1,638
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications

Pages 1901-1957 | Published online: 15 Dec 2017

References

  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51–54.
  • Al-Karaki, G. N., and Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7, 83–88.
  • Al Agely, A., Sylvia, D. M., and Ma, L. Q. (2005). Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Journal of Environmental Quality, 34, 2181–2186.
  • Alguacil, M. M., Torrecillas, E., Caravaca, F., Fernandez, D. A., Azcon, R., and Roldan, A. (2011). The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biology & Biochemistry, 43, 1498–1508.
  • Alguacil, M. M., Torrecillas, E., Roldán, A., Díaz, G., and Torres, M. P. (2012). Perennial plant species from semiarid gypsum soils support higher AMF diversity in roots than the annual Bromus rubens. Soil Biology and Biochemistry, 49, 132–138.
  • Allen, E. B., and Allen, M. F. (1980). Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in wyoming. Journal of Applied Ecology, 17, 139–147.
  • Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., Aschi-Smiti, S., and Dumas-Gaudot, E. (2009). On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: A root proteomic study. Proteomics, 9, 420–433.
  • Aloui, A., Recorbet, G., Robert, F., Schoefs, B., Bertrand, M., Henry, C., Gianinazzi-Pearson, V., Dumas-Gaudot, E., and Aschi-Smiti, S. (2011). Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biology, 11.
  • Amir, H., Jasper, D. A., and Abbott, L. K. (2008). Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza, 19, 1–6.
  • Amir, H., Perrier, N., Rigault, F., and Jaffre, T. (2007). Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant and Soil, 293, 23–35.
  • Aroca, R., Vernieri, P., and Ruiz-Lozano, J. M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59, 2029–2041.
  • Arriagada, C., Aranda, E., Sampedro, I., Garcia-Romera, I., and Ocampo, J. A. (2009). Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G.claroideum to arsenic tolerance of Eucalyptus globulus. Bioresource Technology, 100, 6250–6257.
  • Arriagada, C. A., Herrera, M. A., and Ocampo, J. A. (2007). Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management, 84, 93–99.
  • Artursson, V., Finlay, R. D., and Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1–10.
  • Azcón-Aguilar, C., and Barea, J. M. (1997). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza, 6, 457–464.
  • Azcón, R., Perálvarez, M.d.C., Biró, B., Roldán, A., and Ruíz-Lozano, J. M. (2009). Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology, 41, 168–177.
  • Babu, A. G., and Reddy, M. S. (2011a). Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water, Air, & Soil Pollution, 219, 3–10.
  • Babu, A. G., and Reddy, M. S. (2011b). Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue. Environmental Pollution, 159, 25–29.
  • Bago, B., Pfeffer, P. E., and Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124, 949–958.
  • Bai, J., Lin, X., Yin, R., Zhang, H., Wang, J., Chen, X., and Luo, Y. (2008). The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Applied Soil Ecology, 38, 137–145.
  • Ban, Y., Xu, Z., Zhang, H., Chen, H., and Tang, M. (2015). Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annals of Microbiology, 65, 503–515.
  • Ban, Y. H., Xu, Y. Z., Yang, Y. R., Liu, H. G., and Tang, M. (2012). Colonization characteristics of arbuscular mycorrhizal fungi and dark septate endophytes in different degree Pb-Zn polluted areas. Acta Botanica Boreali-Occidentalia Sinica, 32, 2336–2343.
  • Batty, L. C. (2005). The potential importance of mine sites for biodiversity. Mine Water and the Environment, 24, 101–103.
  • Bearden, B. N., and Petersen, L. (2000). Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant and Soil, 218, 173–183.
  • Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., and Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry, 41, 1491–1496.
  • Bell, J., Wells, S., Jasper, D., and Abbott, L. (2003). Field inoculation with arbuscular mycorrhizal fungi in rehabilitation of mine sites with native vegetation, including Acacia spp. Australian Systematic Botany, 16, 131–138.
  • Benedetto, A., Magurno, F., Bonfante, P., and Lanfranco, L. (2005). Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 15, 620–627.
  • Bever, J. D. (2002). Negative feedback within a mutualism: Host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London B: Biological Sciences, 269, 2595–2601.
  • Bi, N., Guo, W., Guo, J. Y., Wang, F., Fu, R. Y., Zhao, W. J., Zhao, R. X., and Zhao, J. (2013). Effect of arbuscular mycorrhizal fungi (Rhizophagus intraradices) on the maize growth in the three types of coal mine spoilt soil. Journal of Safety and Environment, 16, 194–199.
  • Bi, Y. L., Hu, Z. Q., Si, J. T., and Quan, W. Z. (2002). Effects of arbuscular mycor rhizal fungi on nut rient uptake of maize in reclaimed soil. Journal of China University of Mining & Technology, 31, 252–257.
  • Bi, Y. L., Wu, W. Y., and Liu, Y. P. (2007). Application of arbuscular mycorrhizas in land reclamation of coal spoil heaps. Acta Ecologica Sinica, 27, 3738–3743.
  • Biro, I., Nemeth, T., and Takács, T. (2009). Changes of parameters of infectivity and efficiency of different glomus mosseae arbuscular mycorrhizal fungi strains in cadmium‐loaded soils. Communications in Soil Science and Plant Analysis, 40, 227–239.
  • Bissonnette, L., St-Arnaud, M., and Labrecque, M. (2010). Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332, 55–67.
  • Bona, E., Cattaneo, C., Cesaro, P., Marsano, F., Lingua, G., Cavaletto, M., and Berta, G. (2010). Proteomic analysis of Pteris vittata fronds: Two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics, 10, 3811–3834.
  • Bona, E., Marsano, F., Massa, N., Cattaneo, C., Cesaro, P., Argese, E., di Toppi, L. S., Cavaletto, M., and Berta, G. (2011). Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. Journal of Proteomics, 74, 1338–1350.
  • Bonfante, P., and Anca, I. A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383.
  • Borges, W. L., de Novais, C. B., Junior, O. J. E. S., Prin, Y., Le Roux, C., Ducousso, M., and de Faria, S. M. (2014). Arbuscular mycorrhizal fungi diversity in revegetated areas after bauxite mining. African Journal of Microbiology Research, 8, 2733–2738.
  • Boulet, F. M., and Lambers, H. (2005). Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of shape Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant and Soil, 269, 357–367.
  • Boyer, S., and Wratten, S. D. (2010). The potential of earthworms to restore ecosystem services after opencast mining–a review. Basic and Applied Ecology, 11, 196–203.
  • Bradshaw, A. D., and Wong, M. H. (2002). The development of nitrogen capital. In: Wong, M. H. and Bradshaw, A. D. (Eds.), The Restoration and Management of Derelict Land—Modern Approaches. World Scientific, pp. 128–137.
  • Brenner, F. J., Werner, M., and Pike, J. (1984). Ecosystem development and natural succession in surface coal mine reclamation. Environmental Geochemistry and Health, 6, 10–22.
  • Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., Hause, B., Bucher, M., Kretzschmar, T., and Bossolini, E. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal, 64, 1002–1017.
  • Burleigh, S. H., Kristensen, B. K., and Bechmann, I. E. (2003). A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Molecular Biology, 52, 1077–1088.
  • Burri, K., Gromke, C., and Graf, F. (2013). Mycorrhizal fungi protect the soil from wind erosion: A wind tunnel study. Land Degradation & Development, 24, 385–392.
  • Burrows, R. L., and Pfleger, F. L. (2002). Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journal of Botany, 80, 120–130.
  • Call, C. A., and Davies, F. (1988). Effects of vesicular-arbuscular mycorrhizae on survival and growth of perennial grasses in lignite overburden in Texas. Agriculture, Ecosystems & Environment, 24, 395–405.
  • Call, C. A., and McKell, C. (1985). Endomycorrhizae enhance growth of shrub species in processed oil shale and disturbed native soil. Journal of Range Management, 38, 258–261.
  • Castañón-Silva, P. A., Venegas-Urrutia, M. A., Lobos-Valenzuela, M. G., and Gaete-Olivares, H. J. (2013). Influence of arbuscular mycorrhizal Glomus spp. on growth and accumulation of copper in sunflower Helianthus annuus L. Agrociencia, 47, 309–317.
  • Ceasar, S. A., Hodge, A., Baker, A., and Baldwin, S. A. (2014). Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE, 9, e108459.
