4,194
Views
5
CrossRef citations to date
0
Altmetric
Articles

Electro-Fenton process for water and wastewater treatment

& ORCID Icon
Pages 2100-2131 | Published online: 18 Dec 2017

References

  • Ammar, S., Oturan, M. A., Labiadh, L., Guersalli, A., Abdelhedi, R., Oturan, N., and Brillas, E. (2015). Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res., 74, 77–87. https://doi.org/10.1016/j.watres.2015.02.006
  • Annabi, C., Fourcade, F., Soutrel, I., Geneste, F., Floner, D., Bellakhal, N., and Amrane, A. (2016). Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism. J. Environ. Manage., 165, 96–105. https://doi.org/10.1016/j.jenvman.2015.09.018
  • Anotai, J., Lu, M. C., and Chewpreecha, P. (2006). Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Res., 40, 1841–1847. https://doi.org/10.1016/j.watres.2006.02.033
  • Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. J. Hazard. Mater., 163, 109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067
  • Babu, B. R., Venkatesan, P., Kanimozhi, R., and Basha, C. A. (2009). Removal of pharmaceuticals from wastewater by electrochemical oxidation using cylindrical flow reactor and optimization of treatment conditions. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 44, 985–994. https://doi.org/10.1080/10934520902996880
  • Babuponnusami, A., and Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng., 2, 557–572. https://doi.org/10.1016/j.jece.2013.10.011
  • Badawy, M. I., and Ali, M. E. (2006). Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. J. Hazard. Mater, 136, 961–966. https://doi.org/10.1016/j.jhazmat.2006.01.042
  • Balci, B., Oturan, M. A., Oturan, N., and Sires, I. (2009). Decontamination of aqueous glyphosate, (aminomethyl)phosphonic acid, and glufosinate solutions by electro-Fenton-like process with Mn2+ as the catalyst. J. Agric. Food Chem., 57, 4888–4894. https://doi.org/10.1021/jf900876x
  • Barb, W. G., Baxendale, J. H., George, P., and Hargrave, K. R. (1951). Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction. Trans. Faraday Soc., 47, 462–500. https://doi.org/10.1039/TF9514700462
  • Barhoumi, N., Oturan, N., Olvera-Vargas, H., Brillas, E., Gadri, A., Ammar, S., … Oturan, M. A. (2016). Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res., 94, 52–61. https://doi.org/10.1016/j.watres.2016.02.042
  • Bañuelos, J. A., Rodríguez, F. J., Manríquez, J. R., Bustos, E. A., Rodríguez, J. C., Cruz, L. G., Arriaga and L. A. Godínez (2013). Novel electro-fenton approach for regeneration of activated carbon. Environ Sci Technol, 47(14), 7927–7933.
  • Benitez, F. J., Acero, J. L., Real, F. J., Rubio, F. J., and Leal, A. I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res., 35, 1338–1343. https://doi.org/10.1016/S0043-1354(00)00364-X
  • Borras, N., Arias, C., Oliver, R., and Brillas, E. (2011). Mineralization of desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond anode and an oxygen-diffusion cathode. Chemosphere, 85, 1167–1175. https://doi.org/10.1016/j.chemosphere.2011.09.008
  • Bossmann, S. H., Oliveros, E., Göb, S., Siegwart, S., Dahlen, E. P., Payawan, L., Straub, M., … Braun, A. M. (1998). New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions. J. Phys. Chem. A., 102, 5542–5550. https://doi.org/10.1021/jp980129j
  • Bouzayani, B., Meijide, J., Pazos, M., Elaoud, S. C., and Sanroman, M. A. (2017). Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. Environ. Sci. Pollut. Res. Int., https://doi.org/10.1007/s11356-017-9468-5
  • Bray, W. C., and Gorin, M. H. (1932). Ferryl ion, a compound of tetravalent iron. J. Am. Chem. Soc., 54, 2124–2125. https://doi.org/10.1021/ja01344a505
  • Brezonik, P., and Arnold, W. (2011). Water chemistry: An introduction to the chemistry of natural and engineered aquatic systems. New York: Oxford University Press.
