3,475
Views
325
CrossRef citations to date
0
Altmetric
Articles

Co-occurrence and interactions of pollutants, and their impacts on soil remediation—A review

, , , , , , , , , & show all
Pages 1528-1553 | Published online: 11 Dec 2017

References

  • Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S., Cremisini, C., and Sprocati, A. R. (2009). Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. The Science of the Total Environment, 407(8), 3024–3032.
  • Almeida, C. M., Mucha, A. P., Delgado, M. F., Cacador, M. I., Bordalo, A. A., and Vasconcelos, M. T. (2008). Can PAHs influence Cu accumulation by salt marsh plants? Marine Environmental Research, 66(3), 311–318.
  • Almeida, C. M. R., Claúdia Dias, A., Mucha, A. P., Bordalo, A. A., and Vasconcelos, M. T. S. D. (2009). Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides. Estuar Coast Shelf S, 85(4), 627–632.
  • Al-Turki, A. (2009). Microbial polycyclic aromatic hydrocarbons degradation in soil. Research Journal of Environmental Toxicology, 3, 1–8.
  • Antoniadis, V., Tsadilas, C. D., and Ashworth, D. J. (2007). Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere, 68(3), 489–494.
  • Baran, S., Bielinska, J. E., and Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118(3–4), 221–232.
  • Beesley, L., Moreno-Jimenez, E., and Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.
  • Carine, F., Enrique, A. G., and Steven, C. (2009). Metal effects on phenol oxidase activities of soils. Ecotoxicology and Environmental Safety, 72(1), 108–114.
  • Chen, B., Wang, Y., and Hu, D. (2010a). Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials, 179(1–3), 845–851.
  • Chen, H. L., Lai, H. Y., Wang, S. M., Kuo, Y. C., and Lu, C. J. (2010b). Effect of Biosolids and Cd/Pb Interaction on the growth and cd accumulation of brassica rapa grown in cd-contaminated soils. Water Air Soil Poll, 206(1–4), 385–394.
  • Chen, J., Zhu, D., and Sun, C. (2007). Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environmental Science Technology, 41(7), 2536–2541.
  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., and Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6 Pt 1), 745–755.
  • Chigbo, C., Batty, L., and Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere, 90(10), 2542–2548.
  • Christofi, N., and Ivshina, I. B. (2002). Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93(6), 915–929.
  • Clabeaux, B. L., Navarro, D. A., Aga, D. S., and Bisson, M. A. (2013). Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. Ecotoxicology Environmental Safety, 98, 236–243.
  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.
  • Dannenberg, A., and Pehkonen, S. O. (1998). Investigation of the heterogeneously catalyzed hydrolysis of organophosphorus pesticides. Journal of Agricultural and Food Chemistry, 46(1), 325–334.
  • Davari, M., Rahnemaie, R., and Homaee, M. (2015). Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils. Environmental Science and Pollution Research, 22(17), 13024–13032.
  • Dimkpa, C. O., Svatos, A., Dabrowska, P., Schmidt, A., Boland, W., and Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74(1), 19–25.
  • Dong, X. L., Ma, L. Q., Gress, J., Harris, W., and Li, Y. C. (2014). Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 267, 62–70.
  • Dong, Z. Y., Huang, W. H., Xing, D. F., and Zhang, H. F. (2013). Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. Journal of Hazardous Materials, 260, 399–408.
  • Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., and Wang, X. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160(2–3), 655–661.
  • Feng, Y. A., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Deng, J. H., and Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162(2), 487–494.
  • Gao, Y., Li, Q., Ling, W., and Zhu, X. (2011). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185(2–3), 703–709.
  • Gao, Y., Xiong, W., Ling, W., and Xu, J. (2006). Sorption of phenanthrene by soils contaminated with heavy metals. Chemosphere, 65(8), 1355–1361.
  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., and Pyle, G. G. (2015). Metal-polycyclic aromatic hydrocarbon mixture toxicity in hyalella azteca. 2. Metal accumulation and oxidative stress as interactive co-toxic mechanisms. Environmental Science & Technology, 49(19), 11780–11788.
  • Gogolev, A., and Wilke, B. M. (1997). Combination effects of heavy metals and fluoranthene on soil bacteria. Biology and Fertility of Soils, 25(3), 274–278.
  • Gokel, G. W., Barbour, L. J., Stephen, L., and Meadows, E. S. (2001). Macrocyclic polyethers as probes to assess and understand alkali metal cation–π interactions. Coordination Chemistry Reviews, 222(1), 127–154.
  • Gong, J. L., Wang, B., Zeng, G. M., Yang, C. P., Niu, C. G., Niu, Q. Y., Zhou, W. J., and Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, 164(2–3), 1517–1522.
