6,628
Views
490
CrossRef citations to date
0
Altmetric
Articles

Biological methods for textile dye removal from wastewater: A review

, , ORCID Icon &
Pages 1836-1876 | Published online: 13 Dec 2017

References

  • Khandare, R. V., and Govindwar, S. P. (2015). Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotech. Adv., 33, 1697–1714. https://doi.org/10.1016/j.biotechadv.2015.09.003
  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., and Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage., 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090
  • Rani, B., Maheshwari, R., Yadav, R.k., Pareek, D., and Sharma, A. (2013). Resolution to provide safe drinking water for sustainability of future perspectives. Res. J. Chem. Environ. Sci., 1, 50–54.
  • Chen, H. L., and Burns, L. D. (2006). Environmental analysis of textile products. Clothing. Text. Res. J., 24, 248–261. https://doi.org/10.1177/0887302X06293065
  • Seow, T. W., and Lim, C. K. (2016). Removal of dye by adsorption: A review. Int. J. Appl. Eng. Res., 11, 2675–2679.
  • Keharia, H., and Madamwar, D. (2003). Bioremediation concepts for treatment of dye containing wastewater: A review. Ind. J. Exp. Biol., 41, 1068–1075.
  • Ghaly, A. E., Ananthashankar, R., Alhattab, M. V. V. R., and Ramakrishnan, V. V. (2014). Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process. Tech., 5, 1–18.
  • Chung, Y. C., and Chen, C. Y. (2009). Degradation of azo dye reactive violet 5 by TiO2 photocatalysis. Environ. Chem. Lett., 7, 347–352. https://doi.org/10.1007/s10311-008-0178-6
  • Singh, K., and Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Crit. Rev. Environ. Sci. Tech., 41, 807–878. https://doi.org/10.1080/10643380903218376
  • Singh, B., Bauddh, K., and Bux, F. (2015). Algae and environmental sustainability ( vol. 7, pp. 97–106). Springer.
  • Gausa, S., and Abubakar, E. (2015). Tie-dye (adire) among the jukun people. Mgbakoigba: J Afr Stud., 4, 1–13.
  • Babu, B. R., Parande, A., Raghu, S., and Kumar, T. P. (1995). Textile technology. Technology. J. Cotton. Sci., 11, 141–153.
  • Gurses, A., Acıkyıldız, M., Guneş, K., and Gurses, M. S. (2016). Colorants in health and environmental aspects. Dyes and Pigments Springer International Publishing. 69–83
  • Afroze, S., Sen, T., and Ang, M. (2015). Agricultural solid wastes in aqueous phase dye adsorption: A review. In: Foster, C. (Ed.), Agricultural wastes: Characteristics, types and management (pp. 169–213). USA: Nova Publishers.
  • Rai, H. S., Bhattacharyya, M. S., Singh, J., Bansal, T. K., Vats, P., and Banerjee, U. C. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Tech., 35, 219–238. https://doi.org/10.1080/10643380590917932
  • Raj, D. S., Prabha, R. J., and Leena, R. (1970). Analysis of bacterial degradation of azo dye Congo red using HPLC. J. Ind. Poll. Cont., 28, 57–62.
  • Sudova, E., Machova, J., Svobodova, Z., and Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Vet. Med. Praha., 52, 527–539.
  • Carmen, Z., and Daniela, S. (2012). Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic pollutants ten years after the Stockholm convention-environmental and analytical update. Croatia: InTech.
  • Logrono, W., Perez, M., Urquizo, G., Kadier, A., Echeverría, M., Recalde, C., and Rakhely, G. (2017). Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere., 176, 378–388. https://doi.org/10.1016/j.chemosphere.2017.02.099
  • Turcanu, A., and Bechtold, T. (2017). Cathodic decolourisation of reactive dyes in model effluents released from textile dyeing. J. Clean. Prod., 142, 1397–1405. https://doi.org/10.1016/j.jclepro.2016.11.167
  • Rajasimman, M., Babu, S. V., and Rajamohan, N. (2017). Biodegradation of textile dyeing industry wastewater using modified anaerobic sequential batch reactor–Start-up, parameter optimization and performance analysis. J. Taiwan. Inst. Chem., 72, 171–181. https://doi.org/10.1016/j.jtice.2017.01.027
  • Kurade, M. B., Waghmode, T. R., Patil, S. M., Jeon, B. H., and Govindwar, S. P. (2017). Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem. Eng. J., 307, 1026–1036. https://doi.org/10.1016/j.cej.2016.09.028
  • Bharathi, K. S., and Ramesh, S. T. (2013). Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci., 3, 773–790. https://doi.org/10.1007/s13201-013-0117-y
  • Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–A review. J. Environ. Manage., 90, 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
  • Christie, R. M. (2001). Colour chemistry. Royal Soc. Chem.
  • Srinivasan, A., and Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage., 91, 1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003
  • Welham, A. (2000). The theory of dyeing (and the secret of life). J. Soc. Dyers Colour., 116, 140–143.
  • Wang, H., Su, J. Q., Zheng, X. W., Tian, Y., Xiong, X. J., and Zheng, T. L. (2009). Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int. Biodeterior. Biodegradation., 63, 395–399. https://doi.org/10.1016/j.ibiod.2008.11.006
  • Murugesan, K., and Kalaichelvan, P. T. (2003). Synthetic dye decolourization by white rot fungi. Ind. J. Exp. Biol., 41, 1076–1087.
  • Ali, H. (2010). Biodegradation of synthetic dyes-a review. Water. Soil. Pollut., 213, 251–273 https://doi.org/10.1007/s11270-010-0382-4
  • Pearce, C. I., Lloyd, J. R., and Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes. Pigm., 58, 179–196. https://doi.org/10.1016/S0143-7208(03)00064-0
  • Doble, M., and Kumar, A. (2005). Biotreatment of industrial effluents. Oxford, United Kingdom: Butterworth-Heinemann (111–132).
