439
Views
0
CrossRef citations to date
0
Altmetric
Articles

State of the art in the field of emission reduction of sulphur dioxide produced during coal combustion

ORCID Icon, , , &
Pages 2387-2414 | Published online: 15 Feb 2018

References

  • Acharya, C., Sukla, L., and Misra, V. (2005). Biological elimination of sulphur from high sulphur coal by Aspergillums-like fungi. Fuel, 12–13, 1597–1600.
  • Ambedkar, B., Nagarajan, R., and Jayanti, S. (2011). Ultrasonic coal-wash for desulfurization. Ultrasonics Sonochemistry, 18, 718–726. doi:10.1016/j.ultsonch.2010.09.006.
  • Amini, E., Oliazadeh, M., and Kolahdoozan, M. (2009). Kinetic comparison of biological and conventional flotation of coal. Minerals Engineering, 22, 344–347. doi:10.1016/j.mineng.2008.09.008.
  • Ali, A., Srivastava, N., Srivastava, S. K., Goswami, R., Yadav, R., and Hazra, S. (2009). Upgradation of high sulphur NE region Indian coals by pyrolysis in presence of hydrogen. The Open Fuels & Energy Science Journal, 2, 40–46. doi:10.2174/1876973X01002010040.
  • Ali, A., Srivastava, S. K., and Haque, R. (1992). Chemical desulphurization of high-sulphur coals. Fuel, 7, 835–839. doi:10.1016/0016-2361(92)90139-F.
  • Aliev, R., and Yolshin, N. (2013). The strategy of improving the hydrotreating process of oil fractions. Crude Refining and Petrochemistry. Technological Solutions and Best Practice, 4, 8–10.
  • Andreasen, A., and Mayer, S. (2007). Use of seawater scrubbing for SO2 removal from marine engine exhaust gas. Energy & Fuels, 21, 3274–3279. doi:10.1021/ef700359w.
  • Ayhan, F. D., Abakay, H., and Saydut, A. (2005). Desulfurization and deashing of Hazro coal via a flotation method. Energy & Fuels, 19, 1003–1007. doi:10.1021/ef049747r.
  • Aytar, P., Gedikli, S., Şam, M., Ünal, A., Çabuk, Ah., Kolankaya, N., and Yürüm, A. (2011). Desulphurization of some low-rank Turkish lignites with crude laccase produced from Trametes versicolor ATCC 200801. Fuel Processing Technology, 1, 71–76. doi:10.1016/j.fuproc.2010.08.022.
  • Aytar, P., Aksoy, D. O., Toptas, Y., Cabuk, A., Koca, S., and Koca, H. (2014). Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel, 116, 634–641. doi:10.1016/j.fuel.2013.08.077.
  • Babich, I., and Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 6, 607–631. doi:10.1016/S0016-2361(02)00324-1.
  • Bazayants, H. (1999). Forecast of technical-and-economic index desulfurization equipments of coal-fired boilers of Ukraine. Power and Electrification, 2, 48–50.
  • Bekir, O. (1984). New cleaning technologies advance coal. Part 1 - Flotation and separation processes. Coal Mining (formerly “Coal Mining and Procesees”), 5, 38–41.
  • BP Statistical Review of World Energy. (2015, June). from https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-20-15-full-report.pdf.
  • Bratychak, M., Gajvanovych, V., and Brzozowski, Z. (2004). Hard coal desulphurization and sulphur recovery from it. Ecological Chemistry and Engineering, 11, 59–62.
  • Cara, J., Moran, A., Teresa, C., Razada, F., and Aller, A. (2003). The biodesulphuration of a semiantracite in a pakedbed system. Fuel, 14–15, 2065–2068. doi:10.1016/S0016-2361(03)00186-8.
  • Cara, J., Vargas, M., Moran, A., Gomez, E., Martinez, A., and Garcıa, F. (2006). Biodesulphurization of a coal by packed-column leaching. Simultaneous thermogravimetric and mass spectrometric analyse the biodesulphurization of a semiantracite in a pakedbed system. Fuel, 85, 1756–1762. doi:10.1016/j.fuel.2006.02.014.
  • Çelik, M. S., and Yildirim, I. (2000). A new physical process for desulfurization of low-rank coals. Fuel, 79, 1665–1669. doi:10.1016/S0016-2361(00)00013-2.
