3,884
Views
202
CrossRef citations to date
0
Altmetric
Reviews

Peracids in water treatment: A critical review

&
Pages 1-39 | Published online: 24 Jan 2017

References

  • Klenk, H., Götz, P.H., Siegmeier, R., and Mayr, W. (2005). Organic peroxy compounds. Ullmann's encyclopedia of industrial chemistry. New York, NY: John Wiley & Sons.
  • D´Ans, J., and Frey, W. (1914). Untersuchungen Über Die Bildung Von Persäuren Aus Organischen Säuren Und Hydroperoxyd [Studies on the Formation of Peracids from Organic Acids and Peroxide]. Z. Anorg. Chem., 84, 145–164.
  • Swern, D. (1949). Organic peracids. Chem. Rev., 45, 1–68.
  • Freer, P.C., and Novy, F.G. (1902). On the formation, decomposition and germicidal action of benzoylacetyl and diacetyl peroxides. Am. Chem. J., 27, 6–92.
  • Meyer, E. (1976). Disinfection of sewage waters from rendering plants by means of peracetic acid. J. Hyg. Epidemiol. Microbiol. Immunol., 20, 266–273.
  • Gehr, R., Chen, D., and Moreau, M. (2009). Performic acid (PFA): Tests on an advanced primary effluent show promising disinfection performance. Water Sci. Technol., 59, 89–96.
  • Baldry, M.G.C. (1983). The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J. Appl. Bacteriol., 54, 417–423.
  • Baldry, M.G.C., and Fraser, J.A.L. (1988). Disinfection with peroxides. In K.R. Payner (Ed.), Industrial biocides (pp. 91–116). New York, NY: Wiley.
  • Baldry, M.G.C., and French, M.S. (1989). Disinfection of sewage effluent with peracetic acid. Water Sci. Technol., 21, 203–206.
  • Baldry, M.G.C., and French, M.S. (1989). Activity of peracetic acid against sewage indicator organisms. Water Sci. Technol., 21, 1747–1749.
  • Baldry, M.G.C., French, M.S., and Slater, D. (1991). The activity of peracetic acid on sewage indicator bacteria and viruses. Water Sci. Technol., 24, 353–357.
  • Tchobanoglous, G., Burton, F.L., and Stensel, H.D. (2004). Wastewater engineering treatment and reuse (pp. 1220). New York, NY: McGraw-Hill.
  • Giguere, P., and Olmos, A. (1952). Chemist loses hand in performic acid explosion. Chem. Eng. News., 30, 3041.
  • Wang, Y.W., Liao, M.S., and Shu, C.M. (2015). Thermal hazards of a green antimicrobial peracetic acid combining DSC calorimeter with thermal analysis equations. J. Therm. Anal. Calor., 119, 2257–2267.
  • Bach, R.D., Ayala, P.Y., and Schlegel, H.B. (1996). A reassessment of the bond dissociation energies of peroxides an Ab initio study. J. Am. Chem. Soc., 118, 12758–12765.
  • Luukkonen, T., Heyninck, T., Rämö, J., and Lassi, U. (2015). Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion. Water Res., 85, 275–285.
  • ECHA (2015). Assessment report, peracetic acid, regulation (EU) no 528/2012 concerning the making available on the market and use of biocidal products, evaluation of active substances. Finland: European Chemicals Agency.
  • NRC (National Research Council) (2010). Acute exposure guideline levels for selected airborne chemicals (vol. 8). Washington, DC: National Academies Press.
  • Cristofari-Marquand, E., Kacel, M., Milhe, F., Magnan, A., and Lehucher–Michel, M. (2007). Asthma caused by peracetic acid-hydrogen peroxide mixture. J. Occup. Health., 49, 155–158.
  • MarketsandMarkets (2014). Peracetic acid market by type (disinfectant, sanitizer, sterilant, & others), by application (healthcare, food, water treatment, pulp & paper, & others), by geography (North America, Europe, Asia–Pacific, & ROW)—Global Trends & Forecasts to 2018. CH 2597.
  • Orth, R. (1998). The importance of disinfection for the hygiene in the dairy and beverage production. Int. Biodeterior. Biodegrad., 41, 201–208.
  • Banach, J.L., Sampers, I., Van Haute, S., and van der Fels-Klerx, H. (2015). Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int. J. Environ. Res. Public Health, 12, 8658–8677.
  • Heinonen-Tanski, H., and Miettinen, H. (2010). Performic acid as a potential disinfectant at low temperature. J. Food Process Eng., 33, 1159–1172.
  • Chenjiao, W., Hongyan, Z., Qing, G., Xiaoqi, Z., Liying, G., and Ying, F. (2016). In-use evaluation of peracetic acid for high-level disinfection of endoscopes. Gastroenterol. Nurs., 39, 116–120.
  • Boyce, J.M. (2016). Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control., 5, 1–10.
  • Kaur, N., and Kishore, D. (2014). Peroxy acids: Role in organic synthesis. Synth. Commun., 44, 721–747.
  • Ripin, D.H.B., Weisenburger, G.A., am Ende, D.J., Bill, D.R., Clifford, P.J., Meltz, C.N., and Phillips, J.E. (2007). Execution of a performic acid oxidation on multikilogram scale. Org. Process Res. Dev., 11, 762–765.
  • Germgård, U. (2009). Production of bleaching chemicals at the mill. In M. Ek, G. Gellerstedt, and G. Henriksson (Eds.). Pulping Chemistry and Technology, Vol. 2 ( Chapter 11, pp. 277–297). Berlin: Walter de Gruyter.
  • Kiuru, J. (2011). Interactions of chemical variations and biocide performance at paper machines (pp. 46). Ph.D. Thesis. Aalto University, Helsinki, Finland.
  • Atkinson, J., Ekman, J., and Rintala, J. (2014). FennoClean PFA: Revolutionary microbe control. Int. Paperworld, 1–2, 28–29.
  • Jakara, J., Paren, A., Hukkanen, P., and Autio, P. (2000). Effect of peracetic acid in fine paper production. 54th APPITA Annual General Conference, Melbourne, Australia (April 3–April 6, 2000).
  • Kitis, M. (2004). Disinfection of wastewater with peracetic acid: A review. Environ. Int., 30, 47–55.
  • Leveneur, S., Thönes, M., Hébert, J., Taouk, B., and Salmi, T. (2012). From kinetic study to thermal safety assessment: Application to peroxyformic acid synthesis. Ind. Eng. Chem. Res., 51, 13999–14007.
  • Ragazzo, P., Chiucchini, N., Piccolo, V., and Ostoich, M. (2013). A new disinfection system for wastewater treatment: Performic acid full–scale trial evaluations. Water Sci. Technol., 67, 2476–2487.