  • Brillas, E., Banos, M. A., Skoumal, M., Cabot, P. L., Garrido, J. A., and Rodriguez, R. M. (2007). Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere, 68, 199–209. https://doi.org/10.1016/j.chemosphere.2007.01.038
  • Brillas, E., Boye, B., Sirés, I., Garrido, J. A., Rodríguez, R. M. A., Arias, C., … Comninellis, C. (2004). Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta, 49, 4487–4496. https://doi.org/10.1016/j.electacta.2004.05.006
  • Brillas, E., and Casado, J. (2002). Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere, 47, 241–248. https://doi.org/10.1016/S0045-6535(01)00221-1
  • Brillas, E., Garcia-Segura, S., Skoumal, M., and Arias, C. (2010). Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere, 79, 605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004
  • Buxton, G., Greenstock, C., Helman, W., and Ross, A. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513–886.
  • Büyüksönmez, F., Rynk, R., Hess, T. F., and Bechinski, E. (1999). Occurrence, degradation and fate of pesticides during composting. Compost Sci. Utili., 7, 66–82. https://doi.org/10.1080/1065657X.1999.10701986
  • Cañizares, P., García-Gómez, J., Sáez, C., and Rodrigo, M. (2004). Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. J. Appl. Electrochem., 34, 87–94. https://doi.org/10.1023/B:JACH.0000005587.52946.66
  • Casado, J., Fornaguera, J., and Galan, M. I. (2005). Mineralization of aromatics in water by sunlight-assisted electro-fenton technology in a pilot reactor. Environ. Sci. Technol., 39, 1843–1847. https://doi.org/10.1021/es0498787
  • Celebi, M., Oturan, N., Zazou, H., Hamdani, M., and Oturan, M. (2015). Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology. Sep. Purif. Technol., 156, 996–1002. https://doi.org/10.1016/j.seppur.2015.07.025
  • Choi, J. Y., Lee, Y. J., Shin, J., and Yang, J. W. (2010). Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment. J. Hazard Mater., 179, 762–768. https://doi.org/10.1016/j.jhazmat.2010.03.067
  • Chou, S., Huang, Y., Lee, S., Huang, G., and Huang, C. (1999). Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res., 33, 751–759. https://doi.org/10.1016/S0043-1354(98)00276-0
  • Comninellis, C., and Nerini, A. (1995). Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem., 25(1), 23–28.
  • Da Pozzo, A., Petrucci, E., and Merli, C. (2008). Electrogeneration of hydrogen peroxide in seawater and application to disinfection. J. Appl. Electrochem., 38, 997–1003. https://doi.org/10.1007/s10800-008-9524-4
  • Daneshvar, N., Aber, S., Vatanpour, V., and Rasoulifard, M. H. (2008). Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters. J. Electroanal. Chem., 615, 165–174. https://doi.org/10.1016/j.jelechem.2007.12.005
  • Fernández de Dios, M.Á., Rosales, E., Fernandez-Fernandez, M., Pazos, M., and Sanroman, M. (2015). Degradation of organic pollutants by heterogeneous electro-Fenton process using Mn-alginate composite. J. Chem. Technol. Biotechnol., 90, 1439–1447. https://doi.org/10.1002/jctb.4446
  • De Laat, J., Truong Le, G., and Legube, B. (2004). A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere, 55, 715–723. https://doi.org/10.1016/j.chemosphere.2003.11.021
  • Deguillaume, L., Leriche, M., and Chaumerliac, N. (2005). Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60, 718–724. https://doi.org/10.1016/j.chemosphere.2005.03.052
  • Deng, Y., and Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Res., 40, 3683–3694. https://doi.org/10.1016/j.watres.2006.08.009
  • Ding, X., Ai, Z., and Zhang, L. (2012). Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment. J. Hazard. Mater., 239–240, 233–240. https://doi.org/10.1016/j.jhazmat.2012.08.070
  • Do, J. S., and Chen, C. P. (1994). In situ oxidative degradation of formaldehyde with hydrogen peroxide electrogenerated on the modified graphites. J. Appl. Electrochem., 24, 936–942. https://doi.org/10.1007/BF00348785