  • Chi, S., Morsi, B., Klinzing, G., and Chiang, S.-H. (1989). LICADO process for fine coal cleaning. Part I: Mechanism. Coal Preparation, 6, 241–263. doi:10.1080/07349348908960532.
  • Córdoba, P. (2015). Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet Limestone FGDs. Fuel, 144, 274–286. doi:10.1016/j.fuel.2014.12.065.
  • Directive EC. (2001). Directive 2001/80/EC of the European Parliament and of the Council. from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0080.
  • Department of Trade and Industry. (2000). Flue gas desulphurization (FGD) technologies. Cleaner coal technology program. Technology status report 012, from http://webarchive.nationalarchives.gov.uk/+/www.berr.gov.uk/files/file19291.pdf.
  • Dzhonova-Atanasova, D., Razkazova-Velkova, E., Ljutzkanov, L., Kolev, N., and Kolev, D. (2013). Energy efficient SO2 removal from flue gases using the method of Wellman-Lord. Journal of Chemical Technology and Metallurgy, 48, 457–464.
  • Franco, D. V., Gelan, J. M., Martens, H. J., Vanderzande, D. J.-M., and Majchrowicz, B. B. (1992). 13C CP/MAS n.m.r. study of changes in molecular mobility of a bituminous coal during desulphurization. Fuel, 71, 751–754. doi:10.1016/0016-2361(92)90124-7.
  • EEA. European Environment Agency. (2010). Sulphur dioxide (SO2) emissions. from http://www.eea.europa.eu/data-and-maps/indicators/emission-trends-of-sulphur-dioxide-so2/emission-trends-of-sulfur-dioxide-so2.
  • EEA. European Environment Agency. (2011). Sulphur dioxide (SO2) emissions. from http://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1/ass-esment-1.
  • EEA. European Environment Agency. (2012). Sulphur dioxide (SO2) emissions. from http://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1/ass-essment-2.
  • EEA. European Environment Agency. (2014). Sulphur dioxide (SO2) emissions. from http://www.eea.europa.eu/data-and-maps/daviz/sector-share-of-sulphur-oxides-emissions#tab-ch-art_2.
  • Ehsani, M. R. (2006). Desulfurization of Tabas coals using chemical reagents. Iranian Journal of Chemistry and Chemical Engineering, 25, 59–66.
  • EPA. Environmental Protection Agency. (2004). Air Pollution Control Technology. Fact Sheet. from https://www3.epa.gov/ttncatc1/dir1/ffdg.pdf.
  • EPA. Environmental Protection Agency. (2001). Control of mercury emissions from coal-fired electric utility boilers. from https://www3.epa.gov/airtoxics/utility/hgwhitepaperfinal.pdf.
  • European Commission. (2016). Best available techniques (BAT). Reference Document for Large Combustion Plants. Available from http://eippcb.jrc.ec.europa.eu/reference/BREF/LCP_FinalDraft_06_2016.pdf.
  • European Commission. (2006). Integrated pollution prevention and control (IPPC). Reference Document on Best Available Techniques for Large Combustion Plants. Available from http://eippcb.jrc.ec.europa.eu/reference/BREF/lcp_bref_0706.pdf.
  • Fabianska, M., Lewinska-Preis, L., and Galimska-Stypa, R. (2012). Changes in organic matter of selected Miocene lignites and embedded sediments caused by microbial desulphurisation. Fuel, 94, 586–595. doi:10.1016/j.fuel.2011.10.013.
  • Farsh, A., and Shiralizadeh, P. (2015). Sulfur reduction of heavy fuel oil by oxidative desulfurization (ODS) method. Petroleum & Coal, 57, 295–302.
  • Garcia, A., and Schobert, H. (1990). Catalytic hydrodesulfurization of a high organic sulphur Turkish lignite: Amount, form, and mechanism of sulphur removal. Fuel Processing Technology, 2, 99–109. doi:10.1016/0378-3820(90)90014-J.
  • Garcia, A., and Schobert, H. (1991). Hydrodesulfurization of a high organic sulphur Spanish lignite with impregnated nickel sulfate. Coal Preparation, 3–4, 185–197. doi:10.1080/07349349108960566.