  • Tondera, K., Klaer, K., Koch, C., Hamza, I.A., and Pinnekamp, J. (2016). Reducing pathogens in combined sewer overflows using performic acid. Int. J. Hyg. Environ. Health, 219, 700–708.
  • Zhao, X., Zhang, T., Zhou, Y., and Liu, D. (2007). Preparation of peracetic acid from hydrogen peroxide: Part I: Kinetics for peracetic acid synthesis and hydrolysis. J. Mol. Catal. A: Chem., 271, 246–252.
  • Xiaoying, S., Xuebing, Z., Wei, D., and Dehua, L. (2011). Kinetics of formic acid-autocatalyzed preparation of performic acid in aqueous phase. Chin. J. Chem. Eng., 19, 964–971.
  • Rubio, M., Ramirez–Galicia, G., and López-Nava, L.J. (2005). Mechanism formation of peracids. J. Mol. Struct. Theochem., 726, 261–269.
  • Filippis, P.D., Scarsella, M., and Verdone, N. (2008). Peroxyformic acid formation: A kinetic study. Ind. Eng. Chem. Res., 48, 1372–1375.
  • Leveneur, S., Salmi, T., Murzin, D.Y., Estel, L., Wärnå, J., and Musakka, N. (2008). Kinetic study and modeling of peroxypropionic acid synthesis from propionic acid and hydrogen peroxide using homogeneous catalysts. Ind. Eng. Chem. Res., 47, 656–664.
  • Dul'neva, L.V., and Moskvin, A.V. (2005). Kinetics of formation of peroxyacetic acid. Russ. J. Gen. Chem., 75, 1125–1130.
  • Jankovic, M., and Sinadinovic–Fišer, S. (2005). Prediction of the chemical equilibrium constant for peracetic acid formation by hydrogen peroxide. J. Am. Oil. Chem. Soc., 82, 301–303.
  • Mattila, T., and Aksela, R. (2000). Method for the preparation of aqueous solutions containing performic acid as well as their use. U.S. Patent 6,049,002.
  • Yousefzadeh, S., Nabizadeh, R., Mesdaghinia, A., Nasseri, S., Hezarkhani, P., Beikzadeh, M., and Valadi Amin, M. (2014). Evaluation of disinfection efficacy of performic acid (PFA) catalyzed by sulfuric and ascorbic acids tested on Escherichia coli (ATCC, 8739). Desalin. Water Treat., 52, 3280–3289.
  • Jolhe, P.D., Bhanvase, B.A., Patil, V.S., and Sonawane, S.H. (2015). Sonochemical synthesis of peracetic acid in a continuous flow micro–structured reactor. Chem. Eng. J., 276, 91–96.
  • Musante, R.L., Grau, R.J., and Baltanás, M.A. (2000). Kinetic of liquid-phase reactions catalyzed by acidic resins: The formation of peracetic acid for vegetable oil epoxidation. Appl. Catal. A Gen., 197, 165–173.
  • Schirmann, J. (1982). Preparation of percarboxylic acids. U.S. Patent 4,330,485.
  • Phillips, B., Starcher, P.S., and Ash, B.D. (1958). Preparation of aliphatic peroxyacids. J. Org. Chem., 23, 1823–1826.
  • Gunter, L., Heinrich, R., and Kurt, S. (1969). Process for stabilizing solutions of aliphatic percarboxylic acids. U.S. Patent 3,442,937.
  • Block, S.S. (1991). Peroxygen compounds. In S.S. Block (Ed.), Disinfection, sterilization and preservation (pp. 185–201). Philadelphia, PA: Lea & Febiger.
  • Ebrahimi, F., Kolehmainen, E., Laari, A., Haario, H., Semenov, D., and Turunen, I. (2012). Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling. Chem. Eng. Sci., 71, 531–538.
  • Ebrahimi, F., Kolehmainen, and Turunen, I. (2012). Heterogeneously catalyzed synthesis of performic acid in a microstructured reactor. Chem. Eng. J., 179, 312–317.
  • Ebrahimi, F., Kolehmainen, E., Oinas, P., Hietapelto, V., and Turunen, I. (2011). Production of unstable percarboxylic acids in a microstructured reactor. Chem. Eng. J., 167, 713–717.
  • Ebrahimi, F. (2012). Synthesis of percarboxylic acids in microreactor (pp. 15–16). Ph.D. Thesis. Lappeenranta University of Technology, Lappeenranta, Finland.
  • Ebrahimi, F., Kolehmainen, and Turunen, I. (2009). Safety advantages of on-site microprocesses. Org. Process Res. Dev., 13, 965–969.
  • Kawasaki, M., Morita, T., and Tachibana, K. (2015). Facile carbon fixation to performic acids by water–sealed dielectric barrier discharge. Sci. Rep. 5, 14737.
  • Kawasaki, M., Nakamura, T., Morita, T., and Tachibana, K. (2016). Catalyst‐free one‐pot plasma chemical conversion of carbon dioxide to performic acid by water‐sealed dielectric barrier discharge. Plasma Process. Polym., 13, 1612–8869.
  • d'Ans, J., and Frey, W. (1912). Direkte Darstellung Organischer Persäuren [Direct Representation of Organic Peracids]. Ber. Dtsch. Chem. Ges., 45, 1845–1853.
  • Greenspan, F.P., and Mackellar, D.G. (1948). Analysis of aliphatic per acids. Anal. Chem., 20, 1061–1063.
  • Sully, B.D., and Williams, P.L. (1962). The analysis of solutions of per-acids and hydrogen peroxide. Analyst, 87, 653–657.
  • Falsanisi, D., Gehr, R., Santoro, D., Dell'Erba, A., Notarnicola, M., and Liberti, L. (2006). Kinetics of PAA demand and its implications on disinfection of wastewaters. Water Qual. Res. J. Can., 41, 398–409.
  • Sode, F. (2014). Simultaneous determination of peracetic acid and acetic acid by titration with NaOH. Anal. Methods, 6, 2406–2409.
  • Cavallini, G.S., Campos, S.X.d., Souza, J.B.d., and Vidal, M.d.S. (2013). Comparison of methodologies for determination of residual peracetic acid in wastewater disinfection. Int. J. Environ. Anal. Chem., 93, 906–918.
  • Binder, W., and Menger, F. (2000). Assay of peracid in the presence of excess hydrogen peroxide. Anal. Lett., 3, 479–488.
  • Davies, D.M., and Deary, M.E. (1988). Determination of peracids in the presence of a large excess of hydrogen peroxide using a rapid and convenient spectrophotometric method. Analyst, 113, 1477–1479.
  • Furia, F.D., Prato, M., Scorrano, G., and Stivanello, M. (1988). Gas-liquid chromatographic method for the determination of peracids in the presence of a large excess of hydrogen peroxide. Part 2. Determination in alkaline solutions. Analyst, 113, 793–795.
