002). Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology 68, 1180–1191.
  • Rolland, N., Dorne, A. J., Amoroso, G., Saltemeyer, D. F., Joyard, J., and Rochaix, J. D. (1997). Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. The EMBO Journal 16, 6713–6726.
  • Sandrini, G., Matthijs, H. C. P., Verspagen, J. M. H., Muyzer, G., and Huisman, J. (2014). Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. The ISME Journal 8, 589–600.
  • Sawaya, M. R., Cannon, G. C., Heinhorst, S., Tanaka, S., Williams, E. B., Yeates, T. O., and Kerfeld, C. A. (2006). The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. Journal of Biological Chemistry 281, 7546–7555.
  • Seckbach, J., and Oren, A. (2007). Oxygenic photosynthetic microorganisms in extreme environments algae and cyanobacteria in extreme environments (pp. 3–25). Springer International Publishing AG, Switzerland.
  • Seckbach, J., Oren, A., and Stan-Lotter, H. (2013). Polyextremophiles: life under multiple forms of stress. Springer International Publishing AG, Switzerland.
  • Shibata, M., Ohkawa, H., Kaneko, T., Fukuzawa, H., Tabata, S., Kaplan, A., and Ogawa, T. (2001). Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proceedings of the National Academy of Sciences 98, 11789–11794.
  • Shively, J. M., Ball, F., Brown, D. H., and Saunders, R. E. (1973). Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182, 584–586.
  • Singh, S. K., Bansal, A., Jha, M. K., and Dey, A. (2011). Comparative studies on uptake of wastewater nutrients by immobilized cells of chlorella minutissima and dairy waste isolated algae. Indian Chemical Engineer 53, 211–219.
  • Singh, S. K., Bansal, A., Jha, M. K., and Dey, A. (2012). An integrated approach to remove Cr (VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresource Technology 104, 257–265.
  • Singh, S. K., Rahman, A., Dixit, K., Nath, A., and Sundaram, S. (2016). Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation. Environmental Technology 37, 613–622.
  • Singh, S. K., Sundaram, S., and Kishor, K. (2014). Photosynthetic microorganism-based CO2 mitigation system: integrated approaches for global sustainability photosynthetic microorganisms (pp. 83–123). Springer International Publishing AG, Switzerland.
  • Skjanes, K., Lindblad, P., and Muller, J. (2007). Bio-CO2: a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering 24, 405–413.
  • So, A. K. C., Van Spall, H. G. C., Coleman, J. R., and Espie, G. S. (1998). Catalytic exchange of 18O from 13C18O-labelled CO2 by wild-type cells and ecaA, ecaB, and ccaA mutants of the cyanobacteria Synechococcus PCC7942 and Synechocystis PCC6803. Canadian Journal of Botany 76, 1153–1160.
  • Soltes-Rak, E., Mulligan, M. E., and Coleman, J. R. (1997). Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. Journal of Bacteriology 179, 769–774.
  • Soupene, E., Inwood, W., and Kustu, S. (2004). Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proceedings of the National Academy of Sciences of the United States of America 101, 7787–7792.
  • Spalding, M. H. (2008). Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. Journal of Experimental Botany 59, 1463–1473.
  • Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E., and Scott, S. S. (2008). Distinct form I, II, III, and IV RuBisCO proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. Journal of Experimental Botany 59, 1515–1524.
  • Tirumani, S., Kokkanti, M., Chaudhari, V., Shukla, M., and Rao, B. J. (2014). Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light-dark cycles in synchronous cultures. Plant Molecular Biology 85, 277–286.
  • Van, K., and Spalding, M. H. (1999). Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiology 120, 757–764.
  • Villand, P., Eriksson, M., and Samuelsson, G. (1997). Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Biochemical Journal 327, 51–57.
  • Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., Heimann, M., Miller, J., Peng, S., and Wang, T. (2014). A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215.
  • Wang, Y., and Spalding, M. H. (2006). An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 103, 10110–10115.
  • Whitehead, L., Long, B. M., Price, G. D., and Badger, M. R. (2014). Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. Plant Physiology 165, 398–411.
  • Wu, X., Wu, Z., and Song, L. (2011). Phenotype and temperature affect the affinity for dissolved inorganic carbon in a cyanobacterium Microcystis. Hydrobiologia 675, 175–186.
  • Xu, M., Bernat, G., Singh, A., Mi, H., Ragner, M., Pakrasi, H. B., and Ogawa, T. (2008). Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. Plant and Cell Physiology 49, 1672–1677.
  • Yamano, T., Asada, A., Sato, E., and Fukuzawa, H. (2014). Isolation and characterization of mutants defective in the localization of LCIB, an essential factor for the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Photosynthesis Research 121, 193–200.
  • Yamano, T., and Fukuzawa, H. (2009). Carbon concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Journal of Basic Microbiology 49, 42–51.
  • Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S.-I., Takahashi, Y., and Fukuzawa, H. (2010). Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant and Cell Physiology 51, 1453–1468.
  • Ynalvez, R. A., Xiao, Y., Ward, A. S., Cunnusamy, K., and Moroney, J. V. (2008). Identification and characterization of two closely related beta-carbonic anhydrases from Chlamydomonas reinhardtii. Physiologia Plantarum 133, 15–26.
  • Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y., and Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101, S71–S74.
  • Yu, J.-W., Price, G. D., Song, L., and Badger, M. R. (1992). Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiology 100, 794–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.