  • Amoozegar, M. A., Hajighasemi, M., Hamedi, J., Asad, S., and Ventosa, A. (2011). Azo dye decolorization by halophilic and halotolerant microorganisms. Ann. Microbiol., 61, 217–230. https://doi.org/10.1007/s13213-010-0144-y
  • Kuhad, R. C., Sood, N., Tripathi, K. K., Singh, A., and Ward, O. P. (2004). Developments in microbial methods for the treatment of dye effluents. Adv. Appl. Microbiol., 56, 185–213. https://doi.org/10.1016/S0065-2164(04)56006-9
  • Kemker, C. (2014). Turbidity, total suspended solids and water clarity. Fundam. Environ. Measurements. Fondriest Environmental, Inc. http://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/
  • Asamudo, N. U., Daba, A. S., and Ezeronye, O. U. (2005). Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr. J. Biotech., 4(13), 1548–1553.
  • Singh, R., Gautam, N., Mishra, A., and Gupta, R. (2011). Heavy metals and living systems: An overview. Ind. J. Pharmacol., 43, 246–253. https://doi.org/10.4103/0253-7613.81505
  • Sweeny, G. (2015). Fast fashion is the second dirtiest industry in the world, next to big oil. EcoWatch. Retrieved from http://ecowatch.com/2015/08/17/fast-fashion-second-dirtiest-industry/[ Accessed 6th June 2016].
  • Puvaneswari, N., Muthukrishnan, J., and Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Ind. J. Exp. Biol., 44, 618.
  • Golka, K., Heitmann, P., Gieseler, F., Hodzic, J., Masche, N., Bolt, H. M., and Geller, F. (2008). Elevated bladder cancer risk due to colorants-a statewide case-control study in North Rhine-Westphalia, Germany. J. Toxicol. Environ. Health., Part A, 71, 851–855. https://doi.org/10.1080/15287390801985869
  • Williams, J. (2006). Bioremediation of contaminated soils: A comparison of in situ and ex situ techniques.
  • De Gisi, S., Lofrano, G., Grassi, M., and Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Mater. Technol., 9, 10–40. https://doi.org/10.1016/j.susmat.2016.06.002
  • Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater., 167, 1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114
  • Ukiwe, L. N., Ibeneme, S. I., Duru, C. E., Okolue, B. N., Onyedika, G. O., and Nweze, C. A. (2014). Chemical and electrocoagulation techniques in coagulation-floccculation in water and wastewater treatment-a review. Int. J. Res. Rev. Appl. Sci., 18, 1.
  • Kim, S. H., Kim, T. W., Cho, D. L., Lee, D. H., Kim, J. C., and Moon, H. (2002). Application of characterization procedure in water and wastewater treatment by adsorption. Kor. J. Chem. Eng., 19, 895–902. https://doi.org/10.1007/BF02706986
  • Qu, X., Alvarez, P. J., and Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water. Res., 47, 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058
  • Ramalho, P. A., Scholze, H., Cardoso, M. H., Ramalho, M. T., and Oliveira-Campos, A. M. (2002). Improved conditions for the aerobic reductive decolorisation of azo dyes by Candida zeylanoides. Enz. Microb. Techn., 31, 848–854. https://doi.org/10.1016/S0141-0229(02)00189-8
  • Raghu, S., and Basha, C. A. (2007). Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J. Hazard. Mater., 149, 324–330. https://doi.org/10.1016/j.jhazmat.2007.03.087
  • Hosseinnia, A., Keyanpour-Rad, M., and Pazouki, M. (2010). Photo-catalytic degradation of organic dyes with different chromophores by synthesized nanosize TiO2 particles. World. Appl. Sci. J., 8, 1327–1332.
  • Gehrke, I., Geiser, A., and Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotech. Sci. Appl., 8, 1.
  • Costa, V. V., Jacinto, M. J., Rossi, L. M., Landers, R., and Gusevskaya, E. V. (2011). Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles. J. Catal., 282, 209–214. https://doi.org/10.1016/j.jcat.2011.06.014
  • Ong, S. T., Keng, P. S., Lee, W. N., Ha, S. T., and Hung, Y. T. (2011). Dye waste treatment. Water., 3, 157–176. https://doi.org/10.3390/w3010157
  • Chou, C. M., and Lien, H. L. (2011). Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J. Nanopart. Res., 13, 2099–2107. https://doi.org/10.1007/s11051-010-9967-5
  • Zhao, M., Tang, Z., and Liu, P. (2008). Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J. Hazard. Mater., 158, 43–51. https://doi.org/10.1016/j.jhazmat.2008.01.031
  • Turgay, O., Ersoz, G., Atalay, S., Forss, J., and Welander, U. (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol., 79, 26–33. https://doi.org/10.1016/j.seppur.2011.03.007
  • Margeta, K., Logar, N. Z., Siljeg, M., and Farkas, A. (2013). Natural zeolites in water treatment–how effective is their use. In Water treatment. InTech.
  • El-Ashtoukhy, E. S. Z., El-Taweel, Y. A., Abdelwahab, O., and Nassef, E. M. (2013). Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int. J. Electrochem. Sci, 8, 1534–1550.
  • Yagub, M. T., Sen, T. K., Afroze, S., and Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid. Interface. Sci., 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Al-Kdasi, A., Idris, A., Saed, K., and Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes- a review. Global Nest: Int. J., 6, 222–230.
  • Lodha, S., Jain, A., and Punjabi, P. B. (2010). A comparative study of photocatalytic degradation of methylene blue in presence of some transition metal complexes and hydrogen peroxide. Malaysian. J. Chem., 120, 19–26.
  • Chen, C., Wang, Q., Lei, P., Song, W., Ma, W., and Zhao, J. (2006). Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation. Environ. Sci. Tech., 40, 3965–3970. https://doi.org/10.1021/es060146j
  • Aplin, R., and Waite, T. D. (2000). Comparison of three advanced oxidation processes for degradation of textile dyes. Wat. Sci. Tech., 42, 345–354.