  • Furia, F.D., Prato, M., Quintily, U., Salvagno, S., and Scorrano, G. (1984). Gas-liquid chromatographic method for the determination of peracids in the presence of a large excess of hydrogen peroxide. Analyst, 109, 985–987.
  • Cairns, G., Diaz, R.R., Selby, K., and Waddington, D. (1975). Determination of organic peroxyacids and hydroperoxides by gas chromatography. J. Chromatogr. A., 103, 381–384.
  • Kirk, O., Damhus, T., and Christensen, M.W. (1992). Determination of peroxycarboxylic acids by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A., 606, 49–53.
  • Pinkernella, U., Effkemann, S., Nitzsche, F., and Karst, U. (1996). Rapid high-performance liquid chromatographic method for the determination of peroxyacetic acid. J. Chromatogr. A., 730, 203–208.
  • Pinkernell, U., Karst, U., and Cammann, K. (1994). Determination of peroxyacetic acid using high-performance liquid chromatography with external calibration. Anal. Chem., 66, 2599–2602.
  • Awad, M.I., and Ohsaka, T. (2003). Potentiometric analysis of peroxyacetic acid in the presence of a large excess of hydrogen peroxide. J. Electroanal. Chem., 544, 35–40.
  • Awad, M.I., Oritani, T., and Ohsaka, T. (2003). Simultaneous potentiometric determination of peracetic acid and hydrogen peroxide. Anal. Chem., 75, 2688–2693.
  • Hua, M., Chen, H., Tsai, R., and Lin, Y. (2011). A novel amperometric sensor for peracetic acid based on a polybenzimidazole-modified gold electrode. Electrochim. Acta., 56, 4618–4623.
  • Toniolo, R., Pizzariello, A., Susmel, S., Dossi, N., and Bontempelli, G. (2006). Simultaneous detection of peracetic acid and hydrogen peroxide by amperometry at Pt and Au electrodes. Electroanalysis, 18, 2079–2084.
  • PeroxyChem (2014). Measurement of VigorOx® WWT II peracetic acid in wastewater. Wastewater Disinfection Forum, No 5, December 2014.
  • Sanz, V., De Marcos, S., and Galbán, J. (2007). Hydrogen peroxide and peracetic acid determination in waste water using a reversible reagentless biosensor. Anal. Chim. Acta., 583, 332–339.
  • Shi, H., and Li, Y. (2007). Formation of nitroxide radicals from secondary amines and peracids: A peroxyl radical oxidation pathway derived from electron spin resonance detection and density functional theory calculation. J. Mol. Catal. A: Chem., 271, 32–41.
  • Rothbart, S., Ember, E.E., and Van Eldik, R. (2012). Mechanistic studies on the oxidative degradation of orange II by peracetic acid catalyzed by simple Manganese(Ii) salts. Tuning the lifetime of the catalyst. New J. Chem., 36, 732–748.
  • Rokhina, E.V., Makarova, K., Golovina, E.A., Van As, H., and Virkutyte, J. (2010). Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: Spectroscopic study and quantum chemistry calculations. Environ. Sci. Technol., 44, 6815–6821.
  • Bianchini, R., Calucci, L., Lubello, C., and Pinzino, C. (2002). Intermediate free radicals in the oxidation of wastewaters. Res. Chem. Intermediat., 28, 247–256.
  • Bianchini, R., Calucci, L., Caretti, C., Lubello, C., Pinzino, C., and Piscicelli, M. (2002). An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation. Ann. Chim., 92, 783–793.
  • Heywood, D., Phillips, B., and Stansbury, H. (1961). Free radical hydroxylations with peracetic acid. J. Org. Chem., 26, 281–281.
  • Zhou, F., Lu, C., Yao, Y., Sun, L., Gong, F., Li, D., Pei, K., Lu, W., and Chen, W. (2015). Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: Implications for the removal of organic pollutants. Chem. Eng. J., 281, 953–960.
  • Flores, M.J., Lescano, M.R., Brandi, R.J., Cassano, A.E., and Labas, M.D. (2014). A novel approach to explain the inactivation mechanism of Escherichia coli employing a commercially available peracetic acid. Water Sci. Technol., 69, 358–363.
  • Block, S.S. (Ed.) (2001). Disinfection, sterilization, and preservation. Philadelphia, PA: Lippincott Williams & Wilkins.
  • Clapp, P.A., Davies, M.J., French, M.S., and Gilbert, B.C. (1994). The bactericidal action of peroxides; an EPR spin–trapping study. Free Radic. Res., 21, 147–167.
  • Koivunen, J., and Heinonen–Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res., 39, 1519–1526.
  • Marjani, A., Golalipour, M.J., and Gharravi, A.M. (2010). The effects of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in wistar rats. Oman Med. J., 25, 256–260.
  • Kerkaert, B., Mestdagh, F., Cucu, T., Aedo, P.R., Ling, S.Y., and De Meulenaer, V (2011). Hypochlorous and peracetic acid induced oxidation of dairy proteins. J. Agric. Food Chem., 59, 907–914.
  • Fraser, J.A.L., Godfree, A.F., and Jones, F. (1984). Use of peracetic acid in operational sewage sludge disposal to pasture. Water Sci. Tech., 17, 451–466.
  • Lazarova, V., Janex, M.L., Fiksdal, L., Oberg, C., Barcina, I., and Pommepuy, M. (1998). Advanced wastewater disinfection technologies: Short and long term efficiency. Water Sci. Technol., 38, 109–117.
  • Greenspan, F.P., and Margulis, P.H. (1950). Treatment of raw plant tissue. U.S. Patent 2,512,640.
  • Antonelli, M., Rossi, S., Mezzanotte, V., and Nurizzo, C. (2006). Secondary effluent disinfection: PAA long term efficiency. Environ. Sci. Technol., 40, 4771–4775.
  • Mattle, M.J., Crouzy, B., Brennecke, M., Wigginton, K. R., Perona, P., and Kohn, T. (2011). Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants. Environ. Sci. Technol., 45, 7710–7717.
  • Holzhauer, F.W., Johnson, D.J., and McAninch, T. (1997). Waste water treatment with peracid compositions. U.S. Patent 5,647,997.
  • Zabicky, J. (2009). Analytical and safety aspects of organic peroxides and related functional groups. In Z. Rappoport (Ed.), The chemistry of peroxides (pp. 597–776), Vol. 2. Chichester: John Wiley & Sons.
  • Sagripanti, J.L., and Bonifacino, A. (1996). Comparative sporicidal effects of liquid chemical agents. Appl. Environ. Microbiol., 62, 545–551.
  • Wagner, M., Brumelis, D., and Gehr, R. (2002). Disinfection of wastewater by hydrogen peroxide or peracetic acid: Development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environ. Res., 74, 33–50.
  • Ksibi, M. (2006). Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J., 119, 161–165.