  • Gorman-Lewis, D., Jensen, M. P., Harrold, Z. R., and Hertel, M. R. (2013). Complexation of neptunium(V) with Bacillus subtilis endospore surfaces and their exudates. Chemical Geology, 341, 75–83.
  • Gorria, M., Tekpli, X., Sergent, O., Huc, L., Gaboriau, F., Rissel, M., Chevanne, M., Dimanche-Boitrel, M. T., and Lagadic-Gossmann, D. (2006). Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: Protection by exogenous cholesterol. Annals of the New York Academy of Sciences, 1090, 108–112.
  • Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., and He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605.
  • Gutierrez-Gines, M. J., Hernandez, A. J., Perez-Leblic, M. I., Pastor, J., and Vangronsveld, J. (2014). Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria. Journal of Environmental Management, 143, 197–207.
  • Hechmi, N., Aissa, N. B., Abdenaceur, H., and Jedidi, N. (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research, 21(2), 1304–1313.
  • Hu, X. J., Wang, J. S., Liu, Y. G., Li, X., Zeng, G. M., Bao, Z. L., Zeng, X. X., Chen, A. W., and Long, F. (2011). Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185(1), 306–314.
  • Huang, C., Zeng, G. M., Huang, D. L., Lai, C., Xu, P., Zhang, C., Cheng, M., Wan, J., Hu, L., and Zhang, Y. (2017). Effect of phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. Bioresource Technology, 243, 294–303.
  • Huang, D. L., Zeng, G. M., Feng, C. L., Hu, S., Jiang, X. Y., Tang, L., Su, F. F., Zhang, Y., Zeng, W., and Liu, H. L. (2008). Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environmental Science & Technology, 42(13), 4946–4951.
  • Jiang, J., Liu, H., Li, Q., Gao, N., Yao, Y., and Xu, H. (2015). Combined remediation of Cd–phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicology and Environmental Safety, 120, 386–393.
  • Jin, J., Sun, K., Wu, F., Gao, B., Wang, Z., Kang, M., Bai, Y., Zhao, Y., Liu, X., and Xing, B. (2014). Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. The Science of the Total Environment, 473–474, 308–316.
  • Ke, L., Luo, L., Wang, P., Luan, T., and Tam, N. F. (2010). Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresource Technology, 101(18), 6961–6972.
  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.
  • Khillare, P. S., Jyethi, D. S., and Sarkar, S. (2012). Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food and Chemical Toxicology, 50(5), 1642–1652.
  • Kuang, D., Zhang, W., Deng, Q., Zhang, X., Huang, K., Guan, L., Hu, D., Wu, T., and Guo, H. (2013). Dose–response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers. Environmental Science & Technology, 47(13), 7446–56.
  • Lai, H. Y., and Chen, Z. S. (2006). The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). Journal of Hazardous Materials, 137(3), 1710–1718.
  • Lee, K. Y., Bosch, J., and Meckenstock, R. U. (2012). Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environmental Geochemistry and Health, 34, 135–142.
  • Li, W. C., and Wong, M. H. (2012). Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. Journal of Hazardous Materials, 209–210, 421–33.
  • Liang, J., Liu, J. F., Yuan, X. Z., Dong, H. R., Zeng, G. M., Wu, H. P., Wang, H., Liu, J. Y., Hu, S. S., Zhang, S. Q., Yu, Z. G., He, X. X., and He, Y. (2015). Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 273, 101–110.
  • Lien, H. L., Jhuo, Y. S., and Chen, L. H. (2007). Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environmental Engineering Science, 24(1), 21–30.
  • Lin, Q., Wang, Z., Ma, S., and Chen, Y. (2006). Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. The Science of the Total Environment, 368(2–3), 814–822.
  • Liu, J., Min, H., and Ye, L. (2008). The negative interaction between the degradation of phenanthrene and tricyclazole in medium, soil and soil/compost mixture. Biodegradation, 19(5), 695–703.
  • Liu, S. H., Zeng, G. M., Niu, Q. Y., Gong, J. L., Hu, X. J., Lu, L. H., Zhou, Y. Y., Hu, X., Chen, M., and Yan, M. (2015). Effect of Pb(II) on phenanthrene degradation by new isolated Bacillus sp P1. Rsc Advances, 5(69), 55812–55818.
  • Lohmann, R., Breivik, K., Dachs, J., and Muir, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150(1), 150–65.
  • Ma, J. W., Wang, F. Y., Huang, Z. H., and Wang, H. (2010). Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. Journal of Hazardous Materials, 176(1–3), 715–20.
  • McNally, D. L., Mihelcic, J. R., and Lueking, D. R. (1999). Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38(6), 1313–1321.
  • Niu, Q. Y., Zeng, G. M., Niu, Y. L., and Zeng, F. F. (2009). Laboratory Study on Composting of Soil with Combined Pollutants of Phenanthrene and Lead. (2009) 3rd International Conference on Bioinformatics and Biomedical Engineering, Vols. 1–11, pp. 4234–4236.