  • Daassi, D., Zouari-Mechichi, H., Frikha, F., Rodríguez-Couto, S., Nasri, M., and Mechichi, T. (2016). Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. J. Environ. Health. Sci. Eng., 14, 1. https://doi.org/10.1186/s40201-016-0244-0
  • Nassar, M. M., and El‐Geundi, M. S. (1991). Comparative cost of colour removal from textile effluents using natural adsorbents. J. Chem. Tech. Biotech., 50, 257–264. https://doi.org/10.1002/jctb.280500210
  • Adegoke, K. A., and Bello, O. S. (2015). Dye sequestration using agricultural wastes as adsorbents. Water. Resour. Ind., 12, 8–24. https://doi.org/10.1016/j.wri.2015.09.002
  • Bousher, A., Shen, X., and Edyvean, R. G. (1997). Removal of coloured organic matter by adsorption onto low-cost waste materials. Water. Res., 31, 2084–2092. https://doi.org/10.1016/S0043-1354(97)00037-7
  • Abu-Saied, M. A., Abdel-Halim, E. S., Fouda, M. M., and Al-Deyab, S. S. (2013). Preparation and characterization of iminated polyacrylonitrile for the removal of methylene blue from aqueous solutions. Int. Int. J. Electrochem. Sci., 8, 5121–5135.
  • Ekambaram, S. P., Perumal, S. S., and Annamalai, U. (2016). Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech., 6, 20. https://doi.org/10.1007/s13205-015-0335-0
  • Babu, S. S., Mohandass, C., Vijayaraj, A. S., and Dhale, M. A. (2015). Detoxification and color removal of Congo Red by a novel Dietzia sp. (DTS26)–a microcosm approach. Ecotoxicol. Environ. Saf., 114, 52–60. https://doi.org/10.1016/j.ecoenv.2015.01.002
  • Chequer, F. M. D., Dorta, D. J., and de Oliveira, D. P. (2011). Azo dyes and their metabolites: Does the discharge of the azo dye into water bodies represent human and ecological risks?. In Advances in treating textile effluent. InTech. 27–49.
  • Lewinsky, A. A. (2007). Hazardous materials and wastewater: Treatment, removal and analysis. Nova Publishers.
  • Lin, S. H., and Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water. Res., 31, 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  • Muda, K., Aris, A., Salim, M. R., and Ibrahim, Z. (2013). Sequential anaerobic-aerobic phase strategy using microbial granular sludge for textile wastewater treatment. In Biomass Now-Sustainable Growth and Use. InTech. 231–264.
  • Aust, S. D. (1990). Degradation of environmental pollutants by Phanerochaete chrysosporium. Microbial Eco., 197–209. https://doi.org/10.1007/BF02543877
  • Bumpus, J. A., and Aust, S. D. (1987). Biodegradation of DDT [1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol., 53, 2001–2008.
  • Lade, H., Govindwar, S., and Paul, D. (2015). Low-cost biodegradation and detoxification of textile azo dye CI Reactive Blue 172 by Providencia rettgeri strain HSL1. J. Chem., 2015.
  • Placido, J., Chanaga, X., Ortiz-Monsalve, S., Yepes, M., and Mora, A. (2016). Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp. from Colombia. Bioresour. Bioprocess., 3, 6. https://doi.org/10.1186/s40643-016-0084-x
  • Senthilkumar, S., Perumalsamy, M., and Prabhu, H. J. (2014). Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J. Saudi. Chem. Soc., 18, 845–853. https://doi.org/10.1016/j.jscs.2011.10.010
  • Singh, L., and Singh, V. P. (2010). Microbial degradation and decolorization of dyes in semi-solid medium by the fungus–Trichoderma harzianum. Environment & We: An In. J. Sci. Tech., 5, 147–153.
  • Anastasi, A., Tigini, V., and Varese, G. C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators. Springer Berlin Heidelberg. (pp. 29–49).
  • Joutey, N. T., Bahafid, W., Sayel, H., and El Ghachtouli, N. (2013). Biodegradation: Involved microorganisms and genetically engineered microorganisms. In Biodegradation-life of science. InTech.
  • Singh, A. K., Singh, R., Soam, A., and Shahi, S. K. (2012). Degradation of textile dye orange 3R by Aspergillus strain (MMF3) and their culture optimization. Curr. Disc., 1, 7–12.
  • Verma, A. K., Raghukumar, C., Parvatkar, R. R., and Naik, C. G. (2012). A rapid two-step bioremediation of the anthraquinone dye, Reactive Blue 4 by a marine-derived fungus. Water. Air. Soil. Pollu., 223, 3499–3509. https://doi.org/10.1007/s11270-012-1127-3
  • Corso, C. R., Almeida, E. J. R., Santos, G. C., Morao, L. G., Fabris, G. S. L., and Mitter, E. K. (2012). Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae. Water. Sci. Tech., 65, 1490–1495. https://doi.org/10.2166/wst.2012.037
  • Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., and Lumyong, S. (2013). Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl. Biochem. Biotech., 169, 539–545. https://doi.org/10.1007/s12010-012-9990-3
  • Kanagaraj, J., and Mandal, A. B. (2012). Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads. Environ. Sci. Pollut. Res., 19, 42–52. https://doi.org/10.1007/s11356-011-0534-0
  • Ngulube, T., Gumbo, J. R., Masindi, V., and Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manage., 191, 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031
  • Singh, S., Singh, N., Kumar, V., Datta, S., Wani, A. B., Singh, D., and Singh, J. (2016). Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett., 14, 317–329. https://doi.org/10.1007/s10311-016-0566-2
  • Hruby, C. E., Soupir, M. L., Moorman, T. B., Shelley, M., and Kanwar, R. S. (2016). Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils. J. Environ. Manage., 171, 60–69. https://doi.org/10.1016/j.jenvman.2016.01.040
  • Meek, D. W., Hoang, C. K., Malone, R. W., Kanwar, R. S., Fox, G. A., Guzman, J. A., and Shipitalo, M. J. (2012). Rational polynomial functions for modeling E. coli and bromide breakthrough. Trans. ASABE, 55, 1821–1826. https://doi.org/10.13031/2013.42365
  • Pappas, E. A., Kanwar, R. S., Baker, J. L., Lorimor, J. C., and Mickelson, S. (2008). Fecal indicator bacteria in subsurface drain water following swine manure application. Trans. ASABE., 51, 1567–1573. https://doi.org/10.13031/2013.25313
  • Reungsang, A., T.B. Moorman, and R.S. Kanwar. (2006). Prediction of atrazine fate in riparian buffer strips soils using the Root Zone Water Quality Model. J. Water. Environ. Technol., 3, 209–222. https://doi.org/10.2965/jwet.2005.209
  • Warnemuende, E. A., and Kanwar, R. S. (2002). Effects of swine manure application on bacterial quality of leachate from intact soil columns. Trans. ASAE., 45, 1849. https://doi.org/10.13031/2013.11436
  • Weed, D. A. J., Kanwar, R. S., Cambardella, C., and Moorman, T. B. (1998). Alachlor dissipation in shallow cropland soil. J. Environ. Qual., 27, 767–776. https://doi.org/10.2134/jeq1998.00472425002700040007x
  • Everts, C. J., and Kanwar, R. S. (1994). Evaluation of rhodamine WT as an adsorbed tracer in an agricultural soil. J. Hydrol., 153, 53–70. https://doi.org/10.1016/0022-1694(94)90186-4
  • Yang, H. Y., Jia, R. B., Chen, B., and Li, L. (2014). Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ. Sci. Pollut. Res., 21, 11086–11093. https://doi.org/10.1007/s11356-014-3027-0
  • Nguyen, T. A., Fu, C. C., and Juang, R. S. (2016). Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J. Environ. Manage., 182, 265–271. https://doi.org/10.1016/j.jenvman.2016.07.083
  • Glazer, A.N. (1997). Microbial Biotechnology WH freeman and Company New York. 54–58.