  • Howarth, J. (2003). Decay kinetics of peroxyacetic acid (PAA) and hydrogen peroxide (Perasan, EPA #63838–2) in a variety of water matrices. Modesto, CA: Enviro Tech Chemical Services.
  • Sanchez–Ruiz, C., Martinez–Royano, S., and Tejero–Monzon, I. (1995). An evaluation of the efficiency and impact of raw wastewater disinfection with peracetic acid prior to ocean discharge. Water Sci. Technol., 32, 159–166.
  • Kunigk, L., Gomes, D.R., Forte, F., Vidal, K.P., Gomes, L.F., and Sousa, P.F. (2001). The influence of temperature on the decomposition kinetics of peracetic acid in solutions. Brazil. J. Chem. Eng., 18, 217–220.
  • Liu, D., Steinberg, C.E., Straus, D.L., Pedersen, L., and Meinelt, T. (2014). Salinity, dissolved organic carbon and water hardness affect peracetic acid (PAA) degradation in aqueous solutions. Aquacult. Eng., 60, 35–40.
  • Pedersen, L., Meinelt, T., and Straus, D.L. (2013). Peracetic acid degradation in freshwater aquaculture systems and possible practical implications. Aquacult. Eng., 53, 65–71.
  • Yuan, Z., Ni, Y., and Van Heiningen, A. (1997). Kinetics of peracetic acid decomposition: Part I: Spontaneous decomposition at typical pulp bleaching conditions. Can. J. Chem. Eng., 75, 37–41.
  • Yuan, Z., Ni, Y., and Van Heiningen, A. (1997). Kinetics of the peracetic acid decomposition: Part II: pH effect and alkaline hydrolysis. Can. J. Chem. Eng., 75, 42–47.
  • Koubek, E. (1964). The nature of the rhenide ion; the kinetics and the mechanism of the decomposition of aliphatic peroxyacids in aqueous solutions. Ph.D. Thesis. Brown University, Providence, RI.
  • Zhao, X., Cheng, K., Hao, J., and Liu, D. (2008). Preparation of peracetic acid from hydrogen peroxide, Part II: kinetics for spontaneous decomposition of peracetic acid in the liquid phase. J. Mol. Catal. A: Chem., 284, 58–68.
  • Popov, E., Eloranta, J., Hietapelto, V., Vuorenpalo, V., Aksela, R., and Jäkärä, J. (2005). Mechanism of decomposition of peracetic acid by manganese ions and diethylenetriaminepentaacetic acid (DTPA). Holzforschung, 59, 507–513.
  • Zhang, X.Z., Francis, R.C., Dutton, D.B., and Hill, R.T. (1998). Decomposition of peracetic acid catalyzed by Cobalt(II) and Vanadium(V). Can. J. Chem., 76, 1064–1069.
  • Cavallini, G.S., Campos, S.X.d., Souza, J.B.d and Vidal, C.M.d.S. (2013). Evaluation of the physical-chemical characteristics of wastewater after disinfection with peracetic acid. Water Air Soil Pollut., 224, 1752–1755.
  • Rossi, S., Antonelli, M., Mezzanotte, V., and Nurizzo, C. (2007). Peracetic acid disinfection: A feasible alternative to wastewater chlorination. Water Environ. Res., 79, 341–350.
  • Pedersen, L.F., Pedersen, P.B., Nielsen, J.L., and Nielsen, P.H. (2009). Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. Aquaculture, 296, 246–254.
  • Dell'Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M., and Santoro, D. (2004). Disinfecting behaviour of peracetic acid for municipal wastewater reuse. Desalination, 168, 435–442.
  • Luukkonen, T. (2016). New adsorption and oxidation-based approaches for water and wastewater treatment (pp. 77). Ph.D. Thesis., University of Oulu, Oulu, Finland.
  • Freese, S.D., Nozaic, D.J, Bailey, I., and Trollip, D. (2002). Alternative disinfectants for wastewater effluents: Viable or prohibitively expensive? Water SA, 29, 23–32.
  • Freese, S.D., and Nozaic, D.J. (2004). Chlorine: Is it really so bad and what are the alternatives? Water SA, 30, 18–24.
  • Veschetti, E., Cutilli, D., Bonadonna, L., Briancesco, R., Martini, C., Cecchini, G., Anastasi, P., and Ottaviani, M. (2003). Pilot-plant comparative study of peracetic acid and sodium hypochlorite wastewater disinfection. Water Res., 37, 78–94.
  • Monarca, S., Zani, C., Richardson, S.D., Thruston, A.D., Moretti, M., Feretti, D., and Villarini, M. (2004). A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Res., 38, 3809–3819.
  • Briancesco, R., Veschetti, E., Ottaviani, M., and Bonadonna, L. (2005). Peracetic acid and sodium hypochlorite effectiveness in reducing resistant stages of microorganisms. Cent. Eur. J. Public Health, 13, 159–162.
  • Verween, A., Vincx, M., and Degraer, S. (2009). Comparative toxicity of chlorine and peracetic acid in the biofouling control of Mytilopsis Leucophaeata and Dreissena Polymorpha embryos (Mollusca, Bivalvia). Int. Biodeterior. Biodegrad., 63, 523–528.
  • Baldry, M.G.C., Cavadore, A., French, M.S., Massa, G., Rodrigues, L.M., Schirch, P.F.T., and Threadgold, T.L. (1995). Effluent disinfection in warm climates with peracetic acid. Water Sci. Technol., 31, 161–164.
  • Mezzanotte, V., Antonelli, M., Citterio, S., and Nurizzo, C. (2007). Wastewater disinfection alternatives: Chlorine, ozone, peracetic acid, and UV light. Water Environ. Res., 79, 2373–2379.
  • Gehr, R., Wagner, M., Veerasubramanian, P., and Payment, P. (2003). Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res., 37, 4573–4586.
  • Salgot, M., Folch, M., Huertas, E., Tapias, J., Avellaneda, D., Girós, G., Brissaud, F., Vergés, C., Molina, J., and Pigem, J. (2002). Comparison of different advanced disinfection systems for wastewater reclamation. Water Sci. Technol. Water Supply, 2, 213–218.
  • Liberti, L., and Notarnicola, M. (1999). Advanced treatment and disinfection for municipal wastewater reuse in agriculture. Water Sci. Technol., 40, 235–245.
  • Julio, F.R., Hilario, T., Mabel, V.M., Raymundo, L.C., Arturo, L., and Neftalí, R.M. (2015). Disinfection of an advanced primary effluent using peracetic acid or ultraviolet radiation for its reuse in public services. J. Water Health, 13, 118–124.
  • Hijnen, W.A.M., Beerendonk, E.F., and Medema, G.J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (Oo)cysts in water: A review. Water Res., 40, 3–22.