  • Duesterberg, C. K., Mylon, S. E., and Waite, T. D. (2008). pH effects on iron-catalyzed oxidation using Fenton's reagent. Environ. Sci. Technol., 42, 8522–8527. https://doi.org/10.1021/es801720d
  • Duesterberg, C. K., and Waite, T. D. (2006). Process optimization of fenton oxidation using kinetic modeling. Environ. Sci. Technol., 40, 4189–4195. https://doi.org/10.1021/es060311v
  • Edelahi, M., Oturan, N., Oturan, M., Padellec, Y., Bermond, A., and El Kacemi, K. (2003). Degradation of diuron by the electro-Fenton process. Environ. Chem. Lett., 1, 233–236. https://doi.org/10.1007/s10311-003-0052-5
  • El-Ghenymy, A., Cabot, P. L., Centellas, F., Garrido, J. A., Rodríguez, R. M., Arias, C., … Brillas, E. (2013). Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere, 91, 1324–1331. https://doi.org/10.1016/j.chemosphere.2013.03.005
  • Faust, B., and Hoigne, J. (1990). Photolysis of Fe(III) hydroxy complexes as sources of OH radicals in clouds, fog, and rain. Atmos. Environ. Part A-Gen. Top., 24, 79–89. https://doi.org/10.1016/0960-1686(90)90443-Q
  • Feng, C. H., Li, F. B., Mai, H. J., and Li, X. Z. (2010). Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ. Sci. Technol., 44, 1875–1880. https://doi.org/10.1021/es9032925
  • Feng, L., Oturan, N., van Hullebusch, E. D., Esposito, G., and Oturan, M. A. (2014). Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: Comparison of electro-Fenton and anodic oxidation processes. Environ. Sci. Pollut. Res. Int., 21, 8406–8416. https://doi.org/10.1007/s11356-014-2774-2
  • Fernandes, A., Morao, A., Magrinho, M., Lopes, A., and Goncalves, I. (2004). Electrochemical degradation of C. I. Acid orange 7. Dyes Pigments, 61, 287–296. https://doi.org/10.1016/j.dyepig.2003.11.008
  • Gao, G., Zhang, Q., Hao, Z., and Vecitis, C. D. (2015). Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton. Environ. Sci. Technol., 49, 2375–2383. https://doi.org/10.1021/es505679e
  • Garcia, O., Isarain-Chavez, E., Garcia-Segura, S., Brillas, E., and Peralta-Hernandez, J. (2013). Degradation of 2,4-dichlorophenoxyacetic acid by electro-oxidation and electro-Fenton/BDD processes using a pre-pilot plant. Electrocatalysis, 4, 224–234. https://doi.org/10.1007/s12678-013-0135-4
  • Ghoneim, M., El-Desoky, H., and Zidan, N. (2011). Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination, 274, 22–30. https://doi.org/10.1016/j.desal.2011.01.062
  • Gogate, P., and Pandit, A. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res., 8, 501–551. https://doi.org/10.1016/S1093-0191(03)00032-7
  • Gozzo, F. (2001). Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates. J. Mol. Catal. A-Chem., 171, 1–22. https://doi.org/10.1016/S1381-1169(01)00099-1
  • Gumus, D., and Akbal, F. (2016). Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf. Environ. Prot., 103, 252–258. https://doi.org/10.1016/j.psep.2016.07.008
  • Haag, W., and Yao, C. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 26, 1005–1013. https://doi.org/10.1021/es00029a021
  • Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., and Oturan, M. (2007). Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. J. Electroanal. Chem., 610, 75–84. https://doi.org/10.1016/j.jelechem.2007.07.004
  • Hou, B., Han, H., Jia, S., Zhuang, H., Xu, P., and Li, K. (2016). Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst. J. Taiwan Inst. Chem. Eng., 60, 352–360. https://doi.org/10.1016/j.jtice.2015.10.032
  • Huang, Y. H., Huang, Y. F., Chang, P. S., and Chen, C. Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. J. Hazard. Mater., 154, 655–662. https://doi.org/10.1016/j.jhazmat.2007.10.077
  • Hug, S. J., and Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: PH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol., 37, 2734–2742. https://doi.org/10.1021/es026208x
  • Ito, K., Jian, W., Nishijima, W., Baes, A., Shoto, E., and Okada, M. (1998). Comparison of ozonation and AOPs combined with biodegradation for removal of THM precursors in treated sewage effluents. Water Sci. Technol., 38, 179–186.