  • Chen, A., Hu, J., Sun, S., and Xu, G. (2007a). Conservation and divergence of both phosphate‐and mycorrhiza‐regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist, 173, 817–831.
  • Chen, B., Roos, P., Zhu, Y.G., and Jakobsen, I. (2008). Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactivity, 99, 801–810.
  • Chen, B., Zhu, Y. G., Duan, J., Xiao, X., and Smith, S. (2007b). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.
  • Chen, B. D., Tang, X. Y., Zhu, Y. G., and Christie, P. (2005). Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: Potential for revegetation. Science in China Series C-Life Sciences, 48, 156–164.
  • Chen, B. D., Zhu, Y. G., and Smith, F. A. (2006). Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 62, 1464–1473.
  • Chen, H., Zheng, C., and Zhu, Y. (1998). Phosphorus: A limiting factor for restoration of soil fertility in a newly reclaimed coal mined site in Xuzhou, China. Land Degradation & Development, 9, 115–121.
  • Chen, X., Wu, F., Li, H., Chan, W., Wu, C., Wu, S., and Wong, M. (2013). Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environmental and Experimental Botany, 87, 92–99.
  • Chen, Z. Y., Cao, Y. Z., Peng, A. P., Xun, Z. M., Gao, Y. Z., and Kong, H. L. (2012). Impacts of arbuscular mycorrhizal fungi and water conditions on plant growth in rare earth tailings. Journal of Agro-Environment Science, 31, 2101–2107.
  • Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., and Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106, 791–802.
  • Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., and Castiglione, S. (2012). Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environmental and Experimental Botany, 75, 25–35.
  • Clark, R., Zeto, S., and Zobel, R. (1999). Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biology and Biochemistry, 31, 1757–1763.
  • Cooke, J., and Johnson, M. (2002). Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environmental Reviews, 10, 41–71.
  • Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M., and van Der Heijden, M. (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611–619.
  • da Silva, G. A., Trufem, S. F. B., Júnior, O. J. S., and Maia, L. C. (2005). Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza, 15, 47–53.
  • Daft, M., and Hacskaylo, E. (1976). Arbuscular mycorrhizas in the anthracite and bituminous coal wastes of Pennsylvania. Journal of Applied Ecology, 523–531.
  • Daft, M., and Hacskaylo, E. (1977). Growth of endomycorrhizal and nonmycorrhizal red maple seedlings in sand and anthracite spoil. Forest Science, 23, 207–216.
  • Daft, M., Hacskaylo, E., and Nicolson, T. (1975). Arbuscular mycorrhizas in plants colonising coal spoils in-Scotland and Pennsylvania. Endomycorrhizas; Proceedings of a Symposium.
  • Daft, M., and Nicolson, T. (1974). Arbuscular mycorrhizas in plants colonizing coal wastes in Scotland. New Phytologist, 73, 1129–1138.
  • Das, P., and Kayang, H. (2009). Arbuscular mycorrhizal association with Blechnum orientale Linn. in pine forest and anthropogenically disturbed areas of northeast India. Archives of Agronomy and Soil Science, 55, 623–632.
  • de Souza, R. G., Goto, B. T., da Silva, D. K. A., da Silva, F. S. B., Sampaio, E. V., and Maia, L. C. (2010). The role of arbuscular mycorrhizal fungi and cattle manure in the establishment of Tocoyena selloana Schum. in mined dune areas. European Journal of Soil Biology, 46, 237–242.
  • del Mar Montiel-Rozas, M., López-García, Á., Madejón, P., and Madejón, E. (2017). Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biology and Fertility of Soils, 53, 327–338.
  • Dhawi, F., Datta, R., and Ramakrishna, W. (2015). Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiology & Biochemistry, 97, 390–399.
  • Díaz, G., and Honrubia, M. (1990). Infectivity of mine soils from south-east Spain. Agriculture, Ecosystems & Environment, 29, 85–89.
  • Díaz, G., and Honrubia, M. (1993). Infectivity of mine soils from Southeast Spain. II. Mycorrhizal population levels in spoilt sites. Mycorrhiza, 4, 85–88.
  • Dong, Y., Zhu, Y. G., Smith, F. A., Wang, Y., and Chen, B. (2008). Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155, 174–181.
  • dos Santos, M. L., Soares, C. R. F. S., Comin, J. J., and Lovato, P. E. (2017). The phytoprotective effects of arbuscular mycorrhizal fungi on Enterolobium contorstisiliquum (Vell.) Morong in soil containing coal-mine tailings. International Journal of Phytoremediation, doi: 10.1080/15226514.2017.1328390.
  • Doubková, P., and Sudová, R. (2016). Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance. Applied Soil Ecology, 99, 78–88.
  • Doubkova, P., Suda, J., and Sudova, R. (2011). Arbuscular mycorrhizal symbiosis on serpentine soils: The effect of native fungal communities on different Knautia arvensis ecotypes. Plant and Soil, 345, 325–338.
  • Doubkova, P., Suda, J., and Sudova, R. (2012). The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biology & Biochemistry, 44, 56–64.
  • Du, S. Z., Bi, Y. L., Wu, W. Y., Liu, H. H., and Yang, Y. F. (2008). Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Transactions of the CSAE, 24, 113–116.
  • Dudka, S., and Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.
  • Ekka, N. J., and Behera, N. (2010). A study of the mycorrhizal association with vegetation on coal mines spoil. Bioscan, 5, 369–372.
  • El Faiz, A., Duponnois, R., Winterton, P., Ouhammou, A., Meddich, A., Boularbah, A., and Hafidi, M. (2015). Effect of different amendments on growing of Canna indica L. inoculated with AMF on mining substrate. International Journal of Phytoremediation, 17, 503–513.
  • Enkhtuya, B., Óskarsson, Ú., Dodd, J. C., and Vosátka, M. (2003). Inoculation of grass and tree seedlings used for reclaiming eroded areas in Iceland with mycorrhizal fungi. Folia Geobotanica, 38, 209–222.
  • Enkhtuya, B., Pöschl, M., and Vosátka, M. (2005). Native grass facilitates mycorrhizal colonisation and P uptake of tree seedlings in two anthropogenic substrates. Water, Air, and Soil Pollution, 166, 217–236.
  • Fagbola, O., Osonubi, O., Mulongoy, K., and Odunfa, S. (2001). Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, and Leucaena leucocephala (Lam.) de Wit. in simulated eroded soil conditions. Mycorrhiza, 11, 215–223.
  • Feng, G., Song, Y., Li, X., and Christie, P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22, 139–148.
  • Feng, G., Zhang, F., Li, X., Tian, C., Tang, C., and Rengel, Z. (2002). Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi. Communications in Soil Science and Plant Analysis, 33, 3825–3836.
  • Fiqri, A., Utomo, W., and Handayanto, E. (2016). Effect of arbuscular mycorrhizal fungi on the potential of three wild plant species for phytoextraction of mercury from small-scale gold mine tailings. Journal of Degraded and Mining Lands Management, 3, 551–558.
  • Frey‐Klett, P., Garbaye, J. a., and Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.
  • Frost, S., Stahl, P., and Williams, S. E. (2001). Long-term reestablishment of arbuscular mycorrhizal fungi in a drastically disturbed semiarid surface mine soil. Arid Land Research and Management, 15, 3–12.
  • Güimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., and Descombes, P. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences, 102, 8066–8070.
  • Gamalero, E., Lingua, G., Berta, G., and Glick, B. R. (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 55, 501–514.
  • Ganesan, V., Ragupathy, S., Parthipan, B., Rani, D. R., and Mahadevan, A. (1991). Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite, and calcite mine spoils of India. Biology and Fertility of Soils, 12, 131–136.
  • Gange, A. C., and Brown, V. K. (2002). Actions and interactions of soil invertebrates and arbuscular mycorrhizal fungi in affecting the structure of plant communities. In: van der Heijden, M. G. A. and Sanders, I. R. (Eds.), Mycorrhizal Ecology, Berlin, Heidelberg: Springer, pp. 321–344.
  • Gardner, J. H., and Malajczuk, N. (1988). Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. Forest Ecology and Management, 24, 27–42.
  • Gemma, J., and Koske, R. (1997). Arbuscular mycorrhizae in sand dune plants of the North Atlantic coast of the US: Field and greenhouse inoculation and presence of mycorrhizae in planting stock. Journal of Environmental Management, 50, 251–264.