  • Gidaspow, D., Dazah, W., Snjeev, S., Shih, Y., Raghubir, G., and Aditya, M. (1986). Electrostatic desulfurization of coal in fluidized beds and conveyors. Conference “AIChE Annual Meeting”, 2–7 November, 1986, Miami Beach, USA. pp. 74–85.
  • Grebeniuk, A., Korobchansky, V., Vlasov, H., and Kaufman, S. (2002). Capturing chemical goods of carbonization. Donets'k, Ukraine: East Publishing House.
  • Grunvald, V. (1992). Sulfur gas technology. Moscow, RF: Chemistry.
  • Gunka, V., and Pyshyev, S. (2014). Lignite oxidative desulphurization. Notice 1: Process condition selection. International Journal of Coal Science & Technology, 1, 62–69. doi:10.1007/s40789-014-0009-2.
  • Gunka, V., and Pyshyev, S. (2015). Lignite oxidative desulphurization. Notice 2: Effects of process parameters. International Journal of Coal Science and Technology, 2, 196–201. doi:10.1007/s40789-015-0056-3.
  • Hayvanovych, V., and Pysh'yev, S. (2003). Desulfurization of low-rank coal with high sulfur content is the first stage of coal burning at heat electric stations. Energy & Fuels, 17, 1186–1190. doi:10.1021/ef0202945.
  • Hussar, M. (2010). Development measures and technical and economic assessments of reducing emissions of hyposulfurous oxide on thermal electric power station in Ukraine. Power and Electrification, 7, 39–42.
  • IEA. International Energy Agency. (2012). Technology roadmap: High-efficiency, low-emissions coal-fired power generation. from http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHighEfficiencyLowEmissionsCoalFiredPowerGeneration_WEB_Updated_March2013.pdf.
  • IEA. International Energy Agency. (2012). World energy outlook. from http://www.worldenergyoutlook.org/pressmedia/recentpresentations/presentationweo2012launch.pdf.
  • ICPS. International Centre for Policy Studies. (2011). Reducing emissions in Ukrainian cogeneration industry by meeting the requirements of European energy community. Green Book, from http://ua-energy.org/upload/files/Green%20book_TES_ICPS.pdf.
  • International Council on Clean Transportation (ICCT). (2014). China v gasoline and diesel fuel quality standards. from http://www.theicct.org/sites/default/files/publications/ICCTupdate_ChinaVfuelquality_jan2014.pdf.
  • Javadli, R., and de Klerk, A. (2012). Desulfurization of heavy oil. Applied Petrochemical Research, 1, 3–19. doi:10.1007/s13203-012-0006-6.
  • Javorskyj, V. (2010). Operating procedure of earwax and sulphuric acid. Lviv, Ukraine: Publishing House of Lviv Polytechnic National University.
  • Jiang, X., Li, H., Zhu, W., Hea, L., Shua, H., and Lub, Ji. (2009). Deep desulfurization of fuels catalyzed by surfactant-type decatung states using H2O2 as oxidant. Fuel, 3, 431–436. doi:10.1016/j.fuel.2008.11.010.
  • Johansson, L.-E. (2009). FGD: Choosing NID® DFGD or Open Spray Tower WFGD. European Users Conference, 15–17 Sept., 2009, Lisbon, Portugal.
  • Joshi, J., Shah, Y., Ruether, J., and Ritz, H. (1983). Particle size effects on oxidation of pyrite in air/water chemical coal cleaning. Fuel Processing Technology, 2, 173–190. doi:10.1016/0378-3820(83)90035-8.
  • Ju, L.-K. (1992). Microbial desulfurization of coal. Fuel Science and Technology International, 8, 1251–1290. doi:10.1080/08843759208916050.
  • Jürü, M. G., Tüzün, F. N. T., and Murathan, A. S. (2008). Oxidative desulfurization of ayirhan lignites by permanganate solution. Energy Sources A, 16, 1508–1515.
  • Kawatra, K., and Timothy, S. (2001). Coal desulfurization: High efficiency preparation methods. New York: Taylor & Francis.
  • Klimpel, R., and Hansen, R. (1989). Pyrite depressants useful in the separation of pyrite from Coal. Patent Application Number: US 4830740, Publication Number: 5840710, 19 May 1989.