  • Jasmann, J. R., Borch, T., Sale, T. C., and Blotevogel, J. (2016). Advanced electrochemical oxidation of 1,4-dioxane via dark catalysis by novel titanium dioxide (TiO2) pellets. Environ. Sci. Technol., 50, 8817–8826. https://doi.org/10.1021/acs.est.6b02183
  • Jiang, H., Sun, Y., Feng, J., and Wang, J. (2016). Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles. Water Sci. Technol., 74, 1116–1126. https://doi.org/10.2166/wst.2016.300
  • Jones, C. W., Braithwaite, M. J., and Clark, J. H. (1999). Applications of hydrogen peroxide and derivatives. Cambridge: Royal Society of Chemistry.
  • Kang, Y., Cho, M., and Hwang, K. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res., 33, 1247–1251. https://doi.org/10.1016/S0043-1354(98)00315-7
  • Kavitha, V., and Palanivelu, K. (2005). Destruction of cresols by Fenton oxidation process. Water Res., 39, 3062–3072. https://doi.org/10.1016/j.watres.2005.05.011
  • Kayan, B., Gözmen, B., Demirel, M., and Gizir, A. M. (2010). Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques. J. Hazard Mater, 177, 95–102. https://doi.org/10.1016/j.jhazmat.2009.11.076
  • Keenan, C. R., and Sedlak, D. L. (2008). Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol., 42, 6936–6941. https://doi.org/10.1021/es801438f
  • Kishimoto, N., Kitamura, T., Kato, M., and Otsu, H. (2013). Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system. Water Res., 47, 1919–1927. https://doi.org/10.1016/j.watres.2013.01.021
  • Kremer, M. (1999). Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys. Chem. Chem. Phys., 1, 3595–3605. https://doi.org/10.1039/a903915e
  • Kwan, W. P., and Voelker, B. M. (2002). Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol., 36, 1467–1476. https://doi.org/10.1021/es011109p
  • Kwon, B., Lee, D., Kang, N., and Yoon, J. (1999). Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Res., 33, 2110–2118. https://doi.org/10.1016/S0043-1354(98)00428-X
  • Labiadh, L., Oturan, M. A., Panizza, M., Hamadi, N. B., and Ammar, S. (2015). Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J. Hazard. Mater., 297, 34–41. https://doi.org/10.1016/j.jhazmat.2015.04.062
  • Lee, C., Lee, E., Lim, Y., Park, K., Park, H., and Lim, D. (2017). Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. RSC Adv., 7, 6229–6235. https://doi.org/10.1039/C6RA26287B
  • Lee, E., Lee, H., Kim, Y., Sohn, K., and Lee, K. (2011). Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ. Sci. Technol., 8, 381–388. https://doi.org/10.1007/BF03326225
  • Li, X., Zhang, P., Jin, L., Shao, T., Li, Z., and Cao, J. (2012). Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environ. Sci. Technol., 46, 5528–5534. https://doi.org/10.1021/es204279u
  • Liao, C. H., Kang, S. F., and Wu, F. A. (2001). Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 44, 1193–1200. https://doi.org/10.1016/S0045-6535(00)00278-2
  • Lin, H., Niu, J., Xu, J., Huang, H., Li, D., Yue, Z., and Feng, C. (2013). Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes. Environ. Sci. Technol., 47, 13039–13046. https://doi.org/10.1021/es4034414
  • Lin, S., Lin, C., and Leu, H. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Res., 33, 1735–1741. https://doi.org/10.1016/S0043-1354(98)00403-5
  • Lin, S., and Lo, C. (1997). Fenton process for treatment of desizing wastewater. Water Res., 31, 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  • Lu, M. C. (2000). Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere, 40(2), 125–130.