  • Stampi, S., De Luca, G., Onorato, M., Ambrogiani, E., and Zanetti, F. (2002). Peracetic acid as an alternative wastewater disinfectant to chlorine dioxide. J. Appl. Microbiol., 93, 725–731.
  • De Luca, G., Sacchetti, R., Zanetti, F., and Leoni, E. (2008). Comparative study on the efficiency of peracetic acid and chlorine dioxide at low doses in the disinfection of urban wastewaters. Ann. Agric. Environ. Med., 15, 217–224.
  • Chang, C., Hsieh, Y., Hsu, S., Hu, P., and Wang, K. (2000). The formation of disinfection by-products in water treated with chlorine dioxide. J. Hazard. Mater., 79, 89–102.
  • Sample, D.J., Rangarajan, S., Lee, J., Manguerra, H., and Boone, M. (2014). Urban wet-weather flows. Water Environ. Res., 86, 910–991.
  • U.S. EPA (1999). Combined sewer overflow technology fact sheet: Alternative disinfection methods. EPA 832–F–99–033. Cincinnati, OH: U.S. Environmental Protection Agency.
  • Chhetri, R.K., Bonnerup, A., and Andersen, H.R. (2016). Combined sewer overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection. J. Ind. Eng. Chem., 37, 372–379.
  • Chhetri, R.K., Thornberg, D., Berner, J., Gramstad, R., Öjstedt, U., Sharma, A.K. and Andersen, H.R. (2014). chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids. Sci. Total Environ., 490, 1065–1072.
  • Chhetri, R.K., Flagstad, R., Munch, E.S., Hørning, C., Berner, J., Kolte–Olsen, A., Thornberg, D., and Andersen, H.R. (2015). Full scale evaluation of combined sewer overflows disinfection using performic acid in a sea-outfall pipe. Chem. Eng. J., 270, 133–139.
  • Koivunen, J., and Heinonen–Tanski, H. (2005). Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters. Water Res., 39, 4445–4453.
  • Zanetti, F., De Luca, G., Sacchetti, R., and Stampi, S. (2007). Disinfection efficiency of peracetic acid (PAA): Inactivation of coliphages and bacterial indicators in a municipal wastewater plant. Environ. Technol., 28, 1265–1271.
  • Park, E., Lee, C., Bisesi, M., and Lee, J. (2014). Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods. J. Water Health, 12, 13–23.
  • Karpova, T., Pekonen, P., Gramstad, R., Öjstedt, U., Laborda, S., Heinonen–Tanski, H., Chávez, A., and Jiménez, B. (2013). Performic acid for advanced wastewater disinfection. Water Sci. Technol., 68, 2090–2096.
  • Pradhan, S.K., Kauppinen, A., Martikainen, K., Pitkänen, T., Kusnetsov, J., Miettinen, I.T., Pessi, M., Poutiainen, H., and Heinonen–Tanski, H. (2013). Microbial reduction in wastewater treatment using Fe3+ and Al3+ coagulants and PAA disinfectant. J. Water Health, 11, 581–589.
  • De Sanctis, M., Del Moro, G., Levantesi, C., Luprano, M.L., and Di Iaconi, C. (2016). Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse. Sci. Total Environ., 543, 206–213.
  • Luprano, M.L., De Sanctis, M., Del Moro, G., Di Iaconi, C., Lopez, A., and Levantesi, C. (2016). Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. Sci. Total Environ., 571, 809–818.
  • Gehr, R., and Cochrane, D. (2002). Peracetic acid (PAA) as a disinfectant for municipal wastewaters: Encouraging performance results from physicochemical as well as biological effluents. Proceedings of the Water Environment Federation, Disinfection (pp. 182–198). Alexandria, VA: Water Environment Federation.
  • Collivignarelli, C., Bertanza, G., and Pedrazzani, R. (2000). A comparison among different wastewater disinfection systems: Experimental results. Environ. Technol., 21, 1–16.
  • Stampi, S., De Luca, G., and Zanetti, F. (2001). Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents. J. Appl. Microbiol., 91, 833–838.
  • Santoro, D., Gehr, R., Bartrand, T.A., Liberti, L., Notarnicola, M., Dell'Erba, A., Falsanisi, D., and Haas, C.N. (2007). Wastewater disinfection by peracetic acid: Assessment of models for tracking residual measurements and inactivation. Water Environ. Res., 79, 775–787.
  • Morris, R. (1993). Reduction of microbial levels in sewage effluents using chlorine and peracetic acid disinfectants. Water Sci. Technol., 27, 387–393.
  • Lefevre, F., Audic, J.M., and Ferrand, F. (1992). Peracetic acid disinfection of secondary effluents discharged off coastal seawater. Water Sci. Technol., 25, 155–164.
  • Poffe, R., de Burggrave, A., Houtmeyers, J., and Verachtert, H. (1978). Disinfection of effluents from municipal sewage treatment plants with peroxy acids. Zentralbl. Bakteriol. B., 167, 337–346.
  • Luukkonen, T., Teeriniemi, J., Prokkola, H., Rämö, J., and Lassi, U. (2014). Chemical aspects of peracetic acid based wastewater disinfection. Water SA, 40, 73–80.
  • Liberti, L., Lopez, A., Notarnicola, M., Barnea, N., Pedahzur, R., and Fattal, B. (2000). Comparison of advanced disinfecting methods for municipal wastewater reuse in agriculture. Water Sci. Technol., 42, 215–220.
  • Liberti, L., Lopez, A., and Notarnicola, M. (1999). Disinfection with peracetic acid for domestic sewage re-use in agriculture. J. Chart. Inst. Water Environ. Manage., 13, 262–269.
  • Gregor, C.H. (1990). Process for treatment of clarification sludge. U.S. Patent 4,966,706.
  • Fraser, J. (1987). Novel applications of peracetic acid in industrial disinfection. Specialty Chem. 7, 178.
  • Appels, L., Assche, A.V., Willems, K., Degrève, J., Impe, J.V., and Dewil, R. (2011). Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol., 102, 4124–4130.
  • Zhang, W., Cao, B., Wang, D., Ma, T., Xia, H., and Yu, D. (2016). Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res., 88, 728–739.
  • Colgan, S., and Gehr, R. (2001). Disinfection. Peracetic acid gains favor as an effective, environmentally benign disinfection alternative for municipal wastewater treatment applications. Water Environ. Technol., 13, 29–33.
  • Bonanni, E.A. (1998). The addition of chemicals to liquid to control odors. In: H.J. Rafson (Ed.), Odors and VOC control handbook ( Chapter 8, pp. 8.2–8.17). New York, NY: McGraw-Hill.
  • Vinnerås, B., Holmqvist, A., Bagge, E., Albihn, A., and Jönsson, H. (2003). The potential for disinfection of separated faecal matter by urea and by peracetic acid for hygienic nutrient recycling. Bioresour. Technol., 89, 155–161.