  • Krawczyk, E., Zajemska, M., and Wyleciał, T. (2013). The chemical mechanism of SOx formation and elimination in coal combustion process. Chemik, 10, 856–862.
  • Kulik, C. (1987). New dry process for precombustion coal cleaning. Turbomachinery International, 28, 14–15.
  • Kulkarni, S. (2016). Research and studies on coal desulphurization. International Journal of Research and Review, 3, 56–58.
  • Kumaz, A., and Srivastava, S. (1992). Distribution of organic sulphur in Tipong coal using temperature programmed reduction. Fuel, 6, 718–719.
  • Lee, S., and Fullerton, K. (1992). Characterization of desulfurization extract from Midwestern U.S. coal. Fuel Science and Technology International, 7, 1137–1159. doi:10.1080/08843759208916039.
  • Li, Z., Sun, T., and Jia, J. (2011). An extremely rapid, convenient and mild coal desulfurization new process: Sodium borohydride reduction. Fuel Processing Technology, 9, 1162–1167.
  • Ma, X., Kaneko, T., Xu, G., and Kato, K. (2001). Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed. Fuel, 80, 673–680. doi:10.1016/S0016-2361(00)00130-7.
  • Malyarenko, V. (2008). Energy source truck. Kharkiv, Ukraine: SAGA.
  • Marinov, S., Stefanova, M., Gonsalvesh, L., Groudevab, V., Gadjanovc, P., Carleerd, R., and Ypermand, J. (2011). Biodesulphurized low rank coals appraisal: Initial, treated, their bitumens and solid residues. Fuel Processing Technology, 12, 2328–2334. doi:10.1016/j.fuproc.2011.07.022.
  • Maripuu, M., Gansley, R., Olesen, R., and Crespi, M. (2006). Design of the FLOWPAC WFGD system for the Amager Power Plant. from https://www.adeq.state.ar.us/downloads/commission/p/closed%20permit%20dockets%202006-2016/08-006-p%20aep%20service%20corp.%20&%20swepco-sierra%20club%20&%20audubon(consolidated)/2009-03-06_hc_sc-bp_ex_133.pdf.
  • Marsulex Environmental Technologies. (2009). Operational experience of commercial, full scale ammonia-Based wet FGD for over a decade. from http://www.met.net/Data/Sites/35/assets/Information-Library/Technical%20Papers/Operational%20Experience%20of%20Commercial,%20Full%20Scale%20Ammonia-based%20Wet%20FGD%20for%20Over%20a%20Decade%20-%20August%202009%20-%20Presented%20at%20Coal-Gen%202009.pdf.
  • Mehrara, H., Shishesaz, M. R., and Rouzbehani, B. (2013). A novel selective flue gas SO2 removal with an amine absorbent. International Journal of Science & Emerging Technologies, 6, 216–221.
  • Meyers, R., Hart, W., Van Nice, J., and Van Nice, L. (1991). Process for upgrading coal. Patent Application Number: 5059307, Publication Number: 419659, IPS C 10 G 1/00, 22 Oct.1991.
  • Mishra, S., Panda, P., Pradhan, N., Satapathy, D., Subudhi, U., Biswal, S., and Mishra, B. (2014). Effect of native bacteria Sinomonas flava 1C and Acidithiobacillus ferrooxidans on desulphurization of Meghalaya coal and its combustion properties. Fuel, 117, 415–421. doi:10.1016/j.fuel.2013.09.049.
  • Nechayeva, T. (2011). Investigation of possible strategies of structure Ukrainian electrical energy complex taking into account the impact of environmental constraints and requirements. Problems of General Power Industry, 25, 25–31.
  • Nolan, P. (2000). Flue gas desulfurization technologies for coal-fired power plants. from http://www.babcock.com/library/Documents/br-1709.pdf.
  • Nomvano, M., Nomngongo, Ph., and Ngila, C. (2016). Evaluation of different microwave-assisted dilute acid extracting reagents on simultaneous coal desulphurization and demineralization. Fuel, 163, 189–195. doi:10.1016/j.fuel.2015.09.033.
  • Oguz, M., and Oleay, A. (1992). Desulfurization of Bolu-Goynuk liqnite using chloride. Fuel, 2, 199–202. doi:10.1016/0016-2361(92)90009-D.