  • Gildon, A., and Tinker, P.B. (1981). A heavy metal-tolerant strain of a mycorrhizal fungus. Transactions of the British Mycological society, 77, 648–649.
  • Glassop, D., Smith, S. E., and Smith, F. W. (2005). Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta, 222, 688–698.
  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.
  • González-Chávez, M. D. C. A., Carrillo-González, R., Hernández Godínez, M.I., and Evangelista Lozano, S. (2017). Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. International Journal of Phytoremediation, 19, 174–182.
  • González-Chávez, C., Harris, P. J., Dodd, J., and Meharg, A. A. (2002). Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist, 155, 163–171.
  • González-Chávez, M., Carrillo-González, R., Wright, S., and Nichols, K. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.
  • González-Chávez, M. C., Carrillo-González, R., and Gutiérrez-Castorena, M. C. (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.
  • González-Chávez, M. D. C. A., del Pilar Ortega-Larrocea, M., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., Harrison, M. J., Miguel Figueroa-López, A., and Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biology, 115, 1197–1209.
  • González-Guerrero, M., Benabdellah, K., Ferrol, N., and Azcón-Aguilar, C. (2009). Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar, C., et al. (eds.) Mycorrhizas-functional processes and ecological impact. Springer, pp. 107–122.
  • González-Guerrero, M., Benabdellah, K., Valderas, A., Azcón-Aguilar, C., and Ferrol, N. (2010a). GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza, 20, 137–146.
  • González-Guerrero, M., Cano, C., Azcón-Aguilar, C., and Ferrol, N. (2007). GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza, 17, 327–335.
  • González-Guerrero, M., Oger, E., Benabdellah, K., Azcón-Aguilar, C., Lanfranco, L., and Ferrol, N. (2010b). Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Current Genetics, 56, 265–274.
  • González-Guerrero, M., Azcón-Aguilar, C., Mooney, M., Valderas, A., MacDiarmid, C. W., Eide, D. J., and Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 42, 130–140.
  • Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bücking, H., Lammers, P. J., and Shachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–823.
  • Grace, E. J., Cotsaftis, O., Tester, M., Smith, F. A., and Smith, S. E. (2009). Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 181, 938–949.
  • Griffioen, W. A. J., Ietswaart, J. H., and Ernst, W. H. O. (1994). Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant and Soil, 158, 83–89.
  • Gryndler, M., Larsen, J., Hršelová, H., Řezáčová, V., Gryndlerová, H., and Kubát, J. (2006). Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza News, 16, 159–166.
  • Gu, H. H., Zhou, Z., Gao, Y. Q., Yuan, X. T., Ai, Y. J., Zhang, J. Y., Zuo, W. Z., Taylor, A. A., Nan, S. Q., and Li, F. P. (2017). The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using of four plant species. International Journal of Phytoremediation, 19, 739–745.
  • Gucwa-Przepióra, E., Nadgórska-Socha, A., Fojcik, B., and Chmura, D. (2016). Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environmental Science and Pollution Research, 23, 4742–4755.
  • Gucwa-Przepióra, E., and Turnau, K. (2001). Arbuscular mycorrhiza and plant succession on zinc smelter spoil heap in Katowice-Welnowiec. Acta Societatis Botanicorum Poloniae, 70, 153–158.
  • Guether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., and Bonfante, P. (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology, 150, 73–83.
  • Guo, D., Bai, Z., Shangguan, T., Shao, H., and Qiu, W. (2011). Impacts of coal mining on the aboveground vegetation and soil quality: A case study of Qinxin coal mine in Shanxi Province, China. Clean–Soil, Air, Water, 39, 219–225.
  • Guo, W., Zhao, R., Fu, R., Bi, N., Wang, L., Zhao, W., Guo, J., and Zhang, J. (2014). Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils. Environmental Science and Pollution Research, 21, 3592–3603.
  • Guo, W., Zhao, R., Yang, H., Zhao, J., and Zhang, J. (2013a). Using native plants to evaluate the effect of arbuscular mycorrhizal fungi on revegetation of iron tailings in grasslands. Biology and Fertility of Soils, 49, 617–626.
  • Guo, W., Zhao, R., Zhao, W., Fu, R., Guo, J., Bi, N., and Zhang, J. (2013b). Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Applied Soil Ecology, 72, 85–92.
  • Guo, W., Zhao, R. X., Zhao, W. J., Fu, R. Y., Guo, J. Y., and Zhang, J. (2013c). Effects of arbuscular mycorrhizal fungi on the growth and rare earth elements uptake of soybean grown in rare earth mine tailings. Environmental Science, 34, 1915–1921.
  • Guo, W., Zhao, W. J., Zhao, R. X., Fu, R. Y., Guo, J. Y., and Zhang, J. (2013d). Role of arbuscular mycorrhizal fungi in promoting the vegetation restoration of the grassland eco-environment in copper mine tailings. Journal of Safety and Environment, 13, 54–59.
  • Halary, S., Daubois, L., Terrat, Y., Ellenberger, S., Wöstemeyer, J., and Hijri, M. (2013). Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont. PLoS One, 8, e80729.
  • Hamel, C. (2004). Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Canadian Journal of Soil Science, 84, 383–395.
  • Hammer, E. C., and Rillig, M. C. (2011). The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus—salinity increases glomalin content. PLoS One, 6, e28426.
  • Harrison, M. J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Biology, 50, 361–389.
  • Harrison, M. J., Dewbre, G. R., and Liu, J. (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell Online, 14, 2413–2429.
  • Harrison, M. J., and van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378, 626–629.
  • Hart, M. M., and Klironomos, J. N. (2003). Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden, M. G. A. and Sanders, I. R. (Eds.), Mycorrhizal ecology. Berlin, Heidelberg: Springer, pp. 225–242.
  • Hazarika, P., Singh, Y. P., and Talukdar, N. C. (2014). Arbuscular mycorrhizal fungi (AMF) in revegetated coal mine overburden dumps of Margherita, Assam, India. Life Sciences Leaflets, 51, 40–58.
  • He, X. H., Critchley, C., and Bledsoe, C. (2003). Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in Plant Sciences, 22, 531–567.
  • Heggo, A., Angle, J. S., and Chaney, R. L. (1990). Effects of vesicular arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biology & Biochemistry, 22, 865–869.
  • Helgason, T., and Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany, 60, 2465–2480.
  • Hermann, B., Katarina, V.-M., Paula, P., Matevz, L., Neva, S., Primoz, P., Primoz, V., Luka, J., and Marjana, R. (2013). Metallophyte status of violets of the section Melanium. Chemosphere, 93, 1844–1855.
  • Hetrick, B., Wilson, G., and Figge, D. (1994). The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environmental Pollution, 86, 171–179.
  • Hildebrandt, U., Kaldorf, M., and Bothe, H. (1999). The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 154, 709–717.
  • Hodge, A., Campbell, C. D., and Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–299.
  • Hodge, A., and Fitter, A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, 107, 13754–13759.
  • Hong, J. J., Park, Y.-S., Bravo, A., Bhattarai, K. K., Daniels, D. A., and Harrison, M. J. (2012). Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta, 236, 851–865.
  • Hu, J., Wu, S., Wu, F., Leung, H. M., Lin, X., and Wong, M. H. (2013). Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere, 93, 1359–1365.
  • Hu, Z. Q., Liu, J., Cai, B., and Bi, Y. L. (2006). Application study on mycorrhizas in revegtating coal waste piles in Dawukou Coal Processing Plant. Energy Environmental Protection, 21, 14–16.
  • Hua, J. F., Lin, X. G., Bai, J. F., Shao, Y. F., Yin, R., and Jiang, Q. (2010). Effects of arbuscular mycorrhizal fungi and earthworm on nematode communities and arsenic uptake by maize in arsenic-contaminated soils. Pedosphere, 20, 163–173.
  • Hua, J., Lin, X., Yin, R., Jiang, Q., and Shao, Y. (2009). Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). Journal of Environmental Sciences-China, 21, 1214–1220.
  • Hume, L. J., and August, J. A. (1988). Effects of phosphorus application and mycorrhizal inoculation on white clover (Trifolium repens) growth in andesite tailings from Martha Mine, Waihi. New Zealand Journal of Agricultural Research, 31, 331–338.