  • D.J. Flynn (ed.) (2009). The NALCO water handbook (3rd ed., pp. 21.21). New York, NY: McGraw-Hill.
  • Saby, S., Vidal, A., and Suty, H. (2005). Resistance of legionella to disinfection in hot water distribution systems. Water Sci. Technol., 52, 15–28.
  • Ditommaso, S., Biasin, C., Giacomuzzi, M., Zotti, C.M., Cavanna, A., and Moiraghi, A.R. (2005). Peracetic acid in the disinfection of a hospital water system contaminated with legionella species. Infect. Control Hosp. Epidemiol., 26, 490–493.
  • Farhat, M., Trouilhé, M.C., Forêt, C., Hater, W., Moletta–Denat, M., Robine, E. and Frère, J. (2011). Chemical disinfection of legionella in hot water systems biofilm: A pilot–scale 1 study. Water Sci. Technol., 64, 708–714.
  • Vance, F.W., Ekman, J., and Hesampour, M. (2013). New solution for controlling of organic and biofouling in high pressure membrane applications. 9659-DP1204. AMTA/AWWA Membrane Technology Conference and Exposition, San Antonio, TX.
  • Regula, C., Carretier, E., Wyart, Y., Gésan–Guiziou, G., Vincent, A., Boudot, D., and Moulin, P. (2014). Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res., 56, 325–365.
  • Van der Kooij, D., Vrouwenvelder, H.S., and Veenendaal, H.R. (1995). Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Sci. Technol., 32, 61–65.
  • Nurizzo, C., Antonelli, M., Profaizer, M., and Romele, L. (2005). By-products in surface and reclaimed water disinfected with various agents. Desalination, 176, 241–253.
  • Monarca, S., Richardson, S.D., Feretti, D., Grottolo, M., Thruston Jr., A.D., Zani, C., Navazio, G., Ragazzo, P., Zerbini, I., and Alberti, A. (2002). Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ. Toxicol. Chem., 21, 309–318.
  • Veschetti, E., Maresca, D., Ferretti, E., Lucentini, L., and Ottaviani, M. (2010). Threshold flavor and odor concentrations of raw waters treated with peracetic acid or sodium hypochlorite. Toxicol. Environ. Chem., 92, 537–548.
  • Bailey, M.M., Cooper, W.J., and Grant, S.B. (2011). In situ disinfection of sewage contaminated shallow groundwater: A feasibility study. Water Res., 45, 2011, 5641–5653.
  • Trujillo, J., Barrios, J., and Jimenez, B. (2008). Effect of peracetic acid, ultraviolet radiation, nanofiltration–chlorine in the disinfection of a non conventional source of water (Tula Valley). Water Sci. Technol., 57, 621–627.
  • Takahashi, C.K., Lourenço, N.G.G.S., Lopes, T.F., Rall, V.L.M., and Lopes, C.A.M. (2008). Ballast water: A review of the impact on the world public health. J. Venom. Anim. Toxins Incl. Trop. Dis., 14, 393–408.
  • Tsolaki, E., and Diamadopoulos, E. (2010). Technologies for ballast water treatment: A review. J. Chem. Technol. Biotechnol., 85, 19–32.
  • Veldhuis, M.J.W., Fuhr, F., Boon, J.P., and ten Hallers–Tjabbers, C.C. (2006). Treatment of ballast water; How to test a system with a modular concept? Environ. Technol., 27, 909–921.
  • La Carbona, S., Viitasalo–Frösen, S., Masson, D., Sassi, J., Pineau, S., Lehtiniemi, M., and Corroler, D. (2010). Efficacy and environmental acceptability of two ballast water treatment chemicals and an alkylamine based–biocide. Sci. Total Environ., 409, 247–255.
  • Shah, A.D., Liu, Z., Salhi, E., Höfer, T., and von Gunten, U. (2015). Peracetic acid oxidation of saline waters in the absence and presence of H2O2: Secondary oxidant and disinfection byproduct formation. Environ. Sci. Technol., 49, 1698–1705.
  • Hom, L.W. (1972). Kinetics of chlorine disinfection in an ecosystem. J. Sanit. Eng. Div., 98, 183–194.
  • Profaizer, M. (1998). Aspetti Modellistici e Tecniche Alternative Nella Disinfezione Di Acque Potabili: L'acido Peracetico [Modeling Aspects and Alternative Technologies for the Disinfection of Drinking Water: Peracetic Acid]. Ph.D. Thesis., Politecnico di Milano, Milano, Italy.
  • Gyürék, L.L., and Finch, G.R. (1998). Modeling water treatment chemical disinfection kinetics. J. Environ. Eng., 124, 783–793.
  • Lambert, R.J.W., Johnston, M.D., and Simons, E.A. (1999). A kinetic study of the effect of hydrogen peroxide and peracetic acid against Staphylococcus aureus and Pseudomonas aeruginosa using the bioscreen disinfection method. J. Appl. Microbiol., 87, 782–786.
  • Chick, H. (1908). An investigation of the laws of disinfection. J. Hyg., 8, 92–158.
  • Watson, H.E. (1908). A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J. Hyg., 8, 536–542.
  • Haas, C.N. and Joffe, J. (1994). Disinfection under dynamic conditions: Modification of Hom's model for decay. Environ. Sci. Technol., 28, 1367–1369.
  • Azzellino, A., Antonelli, M., Canziani, R., Malpei, F., Marinetti, M., and Nurizzo, C. (2011). Multivariate modelling of disinfection kinetics: A comparison among three different disinfectants. Desalin. Water Treat., 29, 128–139.
  • Wang, J.L., and Xu, L.J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol., 42, 251–325.
  • Lubello, C., Caretti, C., and Gori, R. (2002). Comparison between PAA/UV and H2O2/UV disinfection for wastewater reuse. Water Sci. Technol. Water Supply., 2, 205–212.
  • Caretti, C., and Lubello, C. (2003). Wastewater disinfection with PAA and UV combined treatment: A pilot plant study. Water Res., 37, 2365–2371.
  • Rajala–Mustonen, R.L., Toivola, P.S., and Heinonen–Tanski, H. (1997). Effects of peracetic acid and UV irradiation on the inactivation of coliphages in wastewater. Water Sci. Technol., 35, 237–241.
  • Luna–Pabello, V.M., Ríos, M.M., Jiménez, B., and Orta De Velasquez, M.T. (2009). Effectiveness of the use of Ag, Cu and PAA to disinfect municipal wastewater. Environ. Technol., 30, 129–139.
  • Blumenthal, U.J., Mara, D.D., Peasey, A., Ruiz–Palacios, G., and Stott, R. (2000). Guidelines for the microbial quality of treated wastewater used in agriculture: Recommendations for revising WHO guidelines. Bull. World Health Organ., 78, 1104–1116.