  • Ozbayoglu, G. (1998). Desulphurization of coal to protect the environment. In: G. Gallios & K. Matis (Eds.), Mineral processing and the environment. Dordrecht, Netherlands: Springer Science+Business Media. Chapter 3, pp. 199–222.
  • Paniv, P., Pysh'ev, S., Gaivanovich, V., and Lazorko, O. (2006). Noncatalytic oxidation desulfurization of the kerosene cut. Chemistry and Technology of Fuels and Oils, 42, 159–166. doi:10.1007/s10553-006-0049-4.
  • Pasini, R., and Walker, H. (2012). Estimating constituent release from FGD gypsum under different management scenarios. Fuel, 95, 190–196. doi:10.1016/j.fuel.2011.11.043.
  • Pawlak, W., Jezry, Ja., Tyrac, A., and Ignaiak, B. (1990). Process for removing pyrite sulfur from bituminous coals. Patent Application Number: 49966608, Publication Number: 230130, IPS C 10 L 9/00, 10 Oct.1990.
  • Peltier, R. (2004). Reliant Energy's Seward project earns POWER's Plant of the Year Award. Power, from https://online.platts.com/PPS/P=m&e=1095283125113.2309170660154904077/?artnum=MI2004Vsn091d31L141U46_1.
  • Peters, J. (2010). ReACT reduces emissions and water use. Power, from http://www.powermag.com/react-reduces-emissions-and-water-use.
  • Podda, E. (2009). Megalopolis WFGD: Project experience and design initiatives. European Users Conference, 15–17 Sept., 2009, Lisbon, Portugal.
  • Poullikkas, A. (2015). Review of design, operating, and financial considerations in flue gas desulfurization systems. Energy Technology & Policy, 2, 92–103. doi:10.1080/23317000.2015.1064794.
  • Prasassarakich, P., and Thaweesri, T. (1996). Kinetics of coal desulfurization with sodium benzoxide. Fuel, 75, 816–820. doi:10.1016/0016-2361(96)00025-7.
  • Pysh'yev, S. (2012). Application of non-catalytic oxidative desulphurization process for obtaining diesel fuels with improved lubricity. Chemistry & Chemical Technology, 6, 229–235.
  • Pysh'yev, S., Bilushchak, H., and Gunka, V. (2012). Optimization of oxidation desulphurization of power-generating coal. Chemistry & Chemical Technology, 1, 105–111.
  • Pysh'yev, S., Gunka, V., Bratychak, M., and Grytsenko, Yu. (2011). Kinetic regularities of high-sulphuric brown coal oxidative desulphurization. Chemistry & Chemical Technology, 1, 107–113.
  • Pysh'yev, S., Prysiazhnyi, Yu., and Shved, M. (2015). Raw material for the production of powdered-coal fuel from high-sulphuric low- and medium-metamorphized black coal. Journal of Coal Chemistry, 6, 10–16.
  • Pysh'yev, S., Prysiazhnyi, Yu., Gunka, V., Astakhova, O., and Bratychak, M. (2012). Effect of coal quality on its desulphurization. 1. Influence of the organic matter. Chemistry & Chemical Technology, 4, 443–450.
  • Pysh'yev, S., Prysiazhnyi, Yu., Gunka, V., Astakhova, O., and Bratychak, M. (2013). Effect of coal quality on its desulphurization. 2. Influence of the inorganic matter. Chemistry & Chemical Technology, 3, 327–334.
  • Pysh'yev, S., Shevchuk, K., Chmielarz, L., Kuśtrowski, P., and Pattek-Janczyk, A. (2007). Effect of the water-vapor content on the oxidative desulphurization of sulfur-rich coal. Energy & Fuels, 21, 216–221. doi:10.1021/ef060251e.
  • Pyshyev, S., and Gunka, V. (2015). Technology of oxidative desulphurization of lignite. Petroleum and Coal, 6, 696–704.
  • Pyshyev, S., Prysiazhnyi, Iy., Miroshnichenko, D., Bilushchak, H., and Pyshyeva, R. (2014). Desulphurization and usage of medium-metamorphized black coal.1. Determination of the optimal conditions for oxidative desulphurization. Chemistry & Chemical Technology, 8, 225–234.
  • Pyshyev, S., and Bratychak, M. (2015). Modern technologies of clean coal. Lviv, Ukraine: Publishing House of Lviv Polytechnic National University.
