991
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury

, , , , , , & show all
Pages 2415-2447 | Published online: 08 Feb 2018

References

  • Aiking, H., Govers, H., and Vantriet, J. (1985). Detoxification of mercury, cadmium, and lead in Klebsiella-Aerogenes NCTC-418 growing in continuous culture. Appl. Environ. Microbiol., 50, 1262–1267.
  • Amin, A., and Latif, Z. (2013). Detoxification of mercury pollutant by immobilized yeast strain Candida Xylopsoci. Pak. J. Bot., 45, 1437–1443.
  • Anaf, W., Janssens, K., and De Wael, K. (2013). Formation of metallic mercury during photodegradation/photodarkening of α-HgS: Electrochemical evidence. Angew. Chem. Int. Ed., 52, 12568–12571.
  • Baldi, F., and Olson, G. J. (1987). Effects of cinnabar on pyrite oxidation by Thiobacillus ferrooxidans and cinnabar mobilization by a mercury-resistant strain. Appl. Environ. Microbiol., 53, 772–776.
  • Baldi, F., Parati, F., and Filippelli, M. (1995). Dimethylmercury and dimethylmercury-sulfide of microbial origin in the biogeochemical cycle of Hg. Water Air Soil Pollut., 80, 805–815. doi:10.1007/BF01189732.
  • Baldi, F., Pepi, M., and Filippelli, M. (1993). Methylmercury resistance in desulfovibrio-desulfuricans strains in relation to methylmercury degradation. Appl. Environ. Microbiol., 59, 2479–2485.
  • Banerjee, M., Karri, R., Rawat, K. S., Muthuvel, K., Pathak, B., and Roy, G. (2015). Chemical detoxification