  • Janouskova, M., Pavlikova, D., and Vosatka, M. (2006). Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere, 65, 1959–1965.
  • Jasper, D., Abbott, L., and Robson, A. (1989a). The loss of VA mycorrhizal infectivity during bauxite mining may limit the growth of Acacia pulchella R. Br. Australian Journal of Botany, 37, 33–42.
  • Jasper, D. A., Abbott, L. K., and Robson, A. D. (1989b). Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant and Soil, 115, 99–108.
  • Jasper, D. A., Abbott, L. K., and Robson, A. D. (1989c). Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytologist, 112, 101–107.
  • Jasper, D. A., Abbott, L. K., and Robson, A. D. (1989d). Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytologist, 112, 93–99.
  • Jasper, D. A., Robson, A. D., and Abbott, L. K. (1987). The effect of surface mining on the infectivity of vesicular-arbuscular mycorrhizal fungi. Australian Journal of Botany, 35, 641–652.
  • Jasper, D. A., Robson, A. D., and K., A. L. (1988). Revegetation in an iron ore mine – Nutrient requirements for plant growth and the potential role of vesicular arbuscular (VA) mycorrhizal fungi. Australian Journal of Soil Research, 26, 497–507.
  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.
  • Jin, Z., Li, J., and Li, Y. (2015). Interactive effects of arbuscular mycorrhizal fungi and copper stress on flowering phenology and reproduction of Elsholtzia splendens. PLoS One, 10, e0145793.
  • Johnson, N. (1998). Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: Implications for reclamation. Journal of Applied Ecology, 35, 86–94.
  • Johnson, N. C., Graham, J. H., and Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135, 575–585.
  • Johnson, N. C., and McGraw, A. C. (1988). Vesicular-arbuscular mycorrhizae in taconite tailings. I. Incidence and spread of endogonaceous fungi following reclamation. Agriculture, Ecosystems & Environment, 21, 135–142.
  • Juwarkar, A. A., and Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99, 4732–4741.
  • Karandashov, V., and Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10, 22–29.
  • Karthikeyan, A., and Krishnakumar, N. (2012). Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Annals of Forest Research, 55, 207–216.
  • Karthikeyan, A., and Prakash, M. S. (2008). Effects of arbuscular mycorrhizal fungi, Phosphobacterium and Azospirillum sp. on the successful establishment of Eucalyptus camaldulensis Dehn. in bauxite mine spoils. Forests, Trees and Livelihoods, 18, 183–191.
  • Khabou, W., Hajji, B., Zouari, M., Rigane, H., and Abdallah, F. B. (2014). Arbuscular mycorrhizal fungi improve growth and mineral uptake of olive tree under gypsum substrate. Ecological Engineering, 73, 290–296.
  • Khan, A. (1981). Growth responses of endomycorrhizal onions in unsterilized coal waste. New Phytologist, 87, 363–370.
  • Khan, A. G. (1978). Vesicular-arbuscular mycorrhizas in plants colonizing black wastes from bituminous coal mining in the Illawarra region of new South Wales. New Phytologist, 81, 53–63.
  • Kiernan, J. M., Hendrix, J. W., and Maronek, D. M. (1983). Endomycorrhizal fungi occurring on orphan strip mines in Kentucky. Canadian Journal of Botany, 61, 1798–1803.
  • Kivlin, S. N., Hawkes, C. V., and Treseder, K. K. (2011). Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 43, 2294–2303.
  • Klabi, R., Hamel, C., Schellenberg, M. P., Iwaasa, A., Raies, A., and St-Arnaud, M. (2014). Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biology and Biochemistry, 70, 176–182.
  • Klironomos, J. N., Mccune, J., Hart, M., and Neville, J. (2000). The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 3, 137–141.
  • Kobae, Y., Tamura, Y., Takai, S., Banba, M., and Hata, S. (2010). Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant and Cell Physiology, 51, 1411–1415.
  • Kohler, J., Caravaca, F., Azcón, R., Díaz, G., and Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, 42–48.
  • Koide, R., and Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511–517.
  • Koricheva, J., Gange, A. C., and Jones, T. (2009). Effects of mycorrhizal fungi on insect herbivores: A meta-analysis. Ecology, 90, 2088–2097.
  • Kullu, B., and Behera, N. (2012). Status and diversity of vesicular arbuscular mycorrhiza in different age series sponge iron solid waste dumps with respect to reclamation. The Bioscan, 7, 539–542.
  • Kullu, B., and Behera, N. (2016). A study of arbuscular mycorrhiza (AM) root colonization in the herbaceous vegetation of different age series sponge iron solid waste dumps. International Journal of Current Microbiology and Applied Sciences, 5, 968–979.
  • Kumar, A., Raghuwanshi, R., and Upadhyay, R. (2003). Vesicular-arbuscular mycorrhizal association in naturally revegetated coal mine spoil. Tropical Ecology, 44, 253–256.
  • López-Pedrosa, A., González-Guerrero, M., Valderas, A., Azcón-Aguilar, C., and Ferrol, N. (2006). GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology, 43, 102–110.
  • Lagrange, A., Ducousso, M., Jourand, P., Majorel, C., and Amir, H. (2011). New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Canadian Journal of Microbiology, 57, 21–28.
  • Lambert, D. H., and Cole, H. (1980). Effects of mycorrhizae on establishment and performance of forage species in mine spoil. Agronomy Journal, 72, 257–260.
  • Landwehr, M., Hildebrandt, U., Wilde, P., Nawrath, K., Tóth, T., Biró, B., and Bothe, H. (2002). The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 12, 199–211.
  • Lanfranco, L., Bolchi, A., Ros, E.C., Ottonello, S., and Bonfante, P. (2002). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiology, 130, 58–67.
  • Lanfranco, L., Novero, M., and Bonfante, P. (2005). The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology, 137, 1319–1330.
  • Lee, C. S., Qi, S. H., Zhang, G., Luo, C. L., Zhao, L. Y., and Li, X. D. (2008). Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environmental Science and Technology, 42, 4732–4738.
  • Leigh, J., Hodge, A., and Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181, 199–207.
  • Lekberg, Y., Schnoor, T., Kjøller, R., Gibbons, S. M., Hansen, L. H., Al‐Soud, W. A., Sørensen, S. J., and Rosendahl, S. (2012). 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology, 100, 151–160.
  • Leung, H. M., Wu, F. Y., Cheung, K. C., Ye, Z. H., and Wong, M. H. (2010a). The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. International Journal of Phytoremediation, 12, 384–403.
  • Leung, H. M., Wu, F. Y., Cheung, K. C., Ye, Z. H., and Wong, M. H. (2010b). Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. Journal of Hazardous Materials, 181, 497–507.
  • Leung, H. M., Ye, Z. H., and Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environmental Pollution, 139, 1–8.
  • Leung, H. M., Ye, Z. H., and Wong, M. H. (2007). Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere, 66, 905–915.
  • Leyval, C., Singh, B. R., and Joner, E. J. (1995). Occurrence and infectivity of arbuscular mycorrhizal fungi in some norwegian soils influenced by heavy-metals and soil properties. Water, Air, and Soil Pollution, 84, 203–216.
  • Li, M. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Science of the Total Environment, 357, 38–53.
  • Li, S. P., Bi, Y. L., Kong, W. P., Wang, J., and Yu, H. Y. (2013a). Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Environmental Science, 34, 4455–4459.
  • Li, T., Hu, Y. J., Hao, Z. P., Li, H., Wang, Y. S., and Chen, B. D. (2013b). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197, 617–630.
  • Li, X. L., George, E., and Marschner, H. (1991). Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 136, 41–48.
  • Li, X. L., George, E., and Marschner, H. (1997a). Phosphorus acquisition of VA mycorrhizal hyphae from compacted soil in clover. Canadian Journal of Botony, 75, 723–729.
  • Li, X. L., Zhang, J. L., George, E., and Marschner, H. (1997b). Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratense). Canadian Journal of Botany, 75, 723–729.
  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., and Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.
  • Liang, C., Li, T., Xiao, Y., Liu, M., Zhang, H., and Zhao, Z. (2009). Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal of Phytoremediation, 11, 692–703.