  • Mendes, S., Robalo, M. P., and Martins, L. O. (2015). Bacterial enzymes and multi-enzymatic systems for cleaning-up dyes from the environment. In Microbial Degradation of Synthetic Dyes in Wastewaters. Springer International Publishing. (27–55).
  • Wang, X., Cheng, X., Sun, D., Ren, Y., and Xu, G. (2014). Fate and transformation of naphthylaminesulfonic azo dye Reactive Black 5 during wastewater treatment process. Environ. Sci. Pollut. Res., 21, 5713–5723. https://doi.org/10.1007/s11356-014-2502-y
  • Elisangela, F., Andrea, Z., Fabio, D. G., de Menezes Cristiano, R., Regina, D. L., and Artur, C. P. (2009). Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int. Biodeterior. Biodegradation., 63, 280–288. https://doi.org/10.1016/j.ibiod.2008.10.003
  • Sudha, M., Saranya, A., Selvakumar, G., and Sivakumar, N. (2014). Microbial degradation of azo dyes: A review. Int J. Curr. Microbiol. Appl. Sci., 3, 670–690.
  • Singh, R. P., Singh, P. K., and Singh, R. L. (2014). Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol. Int., 21, 160. https://doi.org/10.4103/0971-6580.139797
  • Ali, D. M., Suresh, A., Praveen Kumar, R., Gunasekaran, M., and Thajuddin, N. (2011). Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. Afr. J. Basic. Appl. Sci., 3, 9–13.  
  • Prasad, A., and Rao, K. B. (2011). Physicochemical analysis of textile effluent and decolorization of textile azo dye by Bacillus endophyticus strain VITABR13. Environ. Biotechnol., 2, 55–62.
  • Imran, M., Arshad, M., Asghar, H. N., Asghar, M., and Crowley, D. E. (2014). Potential of Shewanella sp. strain IFN4 to decolorize azo dyes under optimal conditions. Int. J. Agric. Biol., 16, 578–584.
  • Sadaf, S., Bhatti, H. N., and Bibi, I. (2013). Efficient removal of disperse dye by mixed culture of Ganoderma lucidum and Coriolus versicolor. Pak. J. Agr. Sci., 50, 261–266.
  • Kochher, S., and Kumar, J. (2011). Microbial decolourization of crystal violet by Bacillus subtilis. In Biological Forum-An Int. J., 3, 82–86.
  • Gulati, D., and Jha, I. (2014). Microbial decolorization of dye reactive blue 19 by Bacteria Isolated from dye effluent contaminated soil. Int. J. Curr. Microbiol. App. Sci., 3, 913–922.
  • Ali, S. A. M., and Akthar, N. (2014). A study on bacterial decolorization of crystal violet dye by Clostridium perfringens, Pseudomonas aeruginosa and Proteus vulgaris.  Res. Article. Biol. Sci., 4, 89–-96.
  • Sethi, S., Malviya, M. M., Sharma, N., and Gupta, S. (2012). Biodecolorization of Azo Dye by Microbial Isolates from Textile Effluent and Sludge. Univ. J. Environ. Res. Tech., 2.
  • Shah, M. (2014). Efficacy of Rhodococcus rhodochrous in Microbial Degradation of Toludine Dye. Bioremediat. Biodegrad., 1–9.
  • Shinkafi, M. S., Mohammed, I. U., and Audu, A. A. (2015). Degradation and decolourization of textile dyes effluents. Eur. J. Biotech. Biosci., 3, 06–11.
  • Gudmalwar Rajesh, M., and Kamble, L. H. Biodegradation of reactive red 4E8Y5 by using Providencia spp. RMG1 and Bacillus spp. RMG2. Sci. Res. Report., 2, 178–188.
  • Hemapriya, J., and Vijayanand, S. (2014). Ecofriendly bioremediation of a triphenylmethane dye by textile effluent adapted bacterial strain vp-64. Int. J. Curr. Microbiol. Appl. Sci., 3, 983–992.
  • Pokharia, A., and Ahluwalia, S. S. (2016). Decolorization of Xenobiotic Azo Dye-Black WNN by Immobilized Paenibacillus alvei MTCC 10625. Int. J. Environ. Bioremed. Biodegrad., 4, 35–46.