  • De Velásquez, M.T.O., Yáñez–Noguez, I., Jiménez–Cisneros, B., and Luna Pabello, V.M. (2008). Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent. Environ. Technol., 29, 1209–1217.
  • Davies, R.L., and Etris, S.F. (1997). The development and functions of silver in water purification and disease control. Catal. Today, 36, 107–114.
  • Egler, M., Grosse, C., Grass, G., and Nies, D.H. (2005). Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J. Bacteriol., 187, 2297–2307.
  • Nurizzo, C., Bonomo, L., and Malpei, F. (2001). Some economic considerations on wastewater reclamation for irrigation, with reference to the Italian situation. Water Sci. Technol., 43, 75–81.
  • Koivunen, J., Juntunen, P., and Heinonen-Tanski, H. (2005). Dissolved air flotation and peracetic acid (PAA) disinfection for treatment of municipal wastewaters. Report of the FLOTE project. University of Kuopio, Kuopio, Finland.
  • Ragazzo, P., Chiucchini, N., and Bottin, F. (2007). The use of hyproform disinfection system in wastewater treatment: Batch and full scale trials. In H.H. Hahn, E. Hoffmann, H. Odegaard (Eds.), Chemical water and wastewater treatment IX (pp. 267–278). London, UK: IWA Publishing.
  • Rook, J.J. (1974). Formation of Haloforms during chlorination of natural waters. Water Treat. Examin., 23, 234–244.
  • Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R., and DeMarini, D.M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res.-Rev. Mutat., 636, 178–242.
  • Dell'Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M., and Santoro, D. (2007). Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination, 215, 177–186.
  • WHO (2008). Guidelines for drinking–water quality (3rd ed.), Vol. 3. Geneva: World Health Organization.
  • Raitanen, J.E., Sundberg, A., Konn, J., Smeds, A., and Willför, S. (2016). Reactions between peracetic acid and lipophilic extractives—Methodologies and implications in post bleaching of Kraft pulps. Holzforschung, 70, 747–754.
  • Booth, R., and Lester, J. (1995). The potential formation of halogenated by-products during peracetic acid treatment of final sewage effluent. Water Res., 29, 1793–1801.
  • Shah, A.D., Liu, Z., Salhi, E., Höfer, T., Werschkun, B., and von Gunten, U. (2015). Formation of disinfection by–products during ballast water treatment with ozone, chlorine, and peracetic acid: Influence of water quality parameters. Environ. Sci. Water Res. Technol., 1, 465–480.
  • West, D.M., Wu, Q., Donovan, A., Shi, H., Ma, Y., Jiang, H., and Wang, J. (2016). N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system. Chemosphere, 153, 521–527.
  • Ames, B.N., McCann, J., and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat. Res.-Environ. Muta., 31, 347–363.
  • Crebelli, R., Conti, L., Monarca, S., Feretti, D., Zerbini, I., Zani, C., Veschetti, E., Cutilli, D., and Ottaviani, M. (2005). Genotoxicity of the disinfection by–products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater. Water Res., 39, 1105–1113.
  • Buschini, A., Carboni, P., Furlini, M., Poli, P., and Rossi, C. (2004). Sodium hypochlorite-, chlorine dioxide- and peracetic acid-induced genotoxicity detected by the comet assay and Saccharomyces cerevisiae D7 tests. Mutagenesis, 19, 157–162.
  • Maffei, F., Buschini, A., Rossi, C., Poli, P., Forti, G.C., and Hrelia, P. (2005). Use of the comet test and micronucleus assay on human white blood cells for in vitro assessment of genotoxicity induced by different drinking water disinfection protocols. Environ. Mol. Mutagen., 46, 116–125.
  • Monarca, S., Feretti, D., Collivignarelli, C., Guzzella, L., Zerbini, I., Bertanza, G., and Pedrazzani, R. (2000). The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Res., 34, 4261–4269.
  • Marabini, L., Frigerio, S., Chiesara, E., and Radice, S. (2006). Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells. Water Res., 40, 267–272.
  • Guzzella, L., Monarca, S., Zani, C., Feretti, D., Zerbini, I., Buschini, A., Poli, P., Rossi, C., and Richardson, S.D. (2004). In vitro potential genotoxic effects of surface drinking water treated with chlorine and alternative disinfectants. Mutat. Res.-Gen. Toxicol. Environ. Mutagenesis., 564, 179–193.
  • Buschini, A., Martino, A., Gustavino, B., Monfrinotti, M., Poli, P., Rossi, C., Santoro, M., Dörr, A., and Rizzoni, M. (2004). Comet assay and micronucleus test in circulating erythrocytes of cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization. Mutat. Res.-Gen. Toxicol. Environ. Mutagenesis., 557, 119–129.
  • Bolognesi, C., Buschini, A., Branchi, E., Carboni, P., Furlini, M., Martino, A., Monteverde, M., Poli, P., and Rossi, C. (2004). Comet and micronucleus assays in zebra mussel cells for genotoxicity assessment of surface drinking water treated with three different disinfectants. Sci. Total Environ., 333, 127–136.
  • Canistro, D., Melega, S., Ranieri, D., Sapone, A., Gustavino, B., Monfrinotti, M., Rizzoni, M., and Paolini, M. (2012). Modulation of cytochrome P450 and induction of DNA damage in cyprinus carpio exposed in situ to surface water treated with chlorine or alternative disinfectants in different seasons. Mutat. Res.-Fund. Mol. Mech. Mutagenesis., 729, 81–89.
  • Sapone, A., Canistro, D., Vivarelli, F., and Paolini, M. (2016). Perturbation of xenobiotic metabolism in dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. Chemosphere, 144, 548–554.
  • Villarini, M., Moretti, M., Dominici, L., Fatigoni, C., Dörr, A.J.M., Elia, A.C., and Monarca, S. (2011). A protocol for the evaluation of genotoxicity in bile of carp (Cyprinus Carpio) exposed to lake water treated with different disinfectants. Chemosphere, 84, 1521–1526.
  • Ferraris, M., Chiesara, E., Radice, S., Giovara, A., Frigerio, S., Fumagalli, R., and Marabini, L. (2005). Study of potential toxic effects on rainbow trout hepatocytes of surface water treated with chlorine or alternative disinfectants. Chemosphere, 60, 65–73.
  • Talinli, I., and Anderson, G.K. (1992). Interference of hydrogen peroxide on the standard COD test. Water Res., 26, 107–110.
  • Lee, E., Lee, H., Kim, Y.K., Sohn, K., and Lee, K. (2011). Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ. Sci. Technol., 8, 381–388.
  • Goncharuk, V.V., Bagrii, V.A., Mel'nik, L.A., Chebotareva, R.D., and Bashtan, S.Y. (2010). The use of redox potential in water treatment processes. J. Water Chem. Technol., 32, 1–9.
