1,668
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Current and emerging trends in bioremediation of petrochemical waste: A review

, , , , , , , , & show all
Pages 155-201 | Published online: 12 Jun 2017

References

  • Abdelwahab, O., Amin, N. K., and El-Ashtoukhy, E. Z. (2009). Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater., 163(2), 711–716.
  • Abraham, W. R., Meyer, H., and Yakimov, M. (1998). Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim. Biophys. Acta, 1393(1), 57–62.
  • Abuhamed, T., Bayraktar, E., Mehmetoğlu, T., and Mehmetoğlu, Ü. (2004). Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem., 39(8), 983–988.
  • Ahn, I. S., Ghiorse, W. C., Lion, L. W., and Shuler, M. L. (1998). Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol. Bioeng., 59(5), 587–594.
  • Aitken, M. D., Stringfellow, W. T., Nagel, R. D., Kazunga, C., and Chen, S. H. (1998). Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can. J. Microbiol., 44(8), 743–752.
  • Akhtar, M. N., Boyd, D. R., Thompson, N. J., Koreeda, M., Gibson, D. T., Mahadevan, V., and Jerina, D. M. (1975). Absolute stereochemistry of the dihydroanthracene-cis-and trans-1, 2-diols produced from anthracene by mammals and bacteria. J. Chem. Soc., Perkin Trans. 1, (23), 2506–2511.
  • Akizuki, M., Fujii, T., Hayashi, R., and Oshima, Y. (2014). Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water. J. Biosci. Bioeng. 117(1), 10–18.
  • Alagappan, G., and Cowan, R. M. (2004). Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 54(8), 1255–1265.
  • Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., Al-Makhmari, H. S., and Al-Sulaimani, H. S. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 81, 141–146.
  • Aleksieva, Z., Ivanova, D., Godjevargova, T., and Atanasov, B. (2002). Degradation of some phenol derivatives by Trichosporon cutaneum R57. Process Biochem., 37(11), 1215–1219.
  • Alexieva, Z., Gerginova, M., Manasiev, J., Zlateva, P., Shivarova, N., and Krastanov, A. (2008). Phenol and cresol mixture degradation by the yeast Trichosporon cutaneum. J. Ind. Microbiol. Biotechnol., 35(11), 1297–1301.
  • Alexieva, Z., Yemendzhiev, H., and Zlateva, P. (2010). Cresols utilization by Trametes versicolor and substrate interactions in the mixture with phenol. Biodegradation, 21(4), 625–635.
  • Allen, C. C., Boyd, D. R., Hempenstall, F., Larkin, M. J., and Sharma, N. D. (1999). Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons tocis-dihydrodiols by soil bacteria. Appl. Environ. Microbiol., 65(3), 1335–1339.
  • Al-Mailem, D. M., Sorkhoh, N. A., Salamah, S., Eliyas, M., and Radwan, S. S. (2010). Oil-bioremediation potential of Arabian Gulf mud flats rich in diazotrophic hydrocarbon-utilizing bacteria. Int. Biodeterior. Biodegrad. 64(3), 218–225.
  • Alvarez, P. J. J., and Vogel, T. M. (1995). Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Water Sci. Technol., 31(1), 15–28.
  • Anirudhan, T. S., and Ramachandran, M. (2014). Removal of 2,4,6-trichlorophenol from water and petroleum refinery industry effluents by surfactant-modified bentonite. J. Water Process Eng., 1, 46–53.
  • Annweiler, E., Richnow, H. H., Antranikian, G., Hebenbrock, S., Grams, C., Franke, S., Francke, W., and Michaelis, W. (2000). Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermphile Bacillus thermoleovorans. Appl. Environ. Microbiol. 66, 518e523.
  • Atlas, R. M. (1985). Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems. Petroleum Effects in the Arctic Environment, 63–100.
  • Atlas, R. M. (1992). Petroleum microbiology-I in encyclopedia of microbiology (pp. 363–369). Baltimore, MD: Academic Press.
  • Attaway, H. H., and Schmidt, M. G. (2002). Tandem biodegradation of BTEX components by two Pseudomonas sp. Curr. Microbiol., 45(1), 30–36.
  • Awasthi, N., Kumar, A., Makkar, R., and Cameotra, S. S. (1999). Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J. Environ. Sci. Health B, 34, 793–803.
  • Babaarslan, C., Abuhamed, T., Mehmetoglu, U., Tekeli, A., and Mehmetoglu, T. (2003). Biodegradation of BTEX compounds by a mixed culture obtained from petroleum formation water. Energy Sources, 25:733–742
  • Bachmann, R. T., Johnson, A. C., and Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad., 86, Part C, 225–237.
  • Badali, H., Prenafeta-Boldu, F. X., Guarro, J., Klaassen, C. H., Meis, J. F., and De Hoog, G. S. (2011). Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol., 115(10), 1019–1029.
  • Bai, J., Wen, J. P., Li, H. M., and Jiang, Y. (2007). Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem., 42(4), 510–517.
  • Balachandran, C., Duraipandiyan, V., Balakrishna, K., and Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour. Technol., 112, 83–90.
  • Ball, A. S., and Jackson, A. M. (1995). The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour. Technol., 54(3), 311–314.
  • Bamforth, S. M., and Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J. Chem. Technol. Biotechnol., 80(7), 723–736.
  • Banat, I. M. (1995). Characterization of biosurfactants and their use in pollution removal–State of the Art.(Review). Acta Biotechnol., 15(3), 251–267.
  • Barkay, T., Navon-Venezia, S., Ron, E., and Rosenberg, E. (1999). Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the emulsifier alasan. Appl. Environ. Microbiol., 65, 2697–2702.
  • Barnsley, E. A. (1975). The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. Microbiology, 88(1), 193–196.
  • Barnsley, E. A. (1983). Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J. Bacteriol., 154(1), 113–117.
  • Bartha, R. (1986). Biotechnology of petroleum pollutant biodegradation. Microb. Ecol., 12(1), 155–172.
  • Bartha, R., and Bossert, I. (1984). The treatment and disposal of petroleum wastes. In: R. M. Atlas (ed.), Petroleum microbiology. Macmillan Publishing Co., New York (pp. 553–578).
  • Ben Hariz, I., Halleb, A., Adhoum, N., and Monser, L. (2013). Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Sep. Purif. Technol. 107, 150–157.
  • Bielefeldt, A. R., and Stensel, H. D. (1998). BTEX-contaminated gas treatment in a shallow, sparged, suspended-growth bioreactor. Bioremed. J., 1(4), 241–254.
  • Bird, M. G., Greim, H., Snyder, R., and Rice, J. M. (2005). International symposium: Recent advances in benzene toxicity. Chem.-Biol. Interact., 153, 1–5.
  • Biswas, B., Sarkar, B., Rusmin, R., and Naidu, R. (2015). Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environ. Int., 85, 168–181.
  • Boltner, D., Godoy, P., Muñoz‐Rojas, J., Duque, E., Moreno‐Morillas, S., Sánchez, L., and Ramos, J. L. (2008). Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb. Biotechnol. 1, 87–93.
  • Boonchan, S., Britz, M. L., and Stanley, G. A. (1998). Surfactant‐enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol. Bioeng., 59(4), 482–494.
  • Boronin, A. M., and Kosheleva, I. A. (2014). The role of catabolic plasmids in biodegradation of petroleum hydrocarbons. In Current environmental issues and challenges (pp. 159–168). Netherlands: Springer.
  • Borràs, E., Caminal, G., Sarrà, M., and Novotný, Č. (2010). Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol. Biochem., 42(12), 2087–2093.
  • Boyd, S. A., and Shelton, D. R. (1984). Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol., 47(2), 272–277.
  • Brackmann, R., and Fuchs, G. (1993). Enzymes of anaerobic metabolism of phenolic compounds. Eur. J. Biochem., 213(1), 563–571.