  • Liang, C. C., Xiao, Y. P., and Zhao, Z. W. (2007). Arbuscular mycorrhiza and dark septate endophytes in an abandoned lead-zinc mine in Huize, Yunan, China. Chinese Journal of Applied and Environmental Biology, 13, 811–817.
  • Lingua, G., Bona, E., Todeschini, V., Cattaneo, C., Marsano, F., Berta, G., and Cavaletto, M. (2012). Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: A time course analysis. PLoS One, 7, e38662.
  • Lins, C. E. L., Cavalcante, U. M. T., Sampaio, E., Messias, A. S., and Maia, L. C. (2006). Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil. Applied Soil Ecology, 31, 181–185.
  • Lioi, L., and Giovannetti, M. (1989). Vesicular-arbuscular mycorrhizae and species of the Endogonaceae in an Italian serpentine soil. Giornale Botanico Italiano, 123, 1–8.
  • Liu, F., Xu, Y., Jiang, H., Jiang, C., Du, Y., Gong, C., Wang, W., Zhu, S., Han, G., and Cheng, B. (2016). Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. International Journal of Molecular Sciences, 17, 930.
  • Liu, H., Trieu, A. T., Blaylock, L. A., and Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11, 14–22.
  • Liu, H., Yuan, M., Tan, S., Yang, X., Lan, Z., Jiang, Q., Ye, Z., and Jing, Y. (2015). Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology, 89, 44–49.
  • Liu, H. X., Zhang, J. Y., and Li, F. P. (2009). Influence of inoculation arbuscular mycorrhizal fungi on the growth of soybean in iron tailings. Environmental Science & Technology (China), 32, 74–76.
  • Liu, Y., Zhu, Y. G., Chen, B. D., Christie, P., and Li, X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15, 187–192.
  • Long, L., Yao, Q., Huang, Y., Wang, Y., and Zhu, H. (2009). Study on arbuscular mycorrhizal fungi in heavy metal-contaminated soil from Dabao Mountains, North Guangdong. Journal of South China Agricultural University, 30, 117–120.
  • Long, L. K., Yao, Q., Guo, J., Yang, R. H., Huang, Y. H., and Zhu, H. H. (2010). Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. European Journal of Soil Biology, 46, 288–294.
  • Loth-Pereda, V., Orsini, E., Courty, P. E., Lota, F., Kohler, A., Diss, L., Blaudez, D., Chalot, M., Nehls, U., and Bucher, M. (2011). Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology, 156, 2141–2154.
  • Lumini, E., Bosco, M., Puppi, G., Isopi, R., Frattegiani, M., Buresti, E., and Favilli, F. (1994). Field performance of Alnus cordata Loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biology and Biochemistry, 26, 659–661.
  • Ma, Y., Dickinson, N., and Wong, M. (2006). Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology and Biochemistry, 38, 1403–1412.
  • Madejón, E., Doronila, A. I., Madejón, P., Baker, A. J. M., and Woodrow, I. E. (2012). Biosolids, mycorrhizal fungi and eucalypts for phytostabilization of arsenical sulphidic mine tailings. Agroforestry Systems, 84, 389–399.
  • Madejón, E., Doronila, A. I., Sanchez-Palacios, J. T., Madejón, P., and Baker, A. J. M. (2010). Arbuscular mycorrhizal fungi (AMF) and biosolids enhance the growth of a native australian grass on sulphidic gold mine tailings. Restoration Ecology, 18, 175–183.
  • Madiba, O. F. (2014). Alleviation of soil stresses by arbuscular mycorrhizal fungi. In: Solaiman, Z. M., et al. (Eds.), Mycorrhizal Fungi: Use in sustainable agriculture and land restoration. Berlin, Heidelberg: Springer, pp. 215–224.
  • Maeda, D., Ashida, K., Iguchi, K., Chechetka, S. A., Hijikata, A., Okusako, Y., Deguchi, Y., Izui, K., and Hata, S. (2006). Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology, 47, 807–817.
  • Maldonado-Mendoza, I. E., Dewbre, G. R., and Harrison, M. J. (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions, 14, 1140–1148.
  • Marques, A. P. G. C., Oliveira, R. S., Rangel, A. O. S. S., and Castro, P. M. L. (2006). Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 65, 1256–1263.
  • Marrs, R. H. (2016). Ecological restoration: Soil microbes call the shots. Nature Plants, 2, 16117.
  • Meharg, A. A., and Cairney, J. W. G. (1999). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112.
  • Mehrotra, V. S. (1998). Arbuscular mycorrhizal associations of plants colonizing coal mine spoil in India. The Journal of Agricultural Science, 130, 125–133.
  • Meier, S., Borie, F., Bolan, N., and Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42, 741–775.
  • Mergulhão, A. C. D. E. S., Burity, H. A., Goto, B. T., and Maia, L. C. (2010). Diversity of arbuscular mycorrhizal fungi in a gypsum mining impacted semiarid area. Acta Botanica Brasilica, 24, 1052–1061.
  • Meyer, E., Londoño, D. M. M., de Armas, R. D., Giachini, A. J., Rossi, M. J., Stoffel, S. C. G., and Soares, C. R. F. S. (2017). Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. International Journal of Phytoremediation, 19, 113–120.
  • Miao, Z., and Marrs, R. (2000). Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. Journal of Environmental Management, 59, 205–215.
  • Mickan, B. (2014). Mechanisms for alleviation of plant water stress involving arbuscular mycorrhizas. In: Solaiman, Z. M., et al. (Eds.), Mycorrhizal fungi: Use in sustainable agriculture and land restoration. Berlin: Springer Berlin Heidelberg, pp., 215–224.
  • Miller, R., and Jastrow, J. (1992). The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen, M. (Ed.), Mycorrhizal functioning: An integrative plant-fungal process. Springer Science & Business Media, pp., 438–467.
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 12, 563–569.
  • Miransari, M. (2013). Arbuscular mycorrhizal fungi and uptake of nutrients. In: Aroca, R. (Ed.), Symbiotic endophytes, soil biology. Springer, pp. 253–270.
  • Miransari, M. (2014). The interactions of soil microbes, arbuscular mycorrhizal fungi and N-fixing bacteria, Rhizobium, under different conditions including stress. In: Miransari, M. (Ed.), Use of microbes for the alleviation of soil stresses. New York: Springer, pp. 1–21.
  • Moreira, H., Pereira, S. I., Marques, A. P., Rangel, A. O., and Castro, P. M. (2016). Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environmental Science and Pollution Research, 23, 6940–950.
  • Mukhopadhyay, S., and Maiti, S. K. (2011). Trace metal accumulation and natural mycorrhizal colonisation in an afforested coalmine overburden dump: A case study from India. International Journal of Mining Reclamation and Environment, 25, 187–207.
  • Nagy, R., Karandashov, V., Chague, V., Kalinkevich, K., Tamasloukht, M. B., Xu, G., Jakobsen, I., Levy, A. A., Amrhein, N., and Bucher, M. (2005). The characterization of novel mycorrhiza‐specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal, 42, 236–250.
  • Nagy, R., Vasconcelos, M., Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K., and Bucher, M. (2006). Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 8, 186–197.
  • Nazir, A., and Bareen, F. (2011). Synergistic effect of Glomus fasciculatum and Trichoderma pseudokoningii on Heliathus annuus to decontaminate tannery sludge from toxic metals. African Journal of Biotechnology, 10, 4612–4618.
  • Neagoe, A., Iordache, V., Bergmann, H., and Kothe, E. (2013). Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. Journal of Plant Nutrition and Soil Science, 176, 273–286.
  • Neagoe, A., Stancu, P., Nicoară, A., Onete, M., Bodescu, F., Gheorghe, R., and Iordache, V. (2014). Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter, and field plot scales. Environmental Science and Pollution Research, 21, 6859–6876.
  • Newman, E. I. (1988). Mycorrhizal links between plants: Their functioning and ecological significance. Advances in Ecological Research, 18, 243–270.
  • Niu, Z. C., Tang, M., Huang, J. C., Wang, S., and Sheng, M. (2007). Effects of lead and zinc in the soil on the distribution of arbuscular mycorrhizal fungi. Acta Botanica Boreali-Occidentalia Sinica, 27, 1233–1238.
  • Nonomura, N., Kawada, Y., Minamiya, Y., Hayakawa, H., Fukuda, T., Kang, Y., and Sakurai, K. (2011). Molecular identification of arbuscular mycorrhizal fungi colonizing Athyrium yokoscense of the Ikuno mine site, Japan. Journal of Japanese Botany, 86, 73–81.