  • Pyshyev, S., Bratychak, M., Hayvanovych, V., Paniv, P., and Waclawek, W. (2013). Water effect on oxidative desulphurization process of straightru kerosene fraction. Ecological Chemistry and Engineering S, 20, 55–68. doi:10.2478/eces-2013-0004.
  • Pysh'yev, S., Gayvanovych, V., Pattek-Janczyk, A., and Stanek, J. (2004). Oxidative desulphurisation of sulphur rich coal. Fuel, 9, 1117–1122. doi:10.1016/j.fuel.2003.12.008.
  • Pysh'yev, S., Gunka, V., Prysiazhnyi, Y., Shevchuk, K., and PattekJanczyk, A. (2012). Study of oxidative desulphurization process of coal with different metamorphism degrees. Journal of Fuel Chemistry and Technology, 40, 129–137. doi:10.1016/S1872-5813(12)60009-7.
  • Pyshyev, S., Prysiazhnyi, Iy., Kochubey, V., and Miroshnichenko, D. (2014). Desulphurization and usage of medium-metamorphized black coal. 2. Desulphurized coal used as an additive for the production of special types of coke. Chemistry & Chemical Technology, 8, 467–474.
  • Rameshni, M., and Santo, S. (2005). Production of elemental sulphur from SO2. RSR (Ramenshi SO2 reduction). Worley Parsons, from http://www.worleyparsons.com/CSG/Hydrocarbons/SpecialtyCapabilities/Documents/Production_of_Elemental_Sulphur_from_SO2.pdf.
  • Ramana, V., Pandey, R., and Bal, A. (1995). Reactor systems for microbial desulfurization of coal: An overview. Critical Reviews in Environmental Science and Technology, 25, 291–312. doi:10.1080/10643389509388481.
  • Ratanakandilok, S., Ngamprasertsith, S., and Prasassarakich, P. (2001). Coal desulfurization with methanol/water and methanol/KOH. Fuel, 80, 1937–1940. doi:10.1016/S0016-2361(01)00047-3.
  • Riley, J., and Ruba, G. (1989). Comparison of sulphur in HNO3-extracted and physically cleaned coals. Fuel, 68, 1594–1597. doi:10.1016/0016-2361(89)90300-1.
  • Roffman, H. (1994). Japanese Research Organization employs bacteria to desulfurise coal. Coal International, 51, 154.
  • Rosemount Analytical. (2014). Lime / limestone wet scrubbing system for flue gas desulfurization. Power Industry, from http://www2.emersonprocess.com/siteadmincenter/PM%20Rosemount%20Analytical%20Documents/Liq_ADS_4900-02.pdf.
  • Rozenknop, Z. (1952). Recovering sulphur dioxide out of gaseous substance. Moscow, USSR: State Scientific and Technical Publishing of the Chemical Literature.
  • Schnelle, K. B., and Brown Ch, A. (2001). Air pollution control technology handbook. Boca Raton: CRC Press.
  • Sevenster, M., Croezen, H., van Valkengoed, M., Markowska, A., and Dönszelmann, E. (2008). External costs of coal: Global, estimate. from http://www.cedelft.eu/publicatie/external_costs_of_coal/878?PHPSESSID=f138219238c72e8038a0a5694354af1d.
  • Shen, Y., Sun, T., and Jia, J. (2011). Novel desulfurization method of sodium borohydride reduction for coal water slurry. Energy & Fuels, 7, 2963–2967. doi:10.1021/ef200657c.
  • Shen, Y., Yang, X., Sun, T., and Jia, J. (2011). Innovative desulfurization process of coal water slurry under atmospheric condition via sodium metaborate electroreduction in the isolated slot. Energy & Fuels, 11, 5007–5014. doi:10.1021/ef201045m.
  • Shen, Y., Sun, T., and Jia, J. (2012). A novel desulphurization process of coal water slurry via sodium metaborate electroreduction in the alkaline system. Fuel, 96, 250–256. doi:10.1016/j.fuel.2012.01.003.
  • Shevchuk, Kh., Bratychak, M., Pysh'yev, S., Shyshchak, O., and Wacławek, W. (2007). Effect of the temperature and oxidant feed rate on high-metamorphic coal desulphurization process. Ecological Chemistry and Engineering, 7, 747–752.