  • Burback, B. L., and Perry, J. J. (1993). Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol., 59(4), 1025–1029.
  • Burd, G., and Ward, O. P. (1996). Involvement of a surface-active high molecular weight factor in degradation of polycyclic aromatic hydrocarbons by Pseudomonas marginalis. Can. J. Microbiol., 42(8), 791–797.
  • Cai, Q.-Y., Mo, C.-H., Wu, Q.-T., Zeng, Q.-Y., Katsoyiannis, A., and Férard, J.-F. (2007). Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes. J. Hazard. Mater. 142(1–2), 535–542.
  • Cameotra, S. S., and Makkar, R. S. (2010). Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl. Chem., 82(1), 97–116.
  • Carmichael, L. M., and Pfaender, F. K. (1997). The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation, 8(1), 1–13.
  • Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., and Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere, 81(3), 306–311.
  • Cerniglia, C. E. (1984). Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30, 31–71.
  • Chagas-Spinelli, A. C. O., Kato, M. T., de Lima, E. S., and Gavazza, S. (2012). Bioremediation of a tropical clay soil contaminated with diesel oil. J. Environ. Manage., 113, 510–516.
  • Chaillan, F., Chaineau, C. H., Point, V., Saliot, A., and Oudot, J. (2006). Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut., 144(1), 255–265.
  • Chaillan, F., Le Flèche, A., Bury, E., Phantavong, Y. H., Grimont, P., Saliot, A., and Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res. Microbiol., 155(7), 587–595.
  • Chakraborty, R., and Coates, J. D. (2005). Hydroxylation and carboxylation—two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl. Environ. Microbiol., 71(9), 5427–5432.
  • Chakraborty, R., O'Connor, S. M., Chan, E., and Coates, J. D. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol., 71(12), 8649–8655.
  • Chang, B. V., Chang, S. W., and Yuan, S. Y. (2003). Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv. Environ. Res., 7(3), 623–628.
  • Chang, Y. I., Cheng, H. P., Lai, S. H., and Ning, H. (2014). Biodegradation of naphthalene in the oil refinery wastewater by enriched activated sludge. Int. Biodeterior. Biodegrad., 86, 272–277.
  • Chang, Y. T., Lee, J. F., Liu, K. H., Liao, Y. F., and Yang, V. (2016). Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ. Sci. Pollut. Res., 23(5), 4024–4035.
  • Chapman, P. H., Rawlins, M. D., and Shuster, S. (1979). The activity of aryl hydrocarbon hydroxylase in adult human skin. Br. J. Clin. Pharmacol., 7(5), 499.
  • Chemlal, R., Tassist, A., Drouiche, M., Lounici, H., Drouiche, N., and Mameri, N. (2012). Microbiological aspects study of bioremediation of diesel-contaminated soils by biopile technique. Int. Biodeterior. Biodegrad. 75, 201–206.
  • Chen, C. S., Hseu, Y. C., Liang, S. H., Kuo, J. Y., and Chen, S. C. (2008). Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. J. Hazard. Mater., 153(1), 351–356.
  • Chen, S. H., and Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol., 33(3), 435–439.
  • Churchill, S. A., Harper, J. P., and Churchill, P. F. (1999). Isolation and characterization of aMycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol., 65(2), 549–552.
  • Chen, S. C., Chen, C. S., Zhan, K.-V., Yang, K.-H., Chien, C.-C., Shieh, B.-S., Chen, W.-M. (2011). Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02. J. Hazard. Mater., 186(2–3), 1744–1750.
  • Coates, J. D., Anderson, R. T., and Lovley, D. R. (1996). Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol., 62(3), 1099–1101.
  • Colla, C., Biaggi, C., and Treccani, V. (1959). Research on the microbial oxidative metabolism of anthracene ana phenanthrene. II. Isolation and characterization of 3, 4-dihydro-3, 4-dioxyphenanthrene. Ann. Microbiol. Enzimol, 9, 1–5.
  • Cooney, J. J. (1984). The fate of petroleum polltants in freshwater ecosystems. In Atlas, R. M. (Ed.). Petroleum microbiology (pp. 399–434). New York: MacMillan Publishing Co.
  • Cox, H. H. J., Moerman, R. E., Van Baalen, S., Van Heiningen, W. N. M., Doddema, H. J., and Harder, W. (1997). Performance of a styrene‐degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol. Bioeng., 53(3), 259–266.
  • CRC CARE. 2013/2014. CRC CARE annual report 2013/2014 Australia: cooperative research centre for contamination assessment and remediation of the environment (CRC CARE). http://www.crccare.com/files/dmfile/CRCCARE2013–14annualreport_web.pdf.
  • Daane, L. L., Harjono, I., Zylstra, G. J., and Häggblom, M. M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol., 67(6), 2683–2691.
  • Das, N., and Chandran, P. (2010). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int., 2011, Article ID 941810, 13 pages.
  • Das, S., and Dash, H. R. (2014). Microbial biodegradation and bioremediation (pp. 1–21). Das, S. (Ed.). Oxford: Elsevier.
  • Davies, J. I., and Evans, W. C. (1964). Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem. J., 91(2), 251.
  • Deeb, R. A., and Alvarez-Cohen, L. (1999). Rhodococcus rhodochrous. Biotechnol. Bioeng., 62, 526–536.
  • Dellagnezze, B. M., de Sousa, G. V., Martins, L. L., Domingos, D. F., Limache, E. E. G., de Vasconcellos, S. P., da Cruz, G. F., and de Oliveira, V. M. (2014). Bioremediation potential of microorganisms derived from petroleum reservoirs. Mar. Pollut. Bull., 89(1–2), 191–200.
  • Desai, A. M., Autenrieth, R. L., Dimitriou-Christidis, P., and McDonald, T. J. (2008). Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation, 19(2), 223–233.
  • Desai, J. D. (1987). Microbial surfactants-evaluation, types, production and future applications. J. Sci. Ind. Res., 46(10), 440–449.
  • Díaz, E., Jiménez, J. I., and Nogales, J. (2013). Aerobic degradation of aromatic compounds. Curr. Opin. Biotechnol., 24(3), 431–442.
  • Diya'uddeen, B. H., Daud, W.M.A.W., and Abdul Aziz, A. R. (2011). Treatment technologies for petroleum refinery effluents: A review. Process Saf. Environ. Prot., 89(2), 95–105.
  • Dominguez-Cuevas, P., González-Pastor, J. E., Marqués, S., Ramos, J. L., and de Lorenzo, V. (2006). Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J. Biol. Chem., 281, 11981–11991.
  • Dua, R. D., and Meera, S. (1981). Purifiation and characterisation of naphthalene oxygenase from Corynebacterium renale. Eur. J. Biochem., 120(3), 461–465.
  • Dunn, N. W., and Gunsalus, I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol., 114(3), 974–979.
  • Dyke, M. V., Couture, P., Brauer, M., Lee, H., and Trevors, J. T. (1993). Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol., 39(11), 1071–1078.
  • Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C., and Staley, J. T. (1995). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int. J. Syst. Bacteriol., 45(1), 116–123.
  • Eixarch, H., Constantí, M. (2010). Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival. Process Biochem., 45(5), 794–798.
  • Ellis, B., Harold, P., and Kronberg, H. (1991). Bioremediation of a creosote contaminated site. Environ. Technol., 12(5), 447–459.
  • El-Naas, M. H., Acio, J. A., and El Telib, A. E. (2014a). Aerobic biodegradation of BTEX: Progresses and prospects. J. Environ. Chem. Eng., 2(2), 1104–1122.
  • El-Naas, M. H., Alhaija, M. A., and Al-Zuhair, S. (2014b). Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J. Environ. Chem. Eng., 2(1), 56–62.