  • Novoa, M. D., Palma, S. S., and Gaete, O. H. (2010). Effect of arbuscular mycorrhizal fungi Glomus spp. inoculation on alfalfa growth in soils with copper. Chilean Journal of Agricultural Research, 70, 259–265.
  • Noyd, R. K., Pfleger, F., and Norland, M. R. (1996). Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailing. Plant and Soil, 179, 89–97.
  • Noyd, R. K., Pfleger, F. L., and Russelle, M. P. (1995). Interactions between native prairie grasses and indigenous arbuscular mycorrhizal fungi: Implications for reclamation of taconite iron ore tailing. New Phytologist, 129, 651–660.
  • Oliveira, R., Vosátka, M., Dodd, J., and Castro, P. (2005). Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza, 16, 23–31.
  • Orlowska, E., Godzik, B., and Turnau, K. (2012). Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution, 168, 121–130.
  • Orlowska, E., Jurkiewicz, A., Anielska, T., Godzik, B., and Turnau, K. (2005a). Influence of different arbuscular mycorrhiza fungal (AMF) strains on heavy metal uptake by Plantago lanceolata (Plantaginaceae). Polish Botanical Studies, 19, 65–72.
  • Orłowska, E., Orłowski, D., Mesjasz-Przybyłowicz, J., and Turnau, K. (2010). Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. International Journal of Phytoremediation, 13, 185–205.
  • Orlowska, E., Przybylowicz, W., Orlowski, D., Turnau, K., and Mesjasz-Przybylowicz, J. (2011). The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution, 159, 3730–3738.
  • Orlowska, E., Ryszka, P., Jurkiewicz, A., and Turnau, K. (2005b). Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma, 129, 92–98.
  • Orlowska, E., Zubek, S., Jurkiewicz, A., Szarek-Lukaszewska, G., and Turnau, K. (2002). Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 12, 153–160.
  • Ortega-Larrocea, M. D. P., Xoconostle-Cázares, B., Maldonado-Mendoza, I. E., Carrillo-González, R., Hernández-Hernández, J., Garduño, M. D., López-Meyer, M., Gómez-Flores, L., and González-Chávez, M. D. C. A. (2010). Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environmental Pollution, 158, 1922–1931.
  • Ouaryi, A., Boularbah, A., Sanguin, H., Hafidi, M., Baudoin, E., Ouahmane, L., Le Roux, C., Galiana, A., Prin, Y., and Duponnois, R. (2016). High potential of symbiotic interactions between native mycorrhizal fungi and the exotic tree eucalyptus camaldulensis for phytostabilization of metal-contaminated arid soils. International Journal of Phytoremediation, 18, 41–47.
  • Pérez-Tienda, J., Testillano, P. S., Balestrini, R., Fiorilli, V., Azcón-Aguilar, C., and Ferrol, N. (2011). GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 48, 1044–1055.
  • Palacio, S., Johnson, D., Escudero, A., and Montserrat-Martí, G. (2012). Root colonisation by AM fungi differs between gypsum specialist and non-specialist plants: Links to the gypsophile behaviour. Journal of Arid Environments, 76, 128–132.
  • Pallara, G., Todeschini, V., Lingua, G., Camussi, A., and Racchi, M. L. (2013). Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil. Plant Physiology and Biochemistry, 63, 131–139.
  • Park, H., Lee, E. H., Ka, K. H., and Eom, A. H. (2016). Community structures of arbuscular mycorrhizal fungi in soils and plant roots inhabiting abandoned mines of Korea. Mycobiology, 44, 277–282.
  • Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763–775.
  • Paszkowski, U., Kroken, S., Roux, C., and Briggs, S. P. (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 99, 13324–13329.
  • Pawlowska, T. E., Blaszkowski, J., and Ruhling, A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505.
  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., and Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41, 1665–1677.
  • Perrier, N., Amir, H., and Colin, F. (2006). Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the koniambo massif, new Caledonia. Mycorrhiza, 16, 449–458.
  • Pongrac, P., Vogel-Mikuš, K., Regvar, M., Tolrà, R., Poschenrieder, C., and Barceló, J. (2008). Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology, 34, 1038–1044.
  • Porcel, R., Aroca, R., Azcon, R., and Ruiz-Lozano, J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology, 60, 389–404.
  • Porcel, R., Aroca, R., and Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32, 181–200.
  • Porcel, R., Azcón, R., and Ruiz-Lozano, J. M. (2004). Evaluation of the role of genes encoding for Δ 1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiological and Molecular Plant Pathology, 65, 211–221.
  • Pozo, M. J., and Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–398.
  • Prasetyo, B., Krisnayanti, B. D., Wani Hadi, U., and Anderson, C. W. N. (2010). Rehabilitation of artisanal mining gold land in west Lombok, Indonesia: 2. Arbuscular mycorrhiza status of tailings and surrounding soils. Journal of Agricultural Science, 2, 202–209.
  • Quoreshi, A. M. (2008). The use of mycorrhizal biotechnology in restoration of disturbed ecosystem. In: Siddiqui, Z. A., Akhtar, M. S., Futai, K. (Eds), Mycorrhizae: Sustainable agriculture and forestry. Netherlands: Springer, pp. 303–320.
  • Raman, N., Nagarajan, N., Gopinathan, S., and Sambandan, K. (1993). Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biology and Fertility of Soils, 16, 76–78.
  • Rangel, W. d. M., Schneider, J., Costa, E. T. d. S., Soares, C. R. F. S., Guilherme, L. R. G., and Moreira, F. M. D. S. (2014). Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. International Journal of Phytoremediation, 16, 840–858.
  • Rao, A., and Tak, R. (2002). Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone. Journal of Arid Environments, 51, 113–119.
  • Rapai, S. B., Hunt, S., Bainard, L. D., Turgeon, M.-H., and Newmaster, S. G. (2016). Soil inoculation with arbuscular mycorrhizal fungi promotes the growth of boreal plant communities in gold mine overburden. Ecological Restoration, 34, 216–224.
  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N., and Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462–470.
  • Redon, P. O., Beguiristain, T., and Leyval, C. (2008). Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biology & Biochemistry, 40, 2710–2712.
  • Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., and Gianinazzi, S. (2003). Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytologist, 157, 555–567.
  • Richter, B. S., and Stutz, J. C. (2002). Mycorrhizal inoculation of big sacaton: Implications for grassland restoration of abandoned agricultural fields. Restoration Ecology, 10, 607–616.
  • Rillig, M. C. (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters, 7, 740–754.
  • Rillig, M. C., and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53.
  • Rillig, M. C., Wright, S. F., and Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.
  • Rodrigues, C. R., and Rodrigues, B. F. (2015). Use of arbuscular mycorrhiza and organic amendments to enhance growth of Macaranga peltata (Roxb.) Müll. Arg. in iron ore mine wastelands. International Journal of Phytoremediation, 17, 485–492.
  • Rosendahl, S., Mcgee, P., and Morton, J. B. (2009). Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Molecular Ecology, 18, 4316–4329.
  • Rosewarne, G. M., Barker, S. J., Smith, S. E., Smith, F. A., and Schachtman, D. P. (1999). A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular–arbuscular mycorrhizal fungus. New Phytologist, 144, 507–516.
  • Rothschild, L. J., and Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.
  • Rothwell, F. M. (1984). Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of lespedeza. Plant and Soil, 80, 99–104.
  • Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.
  • Ruiz‐Lozano, J. M., Porcel, R., and Aroca, R. (2006). Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought‐induced plant genes? New Phytologist, 171, 693–698.
  • Rydlová, J., and Vosátka, M. (2001). Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks. Folia Geobotanica, 36, 85–97.
  • Ryszka, P., and Turnau, K. (2007). Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: Implications for restoration practices. Plant and Soil, 298, 219–229.
  • Sánchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J., Baudoin, E., and van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of the Total Environment, 598, 121–128.
  • Sambandan, K., Kannan, K., and Raman, N. (1992). Distribution of vesicular-arbuscular mycorrhizal fungi in heavy-metal polluted soils of Tamil-nadu, India. Journal of Environmental Biology, 13, 159–167.