  • Falavarjani, E. R., Khorasani, A. C., and Ghoreishi, S. M. (2012). Microbial Reduction of Monoazo and Diazo-linked Dyes by Pseudomonas aeruginosa and Pseudomonas putida. J. Pure. Appl. Microbiol., 6, 1559–1570.
  • Celia, M. P., and Suruthi, S. (2016). Textile dye degradation using bacterial strains isolated from textile mill effluent. Int. J. Appl. Res., 2, 337–341.
  • Modi, S., Pathak, B., and Fulekar, M. H. (2015). Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. J. Environ. Nanotechnol., 4, 37–46. https://doi.org/10.13074/jent.2015.06.152149
  • Rajendran, R., Prabhavathi, P., Karthiksundaram, S., Pattabi, S., Kumar, S. D., and Santhanam, P. (2015). Biodecolorization and bioremediation of denim industrial wastewater by adapted bacterial consortium immobilized on inert polyurethane foam (puf) matrix: A first approach with biobarrier Model. Pol. J. Microbiol., 64, 329–338. https://doi.org/10.5604/17331331.1185230
  • Sharma, R., and Sharma, S. (2015). Biosorption of Alizarin by Burkholderia sp. Int. J. Curr. Microbiol. App. Sci., 4, 112–122.
  • Oak, U., Ghattargi, V., Pawar, S., and Bhole, B. Degradation of Drimarene Red, a reactive textile dye by an extremophilic Bacillus sp. isolated from fresh water. Int. J. Appl. Pure. Sci. Agric., 2, 105–113.
  • Ezhilarasu, A. (2016). Textile industry Dye degrading by bacterial strain Bacillus sp. Int. J. Adv. Res. Biol. Sci., 3, 211–226.
  • Kiliç, N. K., and Donmez, G. (2012). Remazol blue removal and EPS production by Pseudomonas aeruginosa and Ochrobactrum sp. Pol. J. Environ. Stud., 21, 123–128.
  • Panswad, T., and Luangdilok, W. (2000). Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water. Res., 34, 4177–4184. https://doi.org/10.1016/S0043-1354(00)00200-1
  • Van der Zee, F. P., and Villaverde, S. (2005). Combined anaerobic–aerobic treatment of azo dyes- a short review of bioreactor studies. Water. Res., 39, 1425–1440. https://doi.org/10.1016/j.watres.2005.03.007
  • Işik, M., and Sponza, D. T. (2003). Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process. Biochem., 38, 1183–1192. https://doi.org/10.1016/S0032-9592(02)00282-0
  • Silveira, E., Marques, P. P., Silva, S. S., Lima-Filho, J. L., Porto, A. L. F., and Tambourgi, E. B. (2009). Selection of Pseudomonas for industrial textile dyes decolorization. Int. Biodeter. Biodegradation., 63, 230–235. https://doi.org/10.1016/j.ibiod.2008.09.007
  • Chang, J. S., and Kuo, T. S. (2000). Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour. Technol., 75, 107–111. https://doi.org/10.1016/S0960-8524(00)00049-3
  • Lin, J., Zhang, X., Li, Z., and Lei, L. (2010). Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour. Technol., 101, 34–40. https://doi.org/10.1016/j.biortech.2009.07.037
  • Gopinath, K. P., Murugesan, S., Abraham, J., and Muthukumar, K. (2009). Bacillus sp. mutant for improved biodegradation of Congo red: Random mutagenesis approach. Bioresour. Technol., 100, 6295–6300. https://doi.org/10.1016/j.biortech.2009.07.043
  • Xiao, X., Xu, C. C., Wu, Y. M., Cai, P. J., Li, W. W., Du, D. L., and Yu, H. Q. (2012). Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresour. Technol., 110, 86–90. https://doi.org/10.1016/j.biortech.2012.01.099
  • Jain, K., Shah, V., Chapla, D., and Madamwar, D. (2012). Decolorization and degradation of azo dye–Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J. Hazard. Mater., 213, 378–386. https://doi.org/10.1016/j.jhazmat.2012.02.010
  • Sarayu, K., and Sandhya, S. (2010). Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl. Biochem. Biotech, 160, 1241–1253. https://doi.org/10.1007/s12010-009-8592-1
  • Eslami, M., Amoozegar, M. A., and Asad, S. (2016). Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int. J. Biol. Macromol., 85, 111–116. https://doi.org/10.1016/j.ijbiomac.2015.12.065
  • Sharma, S. C. D., Sun, Q., Li, J., Wang, Y., Suanon, F., Yang, J., and Yu, C. P. (2016). Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2, 6-disulfonate and Fe3O4 nanoparticles. Int. Biodeter. Biodegradation., 112, 88–97. https://doi.org/10.1016/j.ibiod.2016.04.035
  • Morrison, J. M., and John, G. H. (2016). Growth and physiology of Clostridium perfringens wild-type and ΔazoC knockout: An azo dye exposure study. Microbiol., 162, 330–338. https://doi.org/10.1099/mic.0.000212
  • Chang, J. S., Chou, C., Lin, Y. C., Lin, P. J., Ho, J. Y., and Hu, T. L. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water. Res., 35, 2841–2850. https://doi.org/10.1016/S0043-1354(00)00581-9
  • Prasad, D. V. (2015). Biodecolorization of Anthraquinone Textile (Acid Blue 25) dye by Klebsiella sp. Int. J. Rec. Scient. Res., 6, 3216–3222
  • Karatay, S. E., Kılıç, N. K., and Donmez, G. (2015). Removal of Remazol Blue by azoreductase from newly isolated bacteria. Ecological Eng., 84, 301–304. https://doi.org/10.1016/j.ecoleng.2015.09.037
  • Tan, L., He, M., Song, L., Fu, X., and Shi, S. (2016). Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresour. Technol., 203, 287–294. https://doi.org/10.1016/j.biortech.2015.12.058
  • Saratale, R. G., Saratale, G. D., Govindwar, S. P., and Kim, D. S. (2015). Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies. J. Environ. Sci. Health., Part A, 50, 176–192. https://doi.org/10.1080/10934529.2014.975536
  • Khan, S., and Malik, A. (2015). Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can. J. Microbiol., 62, 220–232. https://doi.org/10.1139/cjm-2015-0552
  • Zhang, C., Xin, Y., Wang, Y., Guo, T., Lu, S., and Kong, J. (2015). Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Appl. Environ. Microbiol., 81, 6108–6119. https://doi.org/10.1128/AEM.01300-15
  • Li, R., Ning, X. A., Sun, J., Wang, Y., Liang, J., Lin, M., and Zhang, Y. (2015). Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential. Bioresour. Technol., 194, 233–239. https://doi.org/10.1016/j.biortech.2015.06.139
  • Liu, W., Liu, L., Liu, C., Hao, Y., Yang, H., Yuan, B., and Jiang, J. (2016). Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1. Biochem. Eng. J., 110, 115–124. https://doi.org/10.1016/j.bej.2016.02.012
  • Das, A., and Mishra, S. (2016). Decolorization of Different Textile Azo Dyes using an Isolated Bacterium Enterococcus durans GM13. Int. J. Curr. Microbiol. App. Sci., 5, 676–686. https://doi.org/10.20546/ijcmas.2016.507.077
  • Arulazhagan, P. (2016). A study on microbial decolourization of reactive red M8B by Bacillus subtilis isolated from dye contaminated soil samples. Int. J. Curr. Res. Biol. Med., 1, 1–13.