  • Englert, D. L., Adase, C. A., Jayaraman, A., and Manson, M. D. (2010). Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein. J. Bacteriol. 192, 2633–2637.
  • Evans, G. M., and Furlong, J. C. (2003). Environmental biotechnology: theory and application. John Wiley and Sons, West Sussex, UK.
  • Evans, W. C., Fernley, H. N., and Griffiths, E. (1965). Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem. J., 95, 819–831.
  • Falahatpisheh, M. H., Donnelly, K. C., and Ramos, K. S. (2001). Antagonistic interactions among nephrotoxic polycyclic aromatic hydrocarbons. J. Toxicol. Environ. Health, 62, 543–560.
  • Feng, T., Lin, H., Tang, J., and Feng, Y. (2014). Characterization of polycyclic aromatic hydrocarbons degradation and arsenate reduction by a versatile Pseudomonas isolate. Int. Biodeterior. Biodegrad., 90, 79–87.
  • Fernández-Álvarez, P., Vila, J., Garrido, J. M., Grifoll, M., Feijoo, G., and Lema, J. M. (2007). Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. J. Hazard. Mater. 147(3), 914–922.
  • Floodgate, G. D. (1984). The fate of petroleum in marine ecosystems. In R. M. Atlas (Ed.). Petroleum microbiology (pp. 355–398). New York: Macmillion.
  • Foght, J. M., and Westlake, D. W. S. (1988). Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol., 34(10), 1135–1141.
  • Foght, J. M., Westlake, D. W. S., Johnson, W. M., and Ridgway, H. F. (1996). Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas, aeruginosaare taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology, 142(9), 2333–2340.
  • Fuchs, G., Boll, M., and Heider, J. (2011). Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol., 9(11), 803–816.
  • Fukumori, F., and Saint, C. P. (1997). Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J. Bacteriol., 179(2), 399–408.
  • Garcia, J. L, Patel, B. K., and Ollivier, B. (2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226.
  • García-Peña, I., Ortiz, I., Hernandez, S., and Revah, S. (2008). Biofiltration of BTEX by the fungus Paecilomyces variotii. Int. Biodeterior. Biodegrad., 62(4), 442–447.
  • Gaya, U. I., and Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev., 9(1), 1–12.
  • Geiselbrecht, A. D., Hedlund, B. P., Tichi, M. A., and Staley, J. T. (1998). Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol., 64(12), 4703–4710.
  • Ghosh, D. K., and Mishra, A. K. (1983). Oxidation of phenanthrene by a strain ofMicrococcus: Evidence of protocatechuate pathway. Curr. Microbiol., 9(4), 219–224.
  • Gibb, A., Chu, A., Wong, R. C. K., and Goodman, R. H. (2001). Bioremediation kinetics of crude oil at 5 C. J. Environ. Eng., 127(9), 818–824.
  • Gibson, D. T., Mahadevan, V., Jerina, D. M., Yogi, H., and Yeh, H. J. (1975). Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science, 189(4199), 295–297.
  • Gibson, D. T., Zylstra, G. J., and Chauhan, S. (1990). Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F 1. American Society for Microbiology, 121–32.
  • Goldman, R., Enewold, L., Pellizzari, E., Beach, J. B., Bowman, E. D., Krishnan, S. S., and Shields, P. G. (2001). Smoking increase carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res., 61, 6367–6371.
  • Gomes, N. C., Kosheleva, I. A., Abraham, W. R., and Smalla, K. (2005). “Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community”. FEMS Microbiol. Ecol., 54 (1): 21–33.
  • Goyal, A. K., and Zylstra, G. J. (1997). Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J. Ind. Microbiol. Biotechnol., 19(5–6), 401–407.
  • Grbic-Galic, D. (1991). Anaerobic Microbial Degradation of Aromatic Hydrocarbons. Developments in Petroleum Science, 31, 145–161.
  • Grosser, R. J., Warshawsky, D., and Vestal, J. R. (1991). Indigenous and enhanced mineralization of pyrene, benzo [a] pyrene, and carbazole in soils. Appl. Environ. Microbiol., 57(12), 3462–3469.
  • Grund, E., Denecke, B., and Eichenlaub, R. (1992). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol., 58(6), 1874–1877.
  • Guerin, W. F. (1989). Phenanthrene degradation by estuarine surface microlayer and bulk water microbial populations. Microb. Ecol., 17(1), 89–104.
  • Guo, J., and Al-Dahhan, M. (2005). Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chem. Eng. Sci., 60(3), 735–746.
  • Guthrie, E. A., and Pfaender, F. K. (1998). Reduced pyrene bioavailability in microbially active soils. Environ. Sci. Technol., 32(4), 501–508.
  • Hamed, T. A., Bayraktar, E., Mehmetoğlu, T., and Mehmetoğlu, Ü. (2003). Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures. Process Biochem., 39(1), 27–35.
  • Hamme, J. D., van, Singh, A., and Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev., 67(4), 503–549.
  • Haritash, A. K., and Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater., 169(1), 1–15.
  • Harwood, C. S., and Gibson, J. (1997). Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes?. J. Bacteriol., 179(2), 301.
  • Hasan, D. u. B., Abdul Aziz, A. R., and Daud, W.M.A.W. (2012). Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. Des., 90(2), 298–307.
  • Hassanshahian, M. (2014). Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar. Pollut. Bull., 86(1–2), 361–366.
  • Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J., and Staley, J. T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol., 65(1), 251–259.
  • Heider, J., and Fuchs, G. (1997). Anaerobic metabolism of aromatic compounds. Eur. J. Biochem., 243(3), 577–596.
  • Heitkamp, M. A., and Cerniglia, C. E. (1988). Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol., 54(6), 1612–1614.
  • Heitkamp, M. A., Freeman, J. P., Miller, D. W., and Cerniglia, C. E. (1988a). Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol., 54(10), 2556–2565.
  • Herman, D. C., Zhang, Y., and Miller, R. M. (1997). Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol., 63(9), 3622–3627.
  • Hesnawi, R. M., and Mogadami, F. S. (2013). Bioremediation of Libyan Crude Oil-Contaminated Soil under Mesophilic and Thermophilic Conditions. APCBEE Proc., 5, 82–87.
  • Hofrichter, M., Vares, T., Kalsi, M., Galkin, S., Scheibner, K., Fritsche, W., and Hatakka, A. (1999). Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl. Environ. Microbiol., 65(5), 1864–1870.
  • Hong, Y. W., Yuan, D. X., Lin, Q. M., and Yang, T. L. (2008). Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar. Pollut. Bull., 56(8), 1400–1405.
  • Hu, G., Li, J., and Hou, H. (2015). A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. J. Hazard. Mater. 283, 832–840.
  • Huang, P. M. (2004). Soil mineral–organic matter–microorganism interactions: fundamentals and impacts. Adv. Agron., 82, 391–472.
  • Huang, Y., and Li, L. (2014). Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ. Res., 86(3), 277–284.
  • Isaac, P., Sánchez, L. A., Bourguignon, N., Cabral, M. E., and Ferrero, M. A. (2013). Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int. Biodeterior. Biodegrad., 82, 207–214.
  • Itoh, N., Yoshida, K., and Okada, K. (1996). Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci. Biotechnol. Biochem., 60(11), 1826–1830.
  • Iwabuchi, T., Inomata-Yamauchi, Y., Katsuta, A., and Harayama, S. (1998). Isolation and characterization of marine Nocardiodes capable of growing and degrading phenanthrene at 42 C. J. Mar. Biotechnol., 6, 86–90.
  • Jagmann, N., Brachvogel, H. P., and Philipp, B. (2010). Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic baterium Aeromonas hydrophila. Environ. Microbiol. 12, 1787–1802.
  • Janbandhu, A., and Fulekar, M. H. (2011). Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J. Hazard. Mater. 187(1–3), 333–340.