  • Liu, H., Wang, C., Li, X., Xuan, X., Jiang, C., and Cui, H. (2007). A novel electro-Fenton process for water treatment: Reaction-controlled pH adjustment and performance assessment. Environ. Sci. Technol., 41, 2937–2942. https://doi.org/10.1021/es0622195
  • Liu, X., Yang, D., Zhou, Y., Zhang, J., Luo, L., Meng, S., … Tang, L. (2017). Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin. Chemosphere, 182, 306–315. https://doi.org/10.1016/j.chemosphere.2017.05.035
  • Liu, Y., Chen, S., Quan, X., Yu, H., Zhao, H., and Zhang, Y. (2015). Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon. Environ. Sci. Technol., 49, 13528–13533. https://doi.org/10.1021/acs.est.5b03147
  • Liu, Y., Xie, J., Ong, C. N., Vecitis, C., and Zhou, Z. (2015). Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci.-Water Res. Technol., 1, 769–778. https://doi.org/10.1039/C5EW00128E
  • Ma, L., Zhou, M., Ren, G., Yang, W., and Liang, L. (2016). A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochim. Acta, 200, 222–230. https://doi.org/10.1016/j.electacta.2016.03.181
  • Martinez-Huitle, C. A., and Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev., 35, 1324–1340. https://doi.org/10.1039/B517632H
  • Mollah, M. Y., Schennach, R., Parga, J. R., and Cocke, D. L. (2001). Electrocoagulation (EC)–science and applications. J. Hazard Mater., 84, 29–41. https://doi.org/10.1016/S0304-3894(01)00176-5
  • Moon, D., Ezuka, M., Maruyama, T., Osakada, K., and Yamamoto, T. (1993). Kinetic study on chemical oxidation of leucoemeraldine base polyaniline to emeraldine base. Macromolecules, 26, 364–369. https://doi.org/10.1021/ma00054a016
  • Mousset, E., Wang, Z., and Lefebvre, O. (2016). Electro-Fenton for control and removal of micropollutants – process optimization and energy efficiency. Water Sci. Technol., 74, 2068–2074. https://doi.org/10.2166/wst.2016.353
  • Nidheesh, P., and Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 299, 1–15. https://doi.org/10.1016/j.desal.2012.05.011
  • Nidheesh, P., Gandhimathi, R., Velmathi, S., and Sanjini, N. (2014). Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC. Adv., 4, 5698–5708. https://doi.org/10.1039/c3ra46969g
  • Niu, J., Lin, H., Xu, J., Wu, H., and Li, Y. (2012). Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by ce-doped modified porous nanocrystalline PbO2 film electrode. Environ. Sci. Technol., 46, 10191–10198.