  • Mohamed, W. S. (2016). Isolation and screening of reactive dye decolorizing bacterial isolates from textile industry effluent. Int. J. Microbiol. Res., 7, 01–08.
  • Chaieb, K., Hagar, M., and Radwan, N. R. (2016). Biodegradation and decolorization of azo dyes by adherent Staphylococcus lentus strain. Appl. Biol. Chem., 59, 405–413. https://doi.org/10.1007/s13765-016-0169-4
  • Palanivelan, R., Rajakumar, S., and Ayyasamy, P. M. (2014). Effect of various carbon and nitrogen sources on decolorization of textile dye remazol golden yellow using bacterial species. J. Environ. Biol., 35, 781.
  • Pandey, A., Singh, P., and Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. Int. Biodeter. Biodegradation., 59, 73–84. https://doi.org/10.1016/j.ibiod.2006.08.006
  • Adedayo, O., Javadpour, S., Taylor, C., Anderson, W. A., and Moo-Young, M. (2004). Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World. J. Microbiol. Biotechnol., 20, 545–550. https://doi.org/10.1023/B:WIBI.0000043150.37318.5f
  • Devi, S., Murugappan, A., and Rajesh Kannan, R. (2015). Sorption of Reactive blue 19 onto freshwater algae and seaweed. Desalin. Water. Treat., 54, 2611–2624. https://doi.org/10.1080/19443994.2014.902333
  • Gupta, V. K., Bhushan, R., Nayak, A., Singh, P., and Bhushan, B. (2014). Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediation. J., 18, 179–191. https://doi.org/10.1080/10889868.2014.918574
  • Al-Fawwaz, A. T., and Abdullah, M. (2016). Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. Isolated from North Jordan. Int. J. Environ. Sci. Dev., 7, 95. https://doi.org/10.7763/IJESD.2016.V7.748
  • Alvarez, M. S., Rodriguez, A., Sanroman, M. A., and Deive, F. J. (2015). Microbial adaptation to ionic liquids. RSC. Adv., 5, 17379–17382. https://doi.org/10.1039/C4RA10283E
  • Ozer, A., Akkaya, G., and Turabik, M. (2006). The removal of Acid Red 274 from wastewater: Combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes. Pigm., 71, 83–89. https://doi.org/10.1016/j.dyepig.2005.06.004
  • Daneshvar, N., Ayazloo, M., Khataee, A. R., and Pourhassan, M. (2007). Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol., 98, 1176–1182. https://doi.org/10.1016/j.biortech.2006.05.025
  • Karacakaya, P., Kiliç, N. K., Duygu, E., and Donmez, G. (2009). Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J. Hazard. Mater., 172, 1635–1639. https://doi.org/10.1016/j.jhazmat.2009.08.037
  • Kumar, K. V., Sivanesan, S., and Ramamurthi, V. (2005). Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process. Biochem., 40, 2865–2872. https://doi.org/10.1016/j.procbio.2005.01.007
  • Caparkaya, D., and Cavas, L. (2008). Biosorption of Methylene Blue by a Brown Alga Cystoseira barbatula Kutzing. Acta. Chim. Slov., 55, 547–553.
  • Marungrueng, K., and Pavasant, P. (2007). High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour. Technol., 98, 1567–1572. https://doi.org/10.1016/j.biortech.2006.06.010
  • Sinha, S., Nigam, S., Singh, R. (2015). Potential of Nostoc muscorum for the decolorisation of textiles dye RGB-Red. Int. J. Pharm. Bio. Sci., 6, 1092–1100.
  • Tahir, H., Sultan, M., and Jahanzeb, Q. (2008). Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. Afr. J. Biotech., 7, 2649–2655.
  • Cengiz, S., and Cavas, L. (2008). Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour. Technol., 99, 2357–2363. https://doi.org/10.1016/j.biortech.2007.05.011
  • Dotto, G. L., Lima, E. C., and Pinto, L. A. A. (2012). Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresour. Technol., 103, 123–130. https://doi.org/10.1016/j.biortech.2011.10.038
  • Omar, H. H. (2008). Algal decolorization and degradation of monoazo and diazo dyes. Pak. J. Biol. Sci., 11, 1310–1316. https://doi.org/10.3923/pjbs.2008.1310.1316
  • Thirumagal, J., and Panneerselvam, A. (2016). Isolation of Azoreductase Enzyme in Its Various Forms from Chlorella pyrenoidosa and Its Immobilization Efficiency for Treatment of Water. Int. J. Sci. Res., 5, 2133–2138.
  • Pathak, V. V., Kothari, R., Chopra, A. K., and Singh, D. P. (2015). Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J. Environ. Manage., 163, 270–277. https://doi.org/10.1016/j.jenvman.2015.08.041
  • Waqas, R., Arshad, M., Asghar, H. N., and Asghar, M. (2015). Optimization of factors for enhanced phycoremediation of reactive blue azo dye. Int, J. Agric. Biol., 17(4).