  • Jean, J. S., Lee, M. K., Wang, S. M., Chattopadhyay, P., and Maity, J. P. (2008). Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. in a laboratory porous media sand aquifer model. Bioresour. Technol., 99(16), 7807–7815.
  • Jeffrey, A. M., Yeh, H. J. C., Jerina, D. M., Patel, T. R., Davey, J. F., and Gibson, D. T. (1975). Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry, 14(3), 575–584.
  • Jegan, J., Vijayaraghavan, K., Senthilkumar, R., and Velan, M. (2010). Naphthalene degradation kinetics of Micrococcus sp., isolated from activated sludge. CLEAN–Soil, Air, Water, 38(9), 837–842.
  • Jeong, E., Hirai, M., and Shoda, M. (2006). Removal of p-xylene with Pseudomonas sp. NBM21 in biofilter. J. Biosci. Bioeng., 102(4), 281–287.
  • Jerina, D. M., Selander, H., Yagi, H., Wells, M. C., Davey, J. F., Mahadevan, V., and Gibson, D. T. (1976). Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc., 98(19), 5988–5996.
  • Jin, H. M., Choi, E. J., and Jeon, C. O. (2013). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresour. Technol., 145, 57–64.
  • Jo, M. S., Rene, E. R., Kim, S. H., and Park, H. S. (2008). An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J. Hazard. Mater., 152(3), 1276–1284.
  • Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., Bennett, B., Huang, H., Brown, A., Bowler, B. F. J., and Oldenburg, T. (2008). Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451(7175), 176–180
  • Jorio, H., Brzezinski, R., and Heitz, M. (2005). A novel procedure for the measurement of the kinetics of styrene biodegradation in a biofilter. J. Chem. Technol. Biotechnol., 80(7), 796–804.
  • Juang, R. S., and Tsai, S. Y. (2006). Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem. Eng. J., 31(2), 133–140.
  • Juhasz, A. (1998). Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons. Doctoral dissertation, Victoria University of Technology.
  • Juhasz, A. L., and Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. Int. Biodeterior. Biodegrad., 45(1), 57–88.
  • Juhasz, A. L. (1991). Hydrocarbon degradation by Antarctic microorganisms isolated from the saline lakes of the Vestfold Hills. M.Sc. thesis. University of Tasmania. 187 pp [ Unpublished]
  • Jung, I. G., and Park, C. H. (2004). Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J. Biosci. Bioeng., 97(6), 429–431.
  • Jung, I. G., and Park, C. H. (2005). Characteristics of styrene degradation by Rhodococcus pyridinovorans isolated from a biofilter. Chemosphere, 61(4), 451–456.
  • Kaiser, J. (1997). Endocrine disrupters: Synergy paper questioned at toxicology meeting. Science, 275, 1879–1880.
  • Kasi, M., Wadhawan, T., McEvoy, J., Padmanabhan, G., and Khan, E. (2013). Effect of carbon source during enrichment on BTEX degradation by anaerobic mixed bacterial cultures. Biodegradation, 24(2), 279–293.
  • Kästner, M., Breuer-Jammali, M., and Mahro, B. (1998). Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microbiol., 64(1), 359–362.
  • Kästner, M., Lotter, S., Heerenklage, J., Breuer-Jammali, M., Stegmann, R., and Mahro, B. (1995). Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl. Microbiol. Biotechnol., 43(6), 1128–1135.
  • Kelley, I., and Cerniglia, C. E. (1991). The metabolism of fluoranthene by a species ofMycobacterium. J. Ind. Microbiol., 7(1), 19–26.
  • Keuth, S., and Rehm, H. J. (1991). Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol., 34(6), 804–808.
  • Kim, D., Kim, Y. S., Kim, S. K., Kim, S. W., Zylstra, G. J., Kim, Y. M., and Kim, E. (2002). Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol., 68(7), 3270–3278.
  • Kim, E., Zylstra, G. J., Freeman, J. P., Heinze, T. M., Deck, J., and Cerniglia, C. E. (1997). Evidence for the role of 2-hydroxychromene-2-carboxylate isomerase in the degradation of anthracene by Sphingomonas yanoikuyae B1. FEMS Microbiol. Lett., 153(2), 479–484.
  • Kim, J. M., Le, N. T., Chung, B. S., Park, J. H., Bae, J. W., Madsen, E. L., and Jeon, C. O. (2008). Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol., 74(23), 7313–7320.
  • Kim, S. B., Park, C. H., Kim, D. J., and Jury, W. A. (2003). Kinetics of benzene biodegradation by Pseudomonas aeruginosa: parameter estimation. Environ. Toxicol. Chem., 22(5), 1038–1045.
  • Kim, S., Krajmalnik-Brown, R., Kim, J. O., and Chung, J. (2014). Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci. Total Environ., 497–498, 250–259.
  • Kirby, M. F., and Law, R. J. (2010). Accidental spills at sea – Risk, impact, mitigation and the need for co-ordinated post-incident monitoring. Mar. Pollut. Bull., 60(6), 797–803.
  • Kiyohara, H., and Nagao, K. (1978). The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol., 105(1), 69–75.
  • Kiyohara, H., Takizawa, N., Date, H., Torigoe, S., and Yano, K. (1990). Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J. Ferment. Bioeng., 69(1), 54–56.
  • Köhler, A., Schüttoff, M., Bryniok, D., and Knackmuß, H. J. (1994). Enhanced biodegradation of phenanthrene in a biphasic culture system. Biodegradation, 5(2), 93–103.
  • Krell, T., Lacal, J., Muñoz‐Martínez, F., Reyes‐Darias, J. A., Cadirci, B. H., García‐Fontana, C., and Ramos, J. L. (2011). Diversity at its best: bacterial taxis. Environ. Microbiol., 13, 1115–1124.
  • Kuhm, A. E., Stolz, A., and Knackmuss, H. J. (1991). Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation, 2(2), 115–120.
  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., and Lugtenberg, B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Mol. Plant Microbiol. Interact., 17, 6–15.
  • Kukor, J. J., and Olsen, R. H. (1991). Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J. Bacteriol., 173(15), 4587–4594.
  • Kumar, S., Arya, D., Malhotra, A., Kumar, S., and Kumar, B. (2013). Biodegradation of dual phenolic substrates in simulated wastewater by Gliomastix indicus MTCC 3869. J. Environ. Chem. Eng., 1(4), 865–874.
  • Kurtzman, C. P., and Piškur, J. (2006). Taxonomy and phylogenetic diversity among the yeasts. In P. Sunnerhagen and J. Piskur (Eds.). Comparative genomics: Using fungi as models (pp. 29–46). Berlin: Springer. ISBN 978–3-540–31480-6.
  • Lal, B., and Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol., 81(4), 355–362.
  • Lang, S., and Wagner, F. (1993). Biological activites of biosurfactants. In: Biosurfactants. In: Kosaric, N., ed., Surfactants science series. Dekker, New York, vol. 48, pp. 251–268.
  • Laoufi, N. A., Tassalit, D., and Bentahar, F. (2008). The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Global NEST J., 10(3), 404–418.
  • Leahy, J. G., and Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54(3), 305–315.
  • Lee, P. H., Ong, S. K., Golchin, J., and Nelson, G. S. (2001). Use of solvents to enhance PAH biodegradation of coal tar. Water Res., 35(16), 3941–3949.
  • Lee, S. H., Jin, H. M., Lee, H. J., Kim, J. M., and Jeon, C. O. (2012a). Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59. J. Bacteriol., 194(2), 544–544.
  • Lee, S. H., Lim, J. S., and Kim, H. S. (2012b). Decomposition of Chlorinated Hydrocarbons Using the Biocatalyst Immobilized by Clay Minerals. In Advanced Materials Research Vol. 356, pp. 1089–1092.