  • Awad, M.I., Denggerile, A., and Ohsaka, T. (2004). Electroreduction of peroxyacetic acid at gold electrode in aqueous media. J. Electrochem. Soc., 151, E358–E363.
  • D.R. Lide (ed.) (2003). CRC handbook of chemistry and physics (84th ed.). Boca Raton, FL: CRC Press.
  • Gagnon, C., Lajeunesse, A., Cejka, P., Gagne, F., and Hausler, R. (2008). Degradation of selected acidic and neutral pharmaceutical products in a primary–treated wastewater by disinfection processes. Ozone Sci. Eng., 30, 387–392.
  • Hey, G., Ledin, A., Jansen, J.L.C., and Andersen, H.R. (2012). Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid. Environ. Technol., 33, 1041–1047.
  • Alvarez, J., Gernjak, W., Malato, S., Berenguel, M., Fuerhacker, M., and Yebra, L. (2007). Dynamic models for hydrogen peroxide control in solar photo–Fenton systems. J. Sol. Energy Eng., 129, 37–44.
  • Bokare, A.D., and Choi, W. (2014). Review of iron–free Fenton–like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 275, 121–135.
  • Hagman, M., Heander, E., and Jansen, J.l.C. (2008). Advanced oxidation of refractory organics in leachate-potential methods and evaluation of biodegradability of the remaining substrate. Environ. Technol., 29, 941–946.
  • Nadafi, K., Mesdaghinia, A., Nabizadeh, R., Younesian, M., and Rad, M.J. (2011). The combination and optimization study on RB29 dye removal from water by peroxy acid and single-wall carbon nanotubes. Desalin. Water Treat., 27, 237–242.
  • Alderman, N.S., and Nyman, M.C. (2009). Oxidation of PAHs in a simplified system using peroxy–acid and glass beads: Identification of oxidizing species. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 44, 1077–1087.
  • Alderman, N.S., N'Guessan, A.L., and Nyman, M.C. (2007). Effective treatment of PAH contaminated superfund site soil with the peroxy-acid process. J. Hazard. Mater., 146, 652–660.
  • N'Guessan, A.L., Carignan, T., and Nyman, M.C. (2004). Optimization of the peroxy acid treatment of a-methylnaphthalene and Benzo[a]Pyrene in sandy and silty clay sediments. Environ. Sci. Technol., 38, 1554–1560.
  • Levitt, J.S., and Nyman, M.C. (2000). Peroxy–acid treatment of polycyclic aromatic hydrocarbons in lake sediments. In: J.E. Kilduff, S. Komisar, M. Nyman (Eds.), Hazardous and industrial waste proceedings, 32nd Mid–Atlantic Conference (pp. 516–526). Boca Raton, FL: CRC Press.
  • Levitt, J.S., N'Guessan, A.L., Rapp, K.L., and Nyman, M.C. (2003). Remediation of a-methylnaphthalene-contaminated sediments using peroxy acid. Water Res., 37, 3016–3022.
  • N'Guessan, A.L., Levitt, J.S., and Nyman, M.C. (2004). Remediation of Benzo(a)Pyrene in contaminated sediments using peroxy–acid. Chemosphere, 55, 1413–1420.
  • Bach, R.D., Canepa, C., Winter, J.E., and Blanchette, P.E. (1997). Mechanism of acid-catalyzed epoxidation of alkenes with peroxy acids. J. Org. Chem., 62, 5191–5197.
  • Simpson, R.J. (2007). Performic acid oxidation of proteins. CSH Protoc. 2007, pdb.prot4698.
  • Wu, Z., Nie, Y., Chen, W., Wu, L., Chen, P., Lu, M., Yu, F., and Ji, J. (2016). Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid‐autocatalyzed reaction system. Can. J. Chem. Eng., 94, 1576–1582.
  • Sharma, S. (2010). Degradation of 4–Chlorophenol in Wastewater by Organic Oxidants. Ind. Eng. Chem. Res., 49, 3094–3098.
  • Daswat, D.P., and Mukhopadhyay, M. (2014). Effect of UV input on degradation of 4–chlorophenol by peroxy acetic acid. Arab. J. Sci. Eng., 39, 5873–5881.
  • Virkutyte, J., and Varma, R.S. (2014). Eco–friendly magnetic iron oxide–pillared montmorillonite for advanced catalytic degradation of dichlorophenol. ACS Sustain. Chem. Eng., 2, 1545–1550.
  • Daswat, D.P., and Mukhopadhyay, M. (2012). Photochemical degradation of chlorophenol industry wastewater using peroxy acetic acid (PAA). Chem. Eng. J., 209, 1–6.
  • Rokhina, E.V., Makarova, K., Lahtinen, M., Golovina, E.A., Van As, H., and Virkutyte, J. (2013). Ultrasound–assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics. Chem. Eng. J., 221, 476–486.
  • Cavallini, G.S., Vidal, C.M., Souza, J.B., and Campos, S.X. (2015). Fenton coagulation/oxidation using Fe2+ and Fe3+ ions and peracetic acid for the treatment of wastewater. Orbital, 7, 253–263.
  • Cavallini, G.S., Vidal, C.M.d.S., Souza, J.B.d., and Campos, S.X.d. (2015). Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration. Environ. Sci. Pollut. Res., 7, 6244–6252.
  • Littlejohn, D., and Chang, S.G. (1990). Removal of nitrogen oxides (NOx) and sulfur dioxide from flue gas by peracid solutions. Ind. Eng. Chem. Res., 29, 1420–1424.
  • Lion, C., Da Conceição, L., Hecquet, G., Pralus, C., Requieme, B., and Schirmann, J.P. (2002). Destruction of toxic organophosphorus and organosulfur pollutants by perpropionic acid: The first stable, industrial liquid water-miscible peroxyacid in decontamination. New J. Chem., 26, 1515–1518.
  • Clover, A.M., and Richmond, G.F. (1903). The hydrolysis of organic peroxides and peracids. Am. Chem. J., 29, 179.
  • Prescher, G., Weiberg, O., Waldmann, H., and Seifert, H. (1978). Process for the preparation of perpropionic acid solutions. U.S. Patent 4,087,454.
  • Merka, V., and Dvorák, J. (1968). Antifungal properties of performic and perpropionic acids. J. Hyg. Epidemiol. Microbiol. Immunol., 12, 115–121.
  • Merka, V., Sita, F., and Zikes, V. (1965). Performic and perpropionic acids as disinfectants in comparison with peracetic acid. J. Hyg. Epidemiol. Microbiol. Immunol., 59, 220–226.
  • Vimont, A., Fliss, I., and Jean, J. (2014). Study of the virucidal potential of organic peroxyacids against norovirus on food–contact surfaces. Food Environ. Virol., 7, 49–57.
  • Deschler, U., Grund, A., and Prescher, G. (1987). Process for the preparation of epoxidized organosilicon compounds. U.S. Patent 4,705,868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.