  • Oturan, N., Panizza, M., and Oturan, M. A. (2009). Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J. Phys. Chem. A, 113, 10988–10993. https://doi.org/10.1021/jp9069674
  • Ozcan, A., Sahin, Y., Koparal, A. S., and Oturan, M. A. (2008). Degradation of picloram by the electro-Fenton process. J. Hazard. Mater., 153, 718–727. https://doi.org/10.1016/j.jhazmat.2007.09.015
  • Özcan, A., Şahin, Y., Savaş Koparal, A., and Oturan, M. A. (2008). Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J. Electroanal. Chem., 616, 71–78. https://doi.org/10.1016/j.jelechem.2008.01.002
  • Panizza, M., and Cerisola, G. (2008). Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind. Eng. Chem. Res., 47, 6816–6820. https://doi.org/10.1021/ie8001292
  • Panizza, M., and Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Res., 43, 339–344. https://doi.org/10.1016/j.watres.2008.10.028
  • Pignatello, J. (1992). Dark and photo assisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol., 26, 944–951. https://doi.org/10.1021/es00029a012
  • Pignatello, J., Oliveros, E., and Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol., 36, 1–84. https://doi.org/10.1080/10643380500326564
  • Pimentel, M., Oturan, N., Dezotti, M., and Oturan, M. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal. B-Environ., 83, 140–149. https://doi.org/10.1016/j.apcatb.2008.02.011
  • Pliego, G., Zazo, J., Garcia-Munoz, P., Munoz, M., Casas, J., and Rodriguez, J. (2015). Trends in the intensification of the Fenton process for wastewater treatment: An overview. Crit. Rev. Environ. Sci. Technol., 45, 2611–2692. https://doi.org/10.1080/10643389.2015.1025646
  • Pratap, K., and Lemley, A. T. (1998). Fenton electrochemical treatment of aqueous atrazine and metolachlor. J. Agric. Food Chem., 46, 3285–3291. https://doi.org/10.1021/jf9710342
  • Primo, O., Rivero, M., and Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. J. Hazard. Mater., 153, 834–842. https://doi.org/10.1016/j.jhazmat.2007.09.053
  • Qiang, Z., Chang, J. H., and Huang, C. P. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res., 36, 85–94. https://doi.org/10.1016/S0043-1354(01)00235-4
  • Qiang, Z., Chang, J. H., and Huang, C. P. (2003). Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res., 37, 1308–1319. https://doi.org/10.1016/S0043-1354(02)00461-X
  • Qiu, S., He, D., Ma, J., Liu, T., and Waite, T. (2015). Kinetic modeling of the electro-fenton process: Quantification of reactive oxygen species generation. Electrochim. Acta, 176, 51–58. https://doi.org/10.1016/j.electacta.2015.06.103
  • Qu, Y., Zhang, C., Li, F., Chen, J., and Zhou, Q. (2010). Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res., 44, 2939–2947. https://doi.org/10.1016/j.watres.2010.02.019
  • Radjenovic, J., and Sedlak, D. L. (2015). Challenges and opportunities for electrochemical processes as Next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol., 49, 11292–11302. https://doi.org/10.1021/acs.est.5b02414
  • Ratanatamskul, C., Masomboon, N., and Lu, M. (2011). Application of fenton processes for degradation of aniline. Pestic. Mod. World – Pestic. Manag., https://doi.org/10.5772/17323
  • Ribeiro, A. R., Nunes, O. C., Pereira, M. F., and Silva, A. M. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int., 75, 33–51. https://doi.org/10.1016/j.envint.2014.10.027
  • Rivas, F. J., Beltran, F. J., Frades, J., and Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Res., 35, 387–396. https://doi.org/10.1016/S0043-1354(00)00285-2
  • Rivas, F. J., Beltran, F., Gimeno, O., and Carvalho, F. (2003). Fenton-like oxidation of landfill leachate. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng., 38, 371–379. https://doi.org/10.1081/ESE-120016901
  • Rosales, E., Pazos, M., Longo, M. A., and Sanroman, M. A. (2009). Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng., 44, 1104–1110. https://doi.org/10.1080/10934520903005111
  • Rosales, E., Pazos, M., and Sanromán, M. A. (2012). Advances in the Electro-fenton process for remediation of recalcitrant organic compounds. Chem. Eng. Technol., 35, 609–617. https://doi.org/10.1002/ceat.201100321
  • Ruiz, E. J., Arias, C., Brillas, E., Hernández-Ramírez, A., and Peralta-Hernández, J. M. (2011). Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere, 82, 495–501. https://doi.org/10.1016/j.chemosphere.2010.11.013