  • Lei, A. P., Hu, Z. L., Wong, Y. S., and Tam, N. F. Y. (2007). Removal of fluoranthene and pyrene by different microalgal species. Bioresour. Technol., 98(2), 273–280
  • Lida, T., Sumita, T., Ohta, A., and Takagi, M. (2000). The cytochrome P450ALK multigene family of an n‐alkane‐assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast, 16(12), 1077–1087.
  • Lin, C. W., Cheng, Y. W., and Tsai, S. L. (2007). Multi-substrate biodegradation kinetics of MTBE and BTEX mixtures by Pseudomonas aeruginosa. Process Biochem., 42(8), 1211–1217.
  • Lin, C. W., Wu, C. H., Tang, C. T., and Chang, S. H. (2012). Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresour. Technol., 124, 45–51.
  • Liu, K., Han, W., Pan, W. P., and Riley, J. T. (2001). Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system. J. Hazard. Mater., 84, 175–188.
  • Liu, L., Jiang, C. Y., Liu, X. Y., Wu, J. F., Han, J. G., and Liu, S. J. (2007). Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants. Environ. Microbiol., 9, 465–473.
  • Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R., and Noghabi, K. A. (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B: Biointerfaces, 69(2), 183–193.
  • Luna, J. M., Rufino, R. D., Jara, A. M. A. T., Brasileiro, P. P. F., and Sarubbo, L. A. (2015). Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids Surf. A: Physicochem. Eng. Aspects, 480, 413–418.
  • Maeng, J. H., Sakai, Y., Ishige, T., Tani, Y., and Kato, N. (1996). Diversity of dioxygenases that catalyze the first step of oxidation of long-chain n-alkanes in Acinetobacter sp. M-1. FEMS Microbiol. Lett., 141(2–3), 177–182.
  • Mahoney, W. S., Brestensky, D. M., and Stryker, J. M. (1988). Selective hydride-mediated conjugate reduction of. alpha.,. beta.-unsaturated carbonyl compounds using [(Ph3P) CuH] 6. J. Am. Chem. Soc., 110(1), 291–293.
  • Mahro, B., Rode, K., and Kasche, V. (1995). Non‐selective precultivation of bacteria able to degrade different polycyclic aromatic hydrocarbons (PAH). Acta Biotechnol., 15(4), 337–345.
  • Makkar, R. S., and Cameotra, S. S. (1997). Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc., 74(7), 887–889.
  • Makkar, R. S., and Rockne, K. J. (2003). Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 22(10), 2280–2292.
  • Mao, J., Luo, Y., Teng, Y., and Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int. Biodeterior. Biodegrad., 70, 141–147.
  • Marchant, R., and Banat, I. M. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol., 30(11), 558–565.
  • Margesin, R., and Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol., 56(5), 650–663.
  • Maslin, P., and Maier, R. M. (2000). Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremed. J., 4(4), 295–308.
  • Mastrangela, G., Fadda, E., and Marzia, V. (1997). Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect., 104, 1166–1170.
  • Mata-Sandoval, J. C., Karns, J., and Torrents, A. (2000). Effect of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ. Sci. Technol., 34(23), 4923–4930.
  • Mathur, A. K., and Balomajumder, C. (2013). Biological treatment and modeling aspect of BTEX abatement process in a biofilter. Bioresour. Technol., 142, 9–17.
  • Mathur, A. K., and Majumder, C. B. (2010). Kinetics modelling of the biodegradation of benzene, toluene and phenol as single substrate and mixed substrate by using Pseudomonas putida. Chem. Biochem. Eng. Quart., 24(1), 101–109.
  • Mazzeo, D. E. C., Levy, C. E., de Angelis, D. D. F., and Marin-Morales, M. A. (2010). BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci. Total Environ., 408(20), 4334–4340.
  • McAllister, L. E., and Semple, K. T. (2010). Role of clay and organic matter in the biodegradation of organics in soil. In: M. Mandl, L. L. Barton, and A. Loy (Eds.), Geomicrobiology: Molecular and environmental perspective (pp. 367–384). Dordrecht, Netherlands: Springer.
  • McCray, J. E., Bai, G., Maier, R. M., and Brusseau, M. L. (2001). Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol., 48(1), 45–68.
  • McDonald, I. R., Miguez, C. B., Rogge, G., Bourque, D., Wendlandt, K. D., Groleau, D., and Murrell, J. C. (2006). Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol. Lett., 255(2), 225–232.
  • Meckenstock, R. U., and Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr. Opin. Biotechnol., 22(3), 406–414.
  • Meckenstock, R. U., Safinowski, M., and Griebler, C. (2004). Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol., 49(1), 27–36.
  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., and Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int., 37(8), 1362–1375.
  • Mizzouri, N. S., and Shaaban, M. G. (2013). Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater. J. Hazard. Mater., 250–251, 333–344.
  • Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., and Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev. Environ. Sci. Bio/Technol., 5(4), 347–374.
  • Morán, A. C., Olivera, N., Commendatore, M., Esteves, J. L., and Siñeriz, F. (2000). Enhancement of hydrocarbon wastebiodegradation by addition of a biosurfactantfrom Bacillus subtilis O9. Biodegradation, 11(1), 65–71.
  • Morlett-Chávez, J. A., Ascacio-Martínez, J. Á., Rivas-Estilla, A. M., Velázquez-Vadillo, J. F., Haskins, W. E., Barrera-Saldaña, H. A., and Acuña-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Int. Biodeterior. Biodegrad., 64(7), 581–587.
  • Moro, A. M., Brucker, N., Charão, M., Bulcão, R., Freitas, F., Baierle, M., Nascimento, S., Valentini, J., Cassini, C., Salvador, M., and Garcia, S. C. (2012). Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. Mutat. Res./Genet. Toxicol. Environ. Mutagen., 746(1), 42–48.
  • Moscoso, F., Teijiz, I., Deive, F. J., and Sanromán, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour. Technol., 119, 270–276.
  • Mueller, J. G., Chapman, P. J., and Pritchard, P. H. (1989). Creosote-contaminated sites. Their potential for bioremediation. Environ. Sci. Technol., 23(10), 1197–1201.
  • Mueller, J. G., Chapman, P. J., Blattmann, B. O., and Pritchard, P. H. (1990). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol., 56(4), 1079–1086.
  • Mulligan, C. N., and Gibbs, B. F. (1993). Factors influencing the economics of biosurfactants. In: Kosaric, N., ed., Biosurfactants: Production, Properties, Applications. New York: Marcel Dekker, pp. 329–372.
  • Muñoz, R., Souza, T. S., Glittmann, L., Pérez, R., and Quijano, G. (2013). Biological anoxic treatment of O 2-free VOC emissions from the petrochemical industry: A proof of concept study. J. Hazard. Mater., 260, 442–450.
  • Murakami, S., Takashima, A., Takemoto, J., Takenaka, S., Shinke, R., and Aoki, K. (1999). Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Gene, 226(2), 189–198.
  • Národní, U. (2002). Bioremediation of persistent organic pollutants—A review. Technologie a biotechnologie inventura, POPs v ÈR Èást VII.
  • Nielsen, D. R., McLellan, P. J., and Daugulis, A. J. (2006). Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnol. Lett., 28(16), 1293–1298.
  • Nikolopoulou, M., Pasadakis, N., Norf, H., and Kalogerakis, N. (2013). Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar. Pollut. Bull., 77(1–2), 37–44.
  • Nikolova, N., and Nenov, V. (2005). BTEX degradation by fungi. Water Sci. Technol., 51(11), 87–93.
  • Norton, J. M. (2012). Fungi for Bioremediation of Hydrocarbon Pollutants. University of Hawai‘i at Hilo Hawai‘i Community College HOHONU, Vol. 10, pp. 18–21.