  • Dave, S. R., Patel, T. L., and Tipre, D. R. (2015). Bacterial degradation of azo dye containing wastes. In Microbial Degradation of Synthetic Dyes in Wastewaters. Springer International Publishing. (57–83).
  • Ramya, M., Iyappan, S., Manju, A., and Jiffe, J. S. (2010). Biodegradation and decolorization of acid red by Acinetobacter radioresistens. J. Bioremed. Biodegrad., 1, 1–6.
  • van Bloois, E., Pazmino, D. E. T., Winter, R. T., and Fraaije, M. W. (2010). A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl. Microbiol. Biotech., 86, 1419–1430. https://doi.org/10.1007/s00253-009-2369-x
  • Ghodake, G., Jadhav, U., Tamboli, D., Kagalkar, A., and Govindwar, S. (2011). Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890. Ind. J. Microbiol., 51, 501–508. https://doi.org/10.1007/s12088-011-0131-4
  • Pandey, A. K., and Dubey, V. (2012). Biodegradation of azo dye Reactive Red BL by Alcaligenes sp. AA09. Int. J. Eng. Sci., 1, 54–60.
  • Vishwakarma, S. K., Singh, M. P., Srivastava, A. K., and Pandey, V. K. (2012). Azo dye (direct blue) decolorization by immobilized extracellular enzymes of Pleurotus species. Cell. Mol. Biol., 58, 21–25.
  • Franciscon, E., Grossman, M. J., Paschoal, J. A. R., Reyes, F. G. R., and Durrant, L. R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus., 1, 37. https://doi.org/10.1186/2193-1801-1-37
  • Shah, P. D., Dave, S. R., and Rao, M. S. (2012). Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int. Biodeter. Biodegradation., 69, 41–50. https://doi.org/10.1016/j.ibiod.2012.01.002
  • Gholami-Borujeni, F., Faramarzi, M. A., Nejatzadeh-Barandozi, F., and Mahvi, A. H. (2013). Oxidative degradation and detoxification of textile azo dye by horseradish peroxidase enzyme. Fresen. Environ. Bull., 22, 739–744.
  • Oturkar, C. C., Patole, M. S., Gawai, K. R., and Madamwar, D. (2013). Enzyme based cleavage strategy of Bacillus lentus BI377 in response to metabolism of azoic recalcitrant. Bioresour. Technol., 130, 360–365. https://doi.org/10.1016/j.biortech.2012.12.019
  • Tian, Y. S., Xu, H., Peng, R. H., Yao, Q. H., and Wang, R. T. (2014). Heterologous expression and characterization of laccase 2 from Coprinopsis cinerea capable of decolorizing different recalcitrant dyes. Biotechnol. Biotechnol. Equip., 28, 248–258. https://doi.org/10.1080/13102818.2014.913402
  • Chiong, T., Lau, S. Y., Lek, Z. H., Koh, B. Y., and Danquah, M. K. (2016). Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. J. Environ. Chem. Eng., 4, 2500–2509. https://doi.org/10.1016/j.jece.2016.04.030
  • Patil, S. M., Chandanshive, V. V., Rane, N. R., Khandare, R. V., Watharkar, A. D., and Govindwar, S. P. (2016). Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation. Environ. Res., 146, 340–349. https://doi.org/10.1016/j.envres.2016.01.019
  • Shah, M., Patel, K., Nair, S., Darji, A., and Maharaul, S. (2013). Microbial Degradation of Reactive Red by Pseudomonas sp. MPS-2. J. Bioremed. Biodeg., 4, 1–7.
  • Morrison, J., Dai, S., Ren, J., Taylor, A., Wilkerson, M., John, G., and Xie, A. (2014). Structure and stability of an azoreductase with an FAD Cofactor from the strict anaerobe Clostridium perfringens. Protein. Pept. lett., 21, 523–534. https://doi.org/10.2174/092986652106140425120614
  • Lade, H., Kadam, A., Paul, D., and Govindwar, S. (2015). A Low-Cost Wheat bran medium for biodegradation of the benzidine-based carcinogenic dye Trypan Blue using a microbial consortium. Int. J. Environ. Res. Public. Health., 12, 3480–3505. https://doi.org/10.3390/ijerph120403480
  • Chhabra, M., Mishra, S., and Sreekrishnan, T. R. (2015). Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. J. Environ. Health. Sci. Eng., 13, 38. https://doi.org/10.1186/s40201-015-0192-0
  • Shah, B., Jain, K., Jiyani, H., Mohan, V., and Madamwar, D. (2016). Microaerophilic symmetric reductive cleavage of reactive azo dye-remazole brilliant violet 5R by consortium VIE6: Community synergism. Appl. Biochem. Biotech., 180, 1029–1042. https://doi.org/10.1007/s12010-016-2150-4
  • Qi, J., Schlomann, M., and Tischler, D. (2016). Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. J. Mol. Catal. B.: Enz., 130, 9–17. https://doi.org/10.1016/j.molcatb.2016.04.012
  • Yang, X., Zheng, J., Lu, Y., and Jia, R. (2016). Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus. Environ. Sci. Pollut. Res., 23, 9585–9597. https://doi.org/10.1007/s11356-016-6164-9
  • Lade, H., Govindwar, S., and Paul, D. (2015). Mineralization and detoxification of the carcinogenic azo dye Congo Red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int. J. Environ. Res. Public. Health., 12, 6894–6918. https://doi.org/10.3390/ijerph120606894
  • Soni, R.K., Acharya, P.B., and Modi, H.A. (2015). Elucidation of biodegradation mechanism of Reactive Red 35 by Pseudomonas aeruginosa ARSKS20, J. Environ. Sci. Toxicol. Food. Tech., 9, 31–40.