  • Ruiz, F., Martinez, P., Castro, E., Humana, R., Peretti, H., and Visintin, A. (2013). Effect of electrolyte concentration on the electrochemical properties of an AB5-type alloy for Ni/MH batteries. Int. J. Hydrogen Energy, 38, 240–245. https://doi.org/10.1016/j.ijhydene.2012.10.007
  • Sedlak, D., and Andren, A. (1991). Oxidation of chlorobenzene with Fenton reagent. Environ. Sci. Technol., 25, 777–782. https://doi.org/10.1021/es00016a024
  • Shan, Z., Lu, M., Wang, L., MacDonald, B., MacInnis, J., Mkandawire, M., … Oakes, K. D. (2016). Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem. Commun. (Camb), 52, 2087–2090. https://doi.org/10.1039/C5CC07446K
  • Shin, Y. U., Yoo, H. Y., Kim, S., Chung, K. M., Park, Y. G., Hwang, K. H., … Lee, J. (2017). Sequential combination of electro-Fenton and electrochemical chlorination processes for treatment of anaerobically-digested food wastewater. Environ. Sci. Technol., 51(18), 10700–10710. https://doi.org/10.1021/acs.est.7b02018
  • Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., and Panizza, M. (2014). Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. Int., 21, 8336–8367. https://doi.org/10.1007/s11356-014-2783-1
  • Sires, I., Oturan, N., Oturan, M., Rodriguez, R., Garrido, J., and Brillas, E. (2007). Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim. Acta, 52, 5493–5503. https://doi.org/10.1016/j.electacta.2007.03.011
  • Skoumal, M., Rodriguez, R., Cabot, P., Centellas, F., Garrido, J., Arias, C., … Brillas, E. (2009). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim. Acta, 54, 2077–2085. https://doi.org/10.1016/j.electacta.2008.07.014
  • Stumm, W., and Morgan, J. J. (1985). Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. New York, N.Y.: Wiley.
  • Sun, Y., and Pignatello, J. (1993). Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ. Sci. Technol., 27, 304–310. https://doi.org/10.1021/es00039a010
  • Tian, J., Olajuyin, A. M., Mu, T., Yang, M., and Xing, J. (2016). Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process. Environ. Sci. Pollut. Res. Int., 23, 11574–11583. https://doi.org/10.1007/s11356-016-6360-7
  • Ting, W. P., Lu, M. C., and Huang, Y. H. (2008). The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J. Hazard. Mater., 156, 421–427. https://doi.org/10.1016/j.jhazmat.2007.12.031
  • Ting, W. P., Lu, M. C., and Huang, Y. H. (2009). Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. J. Hazard Mater., 161, 1484–1490. https://doi.org/10.1016/j.jhazmat.2008.04.119
  • Tokumura, M., Sugawara, A., Raknuzzaman, M., Habibullah-Al-Mamun, M., and Masunaga, S. (2016). Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere, 159, 317–325. https://doi.org/10.1016/j.chemosphere.2016.06.019
  • Umar, M., Aziz, H. A., and Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag., 30, 2113–2121. https://doi.org/10.1016/j.wasman.2010.07.003
  • Verma, S., Khandegar, V., and Saroha, A. (2013). Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard., Toxic, Radioactive Waste, 17, 146–152. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170
  • Vermilyea, A., and Voelker, B. (2009). Photo-fenton reaction at near neutral pH. Environ. Sci. Technol., 43, 6927–6933. https://doi.org/10.1021/es900721x
  • Wang, B. B., Cao, M. H., Tan, Z. J., Wang, L. L., Yuan, S. H., and Chen, J. (2010). Photochemical decomposition of perfluorodecanoic acid in aqueous solution with VUV light irradiation. J. Hazard. Mater., 181, 187–192. https://doi.org/10.1016/j.jhazmat.2010.04.115
  • Wang, C. T., Hu, J. L., Chou, W. L., and Kuo, Y. M. (2008). Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J. Hazard Mater., 152, 601–606. https://doi.org/10.1016/j.jhazmat.2007.07.023
  • Wang, C., Chou, W., Chung, M., and Kuo, Y. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253, 129–134. https://doi.org/10.1016/j.desal.2009.11.020
  • Wang, N., Zheng, T., Zhang, G., and Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4, 762–787. https://doi.org/10.1016/j.jece.2015.12.016
  • Wang, X. Q., Liu, C. P., Yuan, Y., and Li, F. B. (2014). Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J. Hazard Mater., 275, 200–209. https://doi.org/10.1016/j.jhazmat.2014.05.003
  • Wang, X., Chen, S., Gu, X., and Wang, K. (2009). Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process. Waste Manag., 29, 1354–1358. https://doi.org/10.1016/j.wasman.2008.10.006
  • Wang, Y. T., and Wang, R. S. (2017). A Bio-electro-fenton system employing the composite FePc/CNT/SS316 Cathode. Materials (Basel), 10(2), E169.