  • Oberbremer, A., Müller-Hurtig, R., and Wagner, F. (1990). Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol., 32(4), 485–489.
  • O'Leary, N. D., O'Connor, K. E., and Dobson, A. D. (2002). Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol. Rev., 26(4), 403–417.
  • Olsen, R. H., Kukor, J. J., and Kaphammer, B. (1994). A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol., 176(12), 3749–3756.
  • Ortega-González, D. K., Cristiani-Urbina, E., Flores-Ortíz, C. M., Cruz-Maya, J. A., Cancino-Díaz, J. C., and Jan-Roblero, J. (2015). Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Appl. Biochem. Biotechnol., 175(2), 1123–1138.
  • Otenio, M. H., Silva, M. T. L. D., Marques, M. L. O., Roseiro, J. C., and Bidoia, E. D. (2005). Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz. J. Microbiol., 36(3), 258–261.
  • Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J. F., and Férard, J. F. (2007). Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc 2 155. Res. Microbiol., 158(2), 175–186.
  • Panjeshahi, M. H. (2013). Handbook of process integration (PI) (pp. 633–704). In J. J. Klemeš (Ed.), Woodhead Publishing, United Kingdom.
  • Pariselli, F., Sacco, M. G., Ponti, J., and Rembges, D. (2009). Effects of toluene and benzene air mixtures on human lung cells (A549). Exp. Toxicol. Pathol., 61(4), 381–386.
  • Patel, R. M., and Desai, A. J. (1997). Biosurfactant production by Pseudomonas aeruginosaGS3 from molasses. Lett. Appl. Microbiol., 25(2), 91–94.
  • Peng, C., Lee, J.-W., Sichani, H. T., and Ng, J. C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. J. Hazard. Mater. 284, 10–18.
  • Perry, J. J. (1984). Microbial metabolism of cyclic alkanes (pp. 61–98). In R. M. Atlas (Ed.). New York: Macmillan.
  • Poh, C. L., and Bayly, R. C. (1988). Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway. J. Appl. Bacteriol., 64(5), 451–458.
  • Pornsunthorntawee, O., Maksung, S., Huayyai, O., Rujiravanit, R., and Chavadej, S. (2009). Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effects of oil loading rate and cycle time. Bioresour. Technol., 100(2), 812–818.
  • Pothuluri, J. V., and Cerniglia, C. E. (1994). Microbial metabolism of polycyclic aromatic hydrocarbons. In G. R. Chaudhry (Ed.). Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, OR, pp. 92–124.
  • Prenafeta-Boldú, F. X., Kuhn, A., Luykx, D. M., Anke, H., van GROENESTIJN, J. W., and de BONT, J. A. (2001). Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol. Res., 105(04), 477–484.
  • Prenafeta-Boldú, F. X., Vervoort, J., Grotenhuis, J. T. C., and Van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl. Environ. Microbiol., 68(6), 2660–2665.
  • Providenti, M. A., Flemming, C. A., Lee, H., and Trevors, J. T. (1995). Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol. Ecol., 17(1), 15–26.
  • Puma, G. L., and Yue, P. L. (2003). Modelling and design of thin-film slurry photocatalytic reactors for water purification. Chem. Eng. Sci., 58(11), 2269–2281.
  • Qi, J., Wang, B., Li, J., Ning, H., Wang, Y., Kong, W., and Shen, L. (2015). Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1. Environ. Sci. Pollut. Res., 22(9), 6743–6755.
  • Qin, L., Zhang, G., Meng, Q., Zhang, H., Xu, L., and Lv, B. (2012). Enhanced submerged membrane bioreactor combined with biosurfactant rhamnolipids: Performance for frying oil degradation and membrane fouling reduction. Bioresour. Technol. 126, 314–320.
  • Quijano, G., Hernandez, M., Thalasso, F., Muñoz, R., and Villaverde, S. (2009). Two-phase partitioning bioreactors in environmental biotechnology. Appl. Microbiol. Biotechnol., 84(5), 829–846.
  • Rahman, M. M., and Al-Malack, M. H. (2006). Performance of a crossflow membrane bioreactor (CF–MBR) when treating refinery wastewater. Desalination, 191(1), 16–26.
  • Ramos, J. L., Marqués, S., van Dillewijn, P., Espinosa-Urgel, M., Segura, A., Duque, E., … and Wittich, R. M. (2011). Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol., 29(12), 641–647.
  • Ramos, J. L., Wasserfallen, A., Rose, K., and Timmis, K. N. (1987). Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235, 593–596.
  • Ramos, J. L., Molina, L., and Segura, A. (2009). Removal of organic toxic chemicals in the rhizosphere and phyllosphere of pollutants. Microb. Biotechnol., 2, 144–146
  • Rao, C. V., Glekas, G. D., and Ordal, G. W. (2008). The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol., 16, 480–487.
  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical, and chemical processes. Lewis Publishers, Boca Raton, FL.
  • Robledo-Ortíz, J. R., Ramírez-Arreola, D. E., Pérez-Fonseca, A. A., Gómez, C., González-Reynoso, O., Ramos-Quirarte, J., and González-Núñez, R. (2011). Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. Int. Biodeterior. Biodegrad., 65(3), 539–546.
  • Roca, A., Rodríguez‐Herva, J. J., Duque, E., and Ramos, J. L. (2008). Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb. Biotechnol., 1, 158–169.
  • Rodrigues, E. M., Kalks, K. H. M., and Tótola, M. R. (2015). Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil. J. Environ. Manage., 156, 15–22.
  • Romero, M. C., Cazau, M. C., Giorgieri, S., and Arambarri, A. M. (1998). Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ. Pollut., 101(3), 355–359.
  • Ronchel, M. C., and Ramos, J. L. (2001). Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol., 67, 2649–2656.
  • Ryu, B. H., Oh, Y. K., Bae, K. C., and Bin, J. H. (1989). Biodegradation of naphthalene by Acinetobacter calcoaceticus R-88. Applied Biological Chemistry, 32(3), 315–320.
  • Sajna, K. V., Höfer, R., Sukumaran, R. K., Gottumukkala, L. D., and Pandey, A. (2015). Industrial biorefineries & white biotechnology (pp. 499–521). In A.P.H.T.M.N. Larroche (Ed.). Amsterdam: Elsevier.
  • Sakai, Y., Maeng, J. H., Kubota, S., Tani, A., Tani, Y., and Kato, N. (1996). A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. J. Ferment. Bioeng., 81(4), 286–291.
  • Salvino, A., and Lollini, M. N. (1977). Identification of some of fermentation of phenanthrene by microorganisms belonging to the genus arthrobacter. Bollettino della Società italiana di biologia sperimentale, 53(11), 916.
  • Samanta, S. K., Singh, O. V., and Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. TRENDS Biotechnol., 20(6), 243–248.
  • Sandrin, T. R., Chech, A. M., and Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl. Environ. Microbiol., 66(10), 4585–4588.
  • Santo, C. E., Vilar, V. J. P., Botelho, C. M. S., Bhatnagar, A., Kumar, E., and Boaventura, R. A. R. (2012). Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chem. Eng. J., 183, 117–123.
  • Savino, J. F., and Tanabe, L. L. (1989). Sublethal effects of phenanthrene, nicotine, and pinane onDaphnia pulex. Bull. Environ. Contam. Toxicol., 42(5), 778–784.
  • Schamfuß, S., Neu, T. R., van der Meer, J. R., Tecon, R., Harms, H., and Wick, L. Y. (2013). Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ. Sci. Technol., 47(13), 6908–6915.
  • Scheller, U., Zimmer, T., Becher, D., Schauer, F., and Schunck, W. H. (1998). Oxygenation cascade in conversion of n-alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. J. Biol. Chem., 273(49), 32528–32534.