  • Roat, C., Kadam, A., Patel, T., and Dave, S. (2016). Biodegradation of diazo dye, reactive blue 160 by Isolate Microbacterium sp B12 Mutant: Identification of intermediates by LC-MS. Int. J. Curr. Microbiol. App. Sci., 5, 534–547. https://doi.org/10.20546/ijcmas.2016.503.063
  • Govindwar, S. P., Kurade, M. B., Tamboli, D. P., Kabra, A. N., Kim, P. J., and Waghmode, T. R. (2014). Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere., 109, 234–238. https://doi.org/10.1016/j.chemosphere.2014.02.009
  • Sharma, N.R., and Arora, L.A. (2013). Optimization and mycoremediation of brilliant blue by fungus collected from Nerium oleander, Mangifera indica, Azadirachta indica, Morus nigra and Psidium guajava. J. Pure. Appl. Microbiol., 8, 1.
  • Hosseinzadeh, P., Mirts, E. N., Pfister, T. D., Gao, Y. G., Mayne, C., Robinson, H., and Lu, Y. (2016). Enhancing Mn (II)-binding and manganese peroxidase activity in a designed cytochrome c peroxidase through fine-tuning secondary-sphere interactions. Biochem., 55,1494–1502. https://doi.org/10.1021/acs.biochem.5b01299
  • Casas, N., Blanquez, P., Gabarrell, X., Vicent, T., Caminal, G., and Sarra, M. (2007). Degradation of orange G by laccase: Fungal versus enzymatic process. Environ. Technol., 28, 1103–1110. https://doi.org/10.1080/09593332808618874
  • Kalme, S., Ghodake, G., and Govindwar, S. (2007). Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int. Biodeter. Biodegradation., 60, 327–333. https://doi.org/10.1016/j.ibiod.2007.05.006
  • Robinson, T., Chandran, B., and Nigam, P. (2002). Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water. Res., 36, 2824–2830. https://doi.org/10.1016/S0043-1354(01)00521-8
  • Tunc, O., Tanacı, H., and Aksu, Z. (2009). Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J. Hazard. Mater., 163, 187–198. https://doi.org/10.1016/j.jhazmat.2008.06.078
  • Deniz, F., and Karaman, S. (2011). Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue. Microchem. J., 99, 296–302. https://doi.org/10.1016/j.microc.2011.05.021
  • Ferreira, B. C. S., Teodoro, F. S., Mageste, A. B., Gil, L. F., de Freitas, R. P., and Gurgel, L. V. A. (2015). Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies. Ind. Crops. Prod., 65, 521–534. https://doi.org/10.1016/j.indcrop.2014.10.020
  • Subramaniam, R., and Ponnusamy, S. K. (2015). Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water. Resour. Ind., 11, 64–70. https://doi.org/10.1016/j.wri.2015.07.002
  • Kalaiarasi, K., Lavanya, A., Amsamani, S., and Bagyalakshmi, G. (2012). Decolorization of textile dye effluent by non-viable biomass of Aspergillus fumigatus. Braz. Arch. Biol. Technol., 55, 471–476. https://doi.org/10.1590/S1516-89132012000300019
  • Han, M. H., and Yun, Y. S. (2007). Mechanistic understanding and performance enhancement of biosorption of reactive dyestuffs by the waste biomass generated from amino acid fermentation process. Biochem. Eng. J., 36, 2–7. https://doi.org/10.1016/j.bej.2006.06.010
  • Khataee, A. R., Vafaei, F., and Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int. Biodeterior. Biodegradation., 83, 33–40. https://doi.org/10.1016/j.ibiod.2013.04.004
  • Vitor, V., and Corso, C. R. (2008). Decolorization of textile dye by Candida albicans isolated from industrial effluents. J. Ind. Microbial. Biotechnol., 35, 1353–1357. https://doi.org/10.1007/s10295-008-0435-5
  • Ambrosio, S. T., Vilar Júnior, J. C., da Silva, C. A. A., Okada, K., Nascimento, A. E., Longo, R. L., and Campos-Takaki, G. M. (2012). A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UCP542. Molecules., 17, 452–462. https://doi.org/10.3390/molecules17010452
  • Sarioglu, O. F., San Keskin, N. O., Celebioglu, A., Tekinay, T., and Uyar, T. (2017). Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water. Chemosphere., 184, 393–399. https://doi.org/10.1016/j.chemosphere.2017.06.020
  • Akar, T., Uzun, C., Çelik, S., and Akar, S. T. (2017). Biosorption of Basic Blue 7 by fungal cells immobilized on the green type biomatrix of Phragmites australis spongy tissue. Int. J. Phytoremediation., ( just-accepted). https://doi.org/10.1080/15226514.2017.1337075
  • Morao, L. G., Dilarri, G., and Corso, C. R. (2017). Immobilization of Saccharomyces cerevisiae Cells on Luffa cylindrica: A study of a novel material for the adsorption of textile dye. Water. Air. Soil. Pollut., 228, 248. https://doi.org/10.1007/s11270-017-3433-2
  • Patel, Y., and Gupte, A. (2015). Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor. Water. Environ. Res., 87, 242–251. https://doi.org/10.2175/106143015X14212658613190
  • Nath, J., and Ray, L. (2015). Biosorption of Malachite green from aqueous solution by dry cells of Bacillus cereus M 1 16 (MTCC 5521). J. Environ. Chem. Eng., 3, 386–394. https://doi.org/10.1016/j.jece.2014.12.022
  • Kaushik, P., Mishra, A., Malik, A., and Pant, K. K. (2014). Biosorption of textile dye by Aspergillus lentulus pellets: Process optimization and cyclic removal in aerated bioreactor. Water. Air. Soil. Pollut., 225, 1978. https://doi.org/10.1007/s11270-014-1978-x
  • Daassi, D., Mechichi, T., Nasri, M., and Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. J. Environ. Manage., 129, 324–332. https://doi.org/10.1016/j.jenvman.2013.07.026
  • Charumathi, D., and Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination., 285, 22–30. https://doi.org/10.1016/j.desal.2011.09.023
  • Mona, S., Kaushik, A., and Kaushik, C. P. (2011). Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecol. Eng., 37, 1589–1594 https://doi.org/10.1016/j.ecoleng.2011.04.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.