  • Nsanganwimana, F., Pourrut, B., Mench, M., and Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Journal of Environmental Management, 143, 123–134.
  • Nwachukwu, O. I., and Pulford, I. D. (2008). Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use Manage, 24(2), 199–207.
  • Obuekwe, I. S., and Semple, K. T. (2013). Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of C-14-phenanthrene in soil. Environmental Pollution, 180, 180–189.
  • Ohtaki, H., and Radnai, T. (1993). Structure and dynamics of hydrated ions. Chemical Reviews, 1993, 1157–1204.
  • Paquet, N., Lavoie, M., Maloney, F., Duval, J. F., Campbell, P. G., and Fortin, C. (2015). Cadmium accumulation and toxicity in the unicellular alga Pseudokirchneriella subcapitata: Influence of metal-binding exudates and exposure time. Environmental Toxicology and Chemistry, 34(7), 1524–32.
  • Pounds, J. G., Haider, J., Chen, D. G., and Mumtaz, M. (2004). Interactive toxicity of simple chemical mixtures of cadmium, mercury, methylmercury and trimethyltin: model-dependent responses. Environmental Toxicology and Pharmacology, 18(2), 101–113.
  • Qian, L. B., Chen, M. F., and Chen, B. L. (2015). Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes. Journal of Soils Sediments, 15(5), 1130–1138.
  • Rosner, J. L., and Aumercier, M. (1990). Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 34(12), 2402–2406.
  • Said, W. A., and Lewis, D. L. (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied and Environmental Microbiology, 57(5), 1498–1503.
  • Seger, M. R., and Maciel, G. E. (2006). NMR investigation of the behavior of an organothiophosphate pesticide, methyl parathion, sorbed on clays. Environmental Science & Technology, 40(2), 552–558.
  • Shen, G., Lu, Y., Zhou, Q., and Hong, J. (2005). Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere, 61(8), 1175–1182.
  • Shen, G. Q., Lu, Y. T., and Hong, J. B. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety, 63(3), 474–480.
  • Shih, Y. H., Chen, M. Y., and Su, Y. F. (2011). Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: Effects of copper, nickel, and ferric cations. Applied Catalysis B: Environmental, 105, 24–29.
  • Smolen, J. M., and Stone, A. T. (1997). Divalent metal ion-catalyzed hydrolysis of phosphorothionate ester pesticides and their corresponding oxonates. Environmental Science & Technology, 31(6), 1664–1673.
  • Song, S., Zhu, L., and Zhou, W. (2008). Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environmental Pollution, 156(3), 1368–1370.
  • Stringfellow, W. T., and Aitken, M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Applied and Environmental Microbiology, 61(1), 357–362.
  • Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Huang, F. L., Dong, R. X., and Lin, J. J. (2009). The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 30(30), 5979–5987.
  • Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., and Xing, B. (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology, 118, 120–127.
  • Sun, Y. B., Zhou, Q. X., Xu, Y. M., Wang, L., and Liang, X. F. (2011). Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. Journal of Hazardous Materials, 186(2–3), 2075–2082.
  • Tang, L., Zeng, G. M., Shen, G. L., Li, Y. P., Zhang, Y., and Huang, D. L. (2008). Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science & Technology, 42(4), 1207–1212.
  • Tang, W. W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., and Huang, B. B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. The Science of the Total Environment, 468, 1014–1027.
  • Thavamani, P., Megharaj, M., Krishnamurti, G. S., McFarland, R., and Naidu, R. (2011). Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation. Environment International, 37(1), 184–189.
  • Tripathi, V., Fraceto, L. F., and Abhilash, P. C. (2015). Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecological Engineering, 82, 330–335.
  • Uchimiya, M., Wartelle, L. H., and Boddu, V. M. (2012). Sorption of triazine and organophosphorus pesticides on soil and biochar. Journal of Agricultural and Food Chemistry, 60(12), 2989–2997.
  • Wang, K., Chen, X. X., Zhu, Z. Q., Huang, H. G., Li, T. Q., and Yang, X. E. (2014a). Dissipation of available benzo[a]pyrene in aging soil co-contaminated with cadmium and pyrene. Environmental Science and Pollution Research, 21(2), 962–971.
  • Wang, W., Zhang, X., Huang, J., Yan, C., Zhang, Q., Lu, H., and Liu, J. (2014b). Interactive effects of cadmium and pyrene on contaminant removal from co-contaminated sediment planted with mangrove Kandelia obovata (S., L.) Yong seedlings. Marine Pollution Bulletin, 84(1–2), 306–313.
  • Wang, X., Sato, T., and Xing, B. (2006). Competitive sorption of pyrene on wood chars. Environmental Science & Technology, 40(10), 3267–3272.