  • Schippers, C., Gessner, K., Müller, T., and Scheper, T. (2000). Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J. Biotechnol., 83(3), 189–198.
  • Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., and Warshawsky, D. (1996). Degradation of pyrene, benz [a] anthracene, and benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol., 62(1), 13–19.
  • Schocken, M. J., and Gibson, D. T. (1984). Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol., 48(1), 10–16.
  • Selifonov, S. A., Slepenkin, A. V., Adanin, V. M., Grechkina, G. M., and Starovoitov, I. I. (1993). ACenaphthene catabolism by strains of alcaligenes-eutrophus and alcaligenes-paradoxus. Microbiology, 62(1), 85–92.
  • Shahna, F. G., Golbabaei, F., Hamedi, J., Mahjub, H., Darabi, H. R., and Shahtaheri, S. J. (2010). Treatment of benzene, toluene and xylene contaminated air in a bioactive foam emulsion reactor. Chin. J. Chem. Eng., 18(1), 113–121.
  • Shahrezaei, F., Mansouri, Y., Zinatizadeh, A. A. L., and Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol., 221, 203–212.
  • Shariati, S. R. P., Bonakdarpour, B., Zare, N., and Ashtiani, F. Z. (2011). The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresour. Technol. 102(17), 7692–7699.
  • Sharma, N. K., and Philip, L. (2014). Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions. Chem. Eng. J., 256, 255–267.
  • Sharma, S., and Rangaiah, G. P. (2014). Multi-objective optimization of heat integrated water networks in petroleum refineries. In: Proceedings of the 24th European Symposium on Computer Aided Process Engineering. Budapest, Hungary. pp: 1531–1536.
  • Shekhar, S., Sundaramanickam, A., and Balasubramanian, T. (2015). Biosurfactant producing microbes and its potential applications: A review. Crit. Rev. Environ. Sci. Technol. 45(14), 1522–1554.
  • Sheludchenko, M. S., Kolomytseva, M. P., Travkin, V. M., Akimov, V. N., and Golovleva, L. A. (2005). Degradation of aniline by Delftia tsuruhatensis 14S in batch and continuous processes. Appl. Biochem. Microbiol., 41(5), 465–468.
  • Shim, H., Shin, E., and Yang, S. T. (2002). A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Adv. Environ. Res., 7(1), 203–216.
  • Shu, H. Y., and Huang, C. R. (1995). Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process. Chemosphere, 31(8), 3813–3825.
  • Shuttleworth, K. L., and Cerniglia, C. E. (1996). Bacterial degradation of low concentrations of phenanthrene and inhibition by naphthalene. Microb. Ecol., 31(3), 305–317.
  • Silva, E. J., Rocha, e, Silva, N. M. P., Rufino, R. D., Luna, J. M., Silva, R. O., and Sarubbo, L. A. (2014). Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf. B: Biointerfaces, 117, 36–41.
  • Singer, M. E., and Finnerty, W. R. (1990). Phisiology of biosurfactant synthesis by Rhodococcus species H13A. Can. J. Microbiol., 36, 741–745.
  • Singh, M. P., Mishra, M., Sharma, A., Shukla, A. K., Mudiam, M. K. R., Patel, D. K., Ram, K. R., and Chowdhuri, D. K. (2011). Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: attenuation by quercetin and curcumin. Toxicol. Appl. Pharmacol., 253(1), 14–30.
  • Singh, N., Megharaj, M., Gates, W. P., Churchman, G. J., Anderson, J., Kookana, R. S., Naidu, R., Chen, Z., Slade, P. G., and Sethunathan, N. (2003). Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J. Agric. Food Chem., 51(9), 2653–2658.
  • Singh, P., Ojha, A., Borthakur, A., Singh, R., Lahiry, D., Tiwary, D., and Mishra, P. K. (2016). Emerging trends in photodegradation of petrochemical wastes: a review. Environmental Science and Pollution Research, 23(22), 22340–22364.
  • Singh, P. B., Sharma, S., Saini, H. S., and Chadha, B. S. (2009). Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett. Appl. Microbiol., 49(3), 378–383.
  • Singh, R., and Celin, S. M. (2010). Biodegradation of BTEX (benzene, toluene, ethyl benzene and xylene) compounds by bacterial strain under aerobic conditions. J. Ecobiotechnol., 2(2010), 27–32.
  • Souza, E. C., Vessoni-Penna, T. C., and de Souza Oliveira, R. P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad. 89, 88–94.
  • Sponza, D. T., and Gök, O. (2010). Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour. Technol. 101(3), 914–924.
  • Sponza, D. T., and Gok, O. (2011). Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity. J. Hazard. Mater. 197, 404–416.
  • Sram, R. J., Binková, B., Rössner, P., Rubeš, J., Topinka, J., and Dejmek, J. (1999). Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res., 428, 203–215.
  • Srichandan, H., Singh, S., Blight, K., Pathak, A., Kim, D. J., Lee, S., and Lee, S. W. (2015). An integrated sequential biological leaching process for enhanced recovery of metals from decoked spent petroleum refinery catalyst: A comparative study. Int. J. Miner. Process., 134, 66–73.
  • Stapleton, R. D., Savage, D. C., Sayler, G. S., and Stacey, G. (1998). Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl. Environ. Microbiol., 64(11), 4180–4184.
  • Stasik, S., Wick, L. Y., and Wendt-Potthoff, K. (2015). Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere, 138, 133–139.
  • Steffen, K. T., Schubert, S., Tuomela, M., Hatakka, A., and Hofrichter, M. (2007). Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation, 18(3), 359–369.
  • Stegeman, J. J., Schlezinger, J. J., Craddock, J. E., and Tillitt, D. E. (2001). Cytochrome P450 1A expression in mid water fishes: potential effects of chemical contaminants in remote oceanic zones. Environ. Sci. Technol., 35, 54–62.
  • Straube, W. L., Jones-Meehan, J., Pritchard, P. H., and Jones, W. R. (1999). Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Resour. Conserv. Recycl., 27, 27–37.
  • Stringfellow, W. T., and Aitken, M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl. Environ. Microbiol., 61(1), 357–362.
  • Samanta, S. K., Singh, O. V., and Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol., 20(6), 243–248.
  • Sun, Y., Zhang, Y., and Quan, X. (2008). Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. Purif. Technol., 62(3), 565–570.
  • Sutherland, J. B., Freeman, J. P., Selby, A. L., Fu, P. P., Miller, D. W., and Cerniglia, C. E. (1990). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch. Microbiol., 154(3), 260–266.
  • Szulc, A., Ambrożewicz, D., Sydow, M., Ławniczak, Ł., Piotrowska-Cyplik, A., Marecik, R., and Chrzanowski, Ł. (2014). The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. J. Environ. Manage., 132, 121–128.
  • Tagger, S., Truffaut, N., and Petit, J. L. (1990). Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment. Can. J. Microbiol., 36(10), 676–681.
  • Takeo, M., Fujii, T., Takenaka, K., and Maeda, Y. (1998). Cloning and sequencing of a gene cluster for the meta-cleavage pathway of aniline degradation in Acinetobacter sp. strain YAA. J. Ferment. Bioeng., 85(5), 514–517.
  • Tindall, M. J., Porter, S. L., Maini, P. K., and Armitage, J. P. (2010). Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput. Biol. 6, pii: e1000896.
  • Tongpim, S., and Pickard, M. A. (1996). Growth of Rhodococcus S1 on anthracene. Can. J. Microbiol., 42(3), 289–294.
  • Treccani, V., Walker, N., and Wiltshire, G. H. (1954). The metabolism of naphthalene by soil bacteria. J. Gen. Microbiol., 11(3), 341–348.
  • Trower, M. K., Sariaslani, F. S., and Kitson, F. G. (1988). Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem. Biophys. Res. Commun., 157(3), 1417–1422.