  • Sawers, R. J., Svane, S. F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M. N., González‐Muñoz, E., Chávez Montes, R. A., Baxter, I., and Goudet, J. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root‐external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 214, 632–643.
  • Schneider, J., de Oliveira, L. M., Guimaraes Guilherme, L. R., Stuermer, S. L., and Fonseca Sousa Soares, C. R. (2012). Tropical pteridophytes species in association with arbuscular mycorrhizal fungi in arsenic-contaminated soil. Quimica Nova, 35, 709–714.
  • Schneider, J., Stuermer, S. L., Guimaraes Guilherme, L. R., de Souza Moreira, F. M., and Fonseca de Sousa Soares, C. R. (2013). Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, 262, 1105–1115.
  • Sharma, M. P., Gaur, A., Bhatia, N. P., and Adholeya, A. (1996). Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza, 6, 441–446.
  • Sheoran, A., Sheoran, V., and Poonia, P. (2008). Rehabilitation of mine degraded land by metallophytes. Mining Engineers Journal, 10, 11–16.
  • Sheoran, V., Sheoran, A., and Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3, 13.
  • Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., and Schwab, A. P. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy-metal contaminated mine spoil. Environmental Pollution, 86, 181–188.
  • Shi, G., Cai, Q., Liu, C., and Wu, L. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation, 61, 45–52.
  • Slomka, A., Kuta, E., Szarek-Lukaszewska, G., Godzik, B., Kapusta, P., Tylko, G., and Bothe, H. (2011). Violets of the section melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. Journal of Plant Physiology, 168, 1191–1199.
  • Smith, S. E., and Read, D. J. (2008). Mycorrhizal Symbiosis. Third edition. Academic Press.
  • Smith, S. E., Smith, F. A., and Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 16–20.
  • Sokolski, S., Dalpé, Y., and Piché, Y. (2011). Phosphate transporter genes as reliable gene markers for the identification and discrimination of arbuscular mycorrhizal fungi in the genus Glomus. Applied and Environmental Microbiology, 77, 1888–1891.
  • Solis-Dominguez, F. A., Valentin-Vargas, A., Chorover, J., and Maier, R. M. (2011). Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment, 409, 1009–1016.
  • Spruyt, A., Buck, M. T., Mia, A., and Straker, C. J. (2014). Arbuscular mycorrhiza (AM) status of rehabilitation plants of mine wastes in South Africa and determination of AM fungal diversity by analysis of the small subunit rRNA gene sequences. South African Journal of Botany, 94, 231–237.
  • Stahl, P. D., and Williams, S. (1986). Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium 4 years after application to soil. Soil Biology and Biochemistry, 18, 451–455.
  • Stahl, P. D., Williams, S. E., and Christensen, M. (1988). Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytologist, 110, 347–354.
  • Stommel, M., Mann, P., and Franken, P. (2001). EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza, 10, 281–285.
  • Straker, C., Weiersbye, I., and Witkowski, E. (2007). Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa's deep level gold mines: I. Root colonization and spore levels. South African Journal of Botany, 73, 218–225.
  • Sudova, R., and Vosatka, M. (2007). Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 296, 77–83.
  • Suharno, Kasiamdari, R. S., Soetarto, E. S., and Sancayaningsih, R. P. (2016). Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4, 1–7.
  • Suharno, S., Soetarto, E. S., Sancayaningsih, R. P., and Kasiamdari, R. S. (2017). Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas, 18, 433–441.
  • Sun, Y., Zhang, X., Wu, Z., Hu, Y., Wu, S., and Chen, B. (2016). The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences, 39, 110–118.
  • Suzuki, H., Sakamoto, K., and Inubushi, K. (1999). Effects of arbuscular mycorrhizal colonization on ammonium-N uptake activity of the host plant. Japanese Journal of Soil Science and Plant Nutrition (Japan), 70, 59–63.
  • Tótola, M. R., and Borges, A. C. (2000). Growth and nutritional status of Brazilian wood species Cedrella fissilis and Anadenanthera peregrina in bauxite spoil in response to arbuscular mycorrhizal inoculation and substrate amendment. Brazilian Journal of Microbiology, 31, 257–265.
  • Taheri, W. I., and Bever, J. D. (2010). Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Applied Soil Ecology, 45, 138–143.
  • Tamura, Y., Kobae, Y., Mizuno, T., and Hata, S. (2011). Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Bioscience, Biotechnology, and Biochemistry, 76, 309–313.
  • Tan, Z., Hu, Y., and Lin, Z. (2012). PhPT4 is a mycorrhizal-phosphate transporter suppressed by lysophosphatidylcholine in petunia roots. Plant Molecular Biology Reporter, 30, 1480–1487.
  • Tarafdar, J. C., and Rao, A. V. (1997). Mycorrhizal colonization and nutrient concentration of naturally grown plants on gypsum mine spoils in India. Agriculture, Ecosystems & Environment, 61, 13–18.
  • Thorne, M., Zamora, B., and Kennedy, A. (1998). Sewage sludge and mycorrhizal effects on secar bluebunch wheatgrass in mine spoil. Journal of Environmental Quality, 27, 1228–1233.
  • Tian, H., Drijber, R. A., Li, X., Miller, D. N., and Wienhold, B. J. (2013). Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza, 23, 507–514.
  • Tian, H., Yuan, X., Duan, J., Li, W., Zhai, B., and Gao, Y. (2017). Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. PLoS ONE, 12, e0172154.
  • Toler, H., Morton, J., and Cumming, J. (2005). Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water, Air, and Soil Pollution, 164, 155–172.
  • Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J., and Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.
  • Torrecillas, E., del Mar Alguacil, M., Roldán, A., Díaz, G., Montesinos-Navarro, A., and Torres, M. P. (2014). Modularity reveals a tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Applied and Environmental Microbiology, 80, 5457–5466.
  • Treseder, K. K., and Cross, A. (2006). Global distributions of arbuscular mycorrhizal fungi. Ecosystems, 9, 305–316.
  • Turnau, K., and Haselwandter, K. (2002). Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi, S., Schüepp, H., Barea, J. M., Haselwandter, K. (Eds.), Mycorrhizal Technology in Agriculture. Birkhäuser Basel, pp. 137–149.
  • Turnau, K., and Mesjasz-Przybylowicz, J. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of asteraceae from ultramafic soils in South Africa. Mycorrhiza, 13, 185–190.
  • Turnau, K., Ryszka, P., Gianinazzi-Pearson, V., and Van Tuinen, D. (2001). Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza, 10, 169–174.
  • Ultra, V. U. Y., Jr., Tanaka, S., Sakurai, K., and Iwasaki, K. (2007). Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Science and Plant Nutrition, 53, 499–508.
  • van Aarle, I. M., Söderström, B., and Olsson, P. A. (2003). Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biology and Biochemistry, 35, 1557–1564.
  • van der Heijden, M. G., Boller, T., Wiemken, A., and Sanders, I. R. (1998a). Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082–2091.
  • van der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. R. (1998b). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.
  • van der Heijden, M. G., Wiemken, A., and Sanders, I. R. (2003). Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 157, 569–578.
  • Varma, A. (1999). Hydrolytic enzymes from arbuscular mycorrhizae: The current status. In: Ajit, V. and Hock, B. (Eds.), Mycorrhiza: Structure, function, molecular biology and biotechnology. Berlin Heidelberg: Springer, pp. 373–389.
  • Verdugo, C., Sanchez, P., Santibanez, C., Urrestarazu, P., Bustamante, E., Silva, Y., Gourdon, D., and Ginocchio, R. (2010). Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: A greenhouse experiment. International Journal of Phytoremediation, 13, 107–125.
  • Vivas, A., Azcon, R., Biro, B., Barea, J. M., and Ruiz-Lozano, J. M. (2003a). Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49, 577–588.
  • Vivas, A., Biro, B., Campos, E., Barea, J. M., and Azcon, R. (2003b). Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G.mosseae) and Brevibacillus sp isolated from cadmium polluted soil under increasing cadmium levels. Environmental Pollution, 126, 179–189.
  • Vivas, A., Barea, J. M., Biro, B., and Azcon, R. (2006a). Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology, 100, 587–598.
  • Vivas, A., Biro, B., Nemeth, T., Barea, J. M., and Azcon, R. (2006b). Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biology & Biochemistry, 38, 2694–2704.
  • Vodnik, D., Grcman, H., Macek, I., van Elteren, J. T., and Kovacevic, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.