  • Shiley, R., Hughes, R., Webster, Jo., Hinckley, C., Smith, G., and Wiltowski, T. (1989). Desulfurization of carbonaceous materials. Patent Application Number: US4888029 A, Publication Number: 203222, IPS C 10 L 5/00, 22 December 1989.
  • Shved, M., Pysh'yev, S., Prysiazhnyi, Yu., and Timchuk, M. (2016). The use of pitch oxidative purification of brown coal as a fuel oil component. Conference “Advance in Petroleum and Gas Industry and Petrochemistry”, 16–21 May 2016, Lviv, Ukraine, Publishing House of Lviv Polytechnic National University.
  • Sinha, R. K., and Walker Jr, P. L. (1972). Removal of sulphur from coal by air oxidation at 350–450°C. Fuel, 2, 125–129. doi:10.1016/0016-2361(72)90062-2.
  • Sutcu, H. (2004). Coal desulfurization using natural Ca-based sorbents. Coal Preparation, 5–6, 249–259. doi:10.1080/07349340490884999.
  • Syhal, I. (1988). Protection of the air basin from fuel combustion. Moscow, USSR: Bosom.
  • The clean air act. (2004). from http://www.epw.senate.gov/envlaws/cleanair.pdf.
  • Tokumura, M., Baba, M., Znad, H., Kawase, Y., Yongsiri, Ch., and Takeda, K. (2006). Neutralization of the acidified seawater effluent from the flue gas desulfurization process:  experimental investigation, dynamic modeling, and simulation. Industrial & Engineering Chemistry Research, 45, 6339–6348. doi:10.1021/ie0603619.
  • Trushina, H., and Schypachev, M. (2011). The value of the coal industry in the development of world energy. Coal, 10, 40–42.
  • Tumanovskyy, A. (2005). Ecological problems of thermal power stations. Electric Power Plant, 1, 7–15.
  • Uslu, T., Sahinoglu, E., and Yavuz, M. (2012). Desulphurization and deashing of oxidized fine coal by Knelson concentrator. Fuel Processing Technology, 101, 94–100. doi:10.1016/j.fuproc.2012.04.002.
  • Vanderschuren, J., and Colle, D. (2004). Pilot-scale validation of the kinetics of SO2 absorption into sulphuric acid solutions containing hydrogen peroxide. Chemical Engineering and Processing, 43, 1397–1402. doi:10.1016/j.cep.2004.04.005.
  • Worldwide fuel charter. (2006). Fourth edition. from http://oica.net/wp-content/uploads/2007/06/wwfc-fourth-edition-sep-2006.pdf.
  • Yolshin, A., Tomin, V., Mikishev, V., Gusev, V., and Uzlova, M. (2010). The experience of refining of west-siberian crude oil in mixture with oils of talakanski and verhnechonski deposits. Crude Refining and Petrochemitry. Scientific and Technical Achievements and Advanced Experience, 6, 10–12.
  • Yurovskyy, A. (1960). Sulphur of coal. Moscow, USSR: Publishing House Academy of Sciences Soviet Union.
  • Zevenhoven, R., and Kilpinen, P. (2001). Control of pollutants in flue gases and fuel gases. from https://www.adeq.state.ar.us/downloads/commission/p/closed%20permit%20dockets%202006-2016/08-006-p%20aep%20service%20corp.%20&%20swepco-sierra%20club%20&%20audubon(consolidated)/2009-04-24_swepco-mu-ex.11.pdf.
  • Zhang, G., Zhang, Y., and Xie, K. (2006). Study on desulphurization of high sulfur coal in hydropyrolysis. Chemical Engineering, 4, 55–58.
  • Zhang, H.-X., Ma, X.-Y., and Dong, X.-Sh., et al. (2012). Enhanced desulfurizing flotation of high sulfur coal by sonoelectrochemical method. Fuel Processing Technology, 1, 13–17. doi:10.1016/j.fuproc.2011.09.007.
  • Zhua, H., Zhua, J., Yang, Y.-F., Zhao, W., and Ou, Ze.-Sh. (2003). Research on mechanism of enhanced desulfurizing flotation of high sulfur coal with electrolytic reduction. Coal Preparation, 5–6, 239–250. doi:10.1080/714048647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.