  • Ulrici, W. (2000). Contaminated soil areas, different countries and contaminants, monitoring of contaminants. In: Rehm, H. J., Reed, G. (Eds.), Environmental Processes II. Soil Decontamination, Biotechnology, Vol. 11b, 2nd Edition. Wiley-VCH, Weinheim, FRG, pp. 5–42.
  • Uysal, A., and Türkman, A. (2005). Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an activated sludge bioreactor. Process Biochem., 40(8), 2745–2749.
  • Van Beilen, J. B., and Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol., 74(1), 13–21.
  • Van Dyke, M. I., Lee, H., and Trevors, J. T. (1991). Applications of microbial surfactants. Biotechnol. Adv., 9(2), 241–252.
  • Venkateswar Reddy, M., Mawatari, Y., Yajima, Y., Seki, C., Hoshino, T., and Chang, Y.-C. (2015). Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste. Bioresour. Technol. 192, 711–717.
  • Verrhiest, G. J., Clement, B., Volat, B., Montuelle, B., and Perrodin, Y. (2002). Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere, 46(2), 187–196.
  • Walker, J. D., Colwell, R. R., Vaituzis, Z., and Meyer, S. A. (1975). Petroleum-degrading achlorophyllous alga Prototheca zopfii, pp. 423–424.
  • Walter, U., Beyer, M., Klein, J., and Rehm, H. J. (1991). Degradation of pyrene byRhodococcus sp. UW1. Appl. Microbiol. Biotechnol., 34(5), 671–676.
  • Wang, C., Wang, F., Wang, T., Bian, Y., Yang, X., and Jiang, X. (2010). PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). J. Hazard. Mater., 176(1), 41–47.
  • Wang, D., Zheng, G., Wang, S., Zhang, D., and Zhou, L. (2011). Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge. J. Environ. Sci., 23(12), 2063–2068.
  • Wang, G., Wen, J., Yu, G., and Li, H. (2008). Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol. World J. Microbiol. Biotechnol., 24(11), 2685–2691.
  • Wang, L., Barrington, S., and Kim, J. W. (2007). Biodegradation of pentyl amine and aniline from petrochemical wastewater. J. Environ. Manage., 83(2), 191–197.
  • Wang, S., Nomura, N., Nakajima, T., and Uchiyama, H. (2012). Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J. Biosci. Bioeng., 113(5), 624–630.
  • Ward, P. G., Goff, M., Donner, M., Kaminsky, W., and O'Connor, K. E. (2006). A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Scie. Technol., 40(7), 2433–2437.
  • Warhurst, A. M., Clarke, K. F., Hill, R. A., Holt, R. A., and Fewson, C. A. (1994). Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl. Environ. Microbiol., 60(4), 1137–1145.
  • Warshawsky, D., Keenan, T. H., Reilman, R., Cody, T. E., and Radike, M. J. (1990). Conjugation of benzo [a] pyrene metabolites by freshwater green alga Selenastrum capricornutum. Chem.-Biol. Interact., 74(1), 93–105.
  • Wei, C., Ren, Y., and Wu, C. (1998). The characteristics of aniline biodegradation by Ochrobactrum anthropi. Chin. J. Environ. Sci., 19, 22–24.
  • Wei, Y. H., Chou, C. L., and Chang, J. S. (2005). Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J., 27(2), 146–154.
  • Weis, L. M., Rummel, A. M., Masten, S. J., Trosko, J. E., and Upham, B. L. (1998). Bay and baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication. Environ. Health Perspect., 106, 17–22.
  • Weissenfels, W. D., Klewer, H. J., and Langhoff, J. (1992). Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol., 36(5), 689–696.
  • West, P. A., Okpokwasili, G. C., Brayton, P. R., Grimes, D. J., and Colwell, R. R. (1984). Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol., 48(5), 988–993.
  • Wu, C. H., Wood, T. K., Mulchandani, A., and Chen, W. (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol., 72, 1129–1134.
  • Xia, W., Du, Z., Cui, Q., Dong, H., Wang, F., He, P., and Tang, Y. (2014). Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J. Hazard. Mater., 276, 489–498.
  • Xin, B.-P., Wu, C.-H., Wu, C.-H., and Lin, C.-W. (2013). Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. J. Hazard. Mater., 244–245, 765–772.
  • Yadav, J. S., and Reddy, C. A. (1993). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol., 59(3), 756–762.
  • Yadav, J. S., and Reddy, C. A. (1993). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol., 59(3), 756–762.
  • Yan, P., Lu, M., Guan, Y., Zhang, W., and Zhang, Z. (2011). Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment. Bioresour. Technol. 102(22), 10252–10259.
  • Yan, P., Lu, M., Yang, Q., Zhang, H.-L., Zhang, Z.-Z., and Chen, R. (2012). Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour. Technol. 116, 24–28.
  • Yang, Y., Chen, R. F., and Shiaris, M. P. (1994). Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J. Bacteriol., 176(8), 2158–2164.
  • Ye, D., Siddiqi, M. A., Maccubbin, A. E., Kumar, S., and Sikka, H. C. (1995). Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol., 30(1), 136–142.
  • Ye, D. C., Maynard, J. A., and Wood, T. K. (1998). Rhizoremediation of TCE by a recombinant, root-colonizing Pseudomonas fluorescents strain expressing toluene ortho-monooxygenase constitutively. Appl. Environ. Microbiol., 64, 112–118.
  • Yemendzhiev, H., Gerginova, M., Zlateva, P., Stoilova, I., Krastanov, A., and Alexieva, Z. (2008). Phenol and cresol mixture degradation by Aspergillus awamori strain: biochemical and kinetic substrate interactions. Proc. ECOpole, 2, 153–159.
  • Yeom, S. H., and Daugulis, A. J. (2001). Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234. Process Biochem., 36(8), 765–772.
  • Yeom, S. H., Kim, S. H., Yoo, Y. J., and Yoo, I. S. (1997). Microbial adaptation in the degradation of phenol byAlcaligenes xylosoxidans Y234. Korean J. Chem. Eng., 14(1), 37–40.
  • Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., and He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem., 44(3), 302–308.
  • Zaval'skiĬ, L., Marchenko, A. I., and Borovik, R. V. (2002). [Bacterial chemotaxis to naphthalene]. Mikrobiologiia, 72(3), 407–413.
  • Zhang, L., Zhang, C., Cheng, Z., Yao, Y., and Chen, J. (2013). Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere, 90(4), 1340–1347.
  • Zhang, Q., Cai, W., and Wang, J. (2008). Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing. J. Environ. Sci., 20(8), 975–980.
  • Zhang, T., Zhang, J., Shuangjiang, L. I. U., and Zhipei, L. I. U. (2008). A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3. J. Environ. Sci., 20(6), 717–724.
  • Zhang, X., Sullivan, E. R., and Young, L. Y. (2000). Evidence for aromatic ring reduction in the biodegradation pathwayof carboxylated naphthalene by a sulfate reducing consortium. Biodegradation, 11(2–3), 117–124.
  • Zhao, S., Wang, P., Wang, C., Langer, J. L., Abulikemu, G., and Sun, X. (2013). Recycling of high temperature steam condensed water from petroleum refinery by thermostable PPESK ultrafiltration membrane. Chem. Eng. J., 219, 419–428.
  • Zhou, Y., Gao, F., Zhao, Y., and Lu, J. (2014). Study on the extraction kinetics of phenolic compounds from petroleum refinery waste lye. J. Saudi Chem. Soc., 18(5), 589–592.
  • Zilli, M., Guarino, C., Daffonchio, D., Borin, S., and Converti, A. (2005). Laboratory-scale experiments with a powdered compost biofilter treating benzene-polluted air. Process Biochem., 40(6), 2035–2043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.