  • Wen, J. W., Gao, D. W., Zhang, B., and Liang, H. (2011). Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. International Biodeterioration & Biodegradation, 65(4), 600–604.
  • Wild, E., Dent, J., Thomas, G. O., and Jones, K. C. (2005). Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology, 39(10), 3695–3702.
  • Wu, D., Li, H., Liao, S. H., Sun, X. L., Peng, H. B., Zhang, D., and Pan, B. (2014). Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal. The Science of the Total Environment, 481, 209–216.
  • Wu, H., Lai, C., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Li, X., Liu, J., Chen, M., Lu, L., Hu, L., and Wan, J. (2016). The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical Reviews in Biotechnology 2017, 37(6), 754–764.
  • Wu, H. P., Zeng, G. M., Liang, J., Guo, S. L., Dai, J., Lu, L. H., Wei, Z., Xu, P. A., Li, F., Yuan, Y. J., and He, X. X. (2015). Effect of early dry season induced by the three gorges dam on the soil microbial biomass and bacterial community structure in the Dongting Lake wetland. Ecological Indicators, 53, 129–136.
  • Wu, H. P., Zeng, G. M., Liang, J., Zhang, J. C., Cai, Q., Huang, L., Li, X. D., Zhu, H. N., Hu, C. X., and Shen, S. (2013). Changes of soil microbial biomass and bacterial community structure in Dongting Lake: Impacts of 50,000 dams of Yangtze River. Ecological Engineering, 57, 72–78.
  • Wuana, R. A., and Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, Article ID 402647.
  • Xing, B. S., Pignatello, J. J., and Gigliotti, B. (1996). Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents. Environmental Science & Technology, 31(5), 2432–2440.
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., and Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. The Science of the Total Environment, 424, 1–10.
  • Yan, D. Y., and Lo, I. M. (2013). Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environmental Pollution, 178, 15–22.
  • Yang, K., Wang, X., Zhu, L., and Xing, B. (2006). Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environmental Science & Technology, 40(18), 5804–5810.
  • Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., Yu, J., Ren, X., Yi, H., Cheng, M., and Zhang, C. (2017). Biological technologies for the remediation of co-contaminated soil. Critical Reviews in Biotechnology, DOI:10.1080/07388551.2017.1304357.
  • Yu, Z., and Huang, W. (2005). Competitive Sorption between 17α-Ethinyl Estradiol and Naphthalene/Phenanthrene by Sediments. Environmental Science & Technology, 39(13), 4878–4885.
  • Zeng, G., Chen, M., and Zeng, Z. (2013a). Risks of neonicotinoid pesticides. Science, 340(6139), 1403.
  • Zeng, G. M., Chen, M., and Zeng, Z. T. (2013b). Shale gas: Surface water also at risk. Nature, 499(7457), 154–154.
  • Zhang, H., Dang, Z., Zheng, L. C., and Yi, X. Y. (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science and Technology, 6(2), 249–258.
  • Zhang, W., Zhuang, L., Yuan, Y., Tong, L., and Tsang, D. C. (2011a). Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium. Chemosphere, 83(3), 302–310.
  • Zhang, X. K., Wang, H. L., He, L. Z., Lu, K. P., Sarmah, A., Li, J. W., Bolan, N., Pei, J. C., and Huang, H. G. (2013a). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.
  • Zhang, Y., Zeng, G. M., Tang, L., Huang, D. L., Jiang, X. Y., and Chen, Y. N. (2007). A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosensors & Bioelectronics, 22(9–10), 2121–2126.
  • Zhang, Y. P., Wang, F., Wei, H. J., Wu, Z. G., Zhao, Q. G., and Jiang, X. (2013b). Enhanced biodegradation of poorly available polycyclic aromatic hydrocarbons by easily available one. International Biodeterioration & Biodegradation, 84, 72–78.
  • Zhang, Z., Rengel, Z., Meney, K., Pantelic, L., and Tomanovic, R. (2011b). Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. Journal of Hazardous Materials, 189(1–2), 119–126.
  • Zhang, Z. H., Rengel, Z., Chang, H., Meney, K., Pantelic, L., and Tomanovic, R. (2012). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175, 1–8.
  • Zheng, Z. M., and Obbard, J. P. (2002). Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme Microbial Technol, 31(1–2), 3–9.
  • Zhou, W., Yang, J., Lou, L., and Zhu, L. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159(5), 1198–1204.
  • Zhu, Z. Q., Yang, X. E., Wang, K., Huang, H. G., Zhang, X. C., Fang, H., Li, T. Q., Alva, A. K., and He, Z. L. (2012). Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. Journal of Hazardous Materials, 235, 144–151.
  • Zouboulis, A. I., Loukidou, M. X., and Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 39(8), 909–916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.