  • Vogel-Mikus, K., Drobne, D., and Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242.
  • Vogel-Mikus, K., Pongrac, P., Kump, P., Necemer, M., and Regvar, M. (2006). Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139, 362–371.
  • Walder, F., Boller, T., Wiemken, A., and Courty, P. E. (2016). Regulation of plants' phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signaling & Behavior, 11, e1131372.
  • Walder, F., Brulé, D., Koegel, S., Wiemken, A., Boller, T., and Courty, P. E. (2015). Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 205, 1632–1645.
  • Wang, F., and Liu, R. (2001). Glomus zaozhuangianus, a new species of arbuscular mycorrhizal fungi. Mycosystema, 21, 522–524.
  • Wang, F., Liu, R., Lin, X., and Zhou, J. (2002). Comparison of diversity of arbuscular mycorrhizal fungi in different ecological environments. Acta Ecologica Sinica, 23, 2666–2671.
  • Wang, F. Y., Lin, X. G., and Yin, R. (2005). Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil, 269, 225–232.
  • Wang, F. Y., Lin, X. G., and Yin, R. (2007). Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. International Journal of Phytoremediation, 9, 345–353.
  • Wang, F. Y., and Miao, Y. F. (2006). Effects of different arbuscular mycorrhizal fungi on the growth and yield of soybean in coal mine spoil. World Journal of Agricultural Sciences, 2, 383–389.
  • Wang, F. Y., Shi, Z. Y., Xu, X. F., Wang, X. G., and Li, Y. J. (2013). Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environmental Science-Processes & Impacts, 15, 794–801.
  • Wang, F. Y., Wang, L., Shi, Z. Y., Li, Y. J., and Song, Z. M. (2012). Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil. Journal of Plant Growth Regulation, 31, 549–559.
  • Wang, L. P., Zhang, W. W., Guo, G. X., Qian, K. M., and Huang, X. P. (2009). Selection experiments for the optimum combination of AMF-plant-substrate for the restoration of coal mines. Mining Science and Technology (China), 19, 479–482.
  • Wei, Y., Chen, Z., Wu, F., Hou, H., Li, J., Shangguan, Y., Zhang, J., Li, F., and Zeng, Q. (2015a). Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China. Journal of Environmental Sciences, 29, 18–26.
  • Wei, Y., Chen, Z., Wu, F., Li, J., ShangGuan, Y., Li, F., Zeng, Q. R., and Hou, H. (2015b). Diversity of arbuscular mycorrhizal fungi associated with a Sb accumulator plant, ramie (Boehmeria nivea), in an active Sb mining. Journal of Microbiology and Biotechnology, 25, 1205–1215.
  • Weiersbye, I., Straker, C., and Przybylowicz, W. (1999). Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 158, 335–343.
  • Weissenhorn, I., Leyval, C., Belgy, G., and Berthelin, J. (1995). Arbuscular mycorrhizal contribution to heavy-metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza, 5, 245–251.
  • Wężowicz, K., Rozpądek, P., and Turnau, K. (2017). Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza, 27, 499–511.
  • Whitfield, L., Richards, A. J., and Rimmer, D. L. (2004a). Effects of mycorrhizal colonisation on Thymus polytrichus from heavy-metal-contaminated sites in northern England. Mycorrhiza, 14, 47–54.
  • Whitfield, L., Richards, A. J., and Rimmer, D. L. (2004b). Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza, 14, 55–62.
  • Wong, M. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.
  • Wu, F., Bi, Y., and Wong, M. (2009). Dual inoculation with an arbuscular mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates. Journal of Plant Nutrition, 32, 755–771.
  • Wu, F. Y., Bi, Y. L., Leung, H. M., Ye, Z. H., Lin, X. G., and Wong, M. H. (2010). Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Applied Soil Ecology, 44, 213–218.
  • Wu, F. Y., Ye, Z. H., Wu, S. C., and Wong, M. H. (2007). Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta, 226, 1363–1378.
  • Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Su, D., Lv, J., Li, G., and Zhang, Z. (2015). Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM–EDS, TEM–EDS, and XAFS. Environmental Science & Technology, 49, 14036–14047.
  • Wu, S. C., Wong, C. C., Shu, W. S., Khan, A. G., and Wong, M. H. (2011). Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: A field study. International Journal of Phytoremediation, 13, 61–74.
  • Wu, T., Hao, W., Lin, X., and Shi, Y. (2002). Screening of arbuscular mycorrhizal fungi for the revegetation of eroded red soils in subtropical China. Plant and Soil, 239, 225–235.
  • Wubs, E. J., van der Putten, W. H., Bosch, M., and Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2, 16107.
  • Xia, Y. S., Chen, B. D., Christie, P., Smith, F. A., Wang, Y. S., and Li, X. L. (2007). Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences-China, 19, 1245–1251.
  • Xiao, X. Y., Chen, B. D., and Zhu, Y. G. (2006). The influences of arbuscular mycorrhizal fungi on growth and mineral nutrition of plants grown in copper mine tailing. Acta Scientiae Circumstantiae, 26, 312–317.
  • Xie, X., Huang, W., Liu, F., Tang, N., Liu, Y., Lin, H., and Zhao, B. (2013). Functional analysis of the novel mycorrhiza‐specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist, 198, 836–852.
  • Xu, G. H., Chague, V., Melamed-Bessudo, C., Kapulnik, Y., Jain, A., Raghothama, K. G., Levy, A. A., and Silber, A. (2007). Functional characterization of LePT4: A phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany, 58, 2491–2501.
  • Xu, J., and Tang, M. (2013). Relationship between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine. Journal of Northwest A & F University – Natural Science Edition, 41, 75–80.
  • Xu, Z. Y., Tang, M., Chen, H., Ban, Y. H., and Zhang, H. H. (2012). Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of the Total Environment, 435, 453–464.
  • Yang, R., Zan, S., Tang, J., Chen, X., and Zhang, Q. (2010). Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant Elsholtzia splendens. Applied Soil Ecology, 44, 191–197.
  • Yang, Y., Song, Y., Scheller, H. V., Ghosh, A., Ban, Y., Chen, H., and Tang, M. (2015). Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biology and Biochemistry, 86, 146–158.
  • Yao, Q., Li, X.L., Feng, G., and Christie, P. (2001). Mobilization of scarcely-soluble inorganic phosphate by external mycelium of arbuscular mycorrhizal fungus. Plant and Soil, 230, 279–285.
  • Zak, J., Danielson, R., and Parkinson, D. (1982). Mycorrhizal fungal spore numbers and species occurrence in two amended mine spoils in Alberta, Canada. Mycologia, 74, 785–792.
  • Zarei, M., Hempel, S., Wubet, T., Schaefer, T., Savaghebi, G., Jouzani, G. S., Nekouei, M. K., and Buscot, F. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.
  • Zarei, M., Koenig, S., Hempel, S., Nekouei, M. K., Savaghebi, G., and Buscot, F. (2008a). Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 156, 1277–1283.
  • Zarei, M., Saleh-Rastin, N., Jouzani, G. S., Savaghebi, G., and Buscot, F. (2008b). Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 44, 381–391.
  • Zhan, F., He, Y., Zu, Y., Zhang, N., Yue, X., Xia, Y., and Luo, Y. (2013). Heavy metal and sulfur concentrations and mycorrhizal colonizing status of plants from abandoned lead/zinc mine land in Gejiu, Southwest China. African Journal of Microbiology Research, 7, 3943–3952.
  • Zhang, W. M., Ma, Y. Q., Meng, N., Li, X. P., and Zhang, M. Q. (1996). Field study on vesicular-arbuscular mycorrhizae used in mine reclamation. Mine Metallurgy, 5, 17–21.
  • Zhao, R. X., Guo, W., Fu, R. Y., Zhao, W. J., Guo, J. Y., Bi, N., and Zhang, J. (2013). Effects of arbuscular mycorrhizal fungi on the vegetation restoration of different types of coal mine spoil banks. Environmental Science, 34, 4447–4454.
  • Zhu, Y. G., and Miller, M. R. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science, 8, 407–409.
  • Zipper, C. E., Burger, J. A., Skousen, J. G., Angel, P. N., Barton, C. D., Davis, V., and Franklin, J. A. (2011). Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environmental Management, 47, 751–765.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.