  • Wang, Y., Liu, Y., Liu, T., Song, S., Gui, X., Liu, H., and Tsiakaras, P. (2014). Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Appl. Catal. B-Environ., 156, 1–7. https://doi.org/10.1016/j.apcatb.2014.02.041
  • Wang, Y., Zhao, H., Chai, S., Wang, Y., Zhao, G., and Li, D. (2013). Electrosorption enhanced electro-Fenton process for efficient mineralization of imidacloprid based on mixed-valence iron oxide composite cathode at neutral pH. Chem. Eng. J., 223, 524–535. https://doi.org/10.1016/j.cej.2013.03.016
  • Xu, N., Zeng, Y., Li, J., Zhang, Y., and Sun, W. (2015). Removal of 17 beta-estrodial in a bio-electro-Fenton system: Contribution of oxidation and generation of hydroxyl radicals with the Fenton reaction and carbon felt cathode. RSC. Adv., 5, 56832–56840. https://doi.org/10.1039/C5RA08053C
  • Zazo, J. A., Casas, J. A., Mohedano, A. F., Gilarranz, M. A., and Rodriguez, J. J. (2005). Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. Environ. Sci. Technol., 39, 9295–9302. https://doi.org/10.1021/es050452h
  • Zhang, C., Zhou, L., Yang, J., Yu, X., Jiang, Y., and Zhou, M. (2014). Nanoscale zero-valent iron/AC as heterogeneous Fenton catalysts in three-dimensional electrode system. Environ. Sci. Pollut. Res. Int., 21, 8398–8405. https://doi.org/10.1007/s11356-014-2791-1
  • Zhang, H., Choi, H. J., and Huang, C. P. (2005). Optimization of Fenton process for the treatment of landfill leachate. J. Hazard Mater., 125, 166–174. https://doi.org/10.1016/j.jhazmat.2005.05.025
  • Zhang, H., Choi, H. J., and Huang, C. P. (2006). Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor. J. Hazard. Mater., 136, 618–623. https://doi.org/10.1016/j.jhazmat.2005.12.040
  • Zhang, H., Fei, C., Zhang, D., and Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater., 145, 227–232. https://doi.org/10.1016/j.jhazmat.2006.11.016
  • Zhang, H., Zhang, D., and Zhou, J. (2006). Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater., 135, 106–111. https://doi.org/10.1016/j.jhazmat.2005.11.025
  • Zhou, M., Yu, Q., Lei, L., and Barton, G. (2007). Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol., 57, 380–387. https://doi.org/10.1016/j.seppur.2007.04.021
  • Zhuo, Q., Deng, S., Yang, B., Huang, J., and Yu, G. (2011). Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ. Sci. Technol., 45, 2973–2979. https://doi.org/10.1021/es1024542
  • Zuo, Y., and Hoigne, J. (1992). Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III) oxalate complexes. Environ. Sci. Technol., 26, 1014–1022. https://doi.org/10.1021/es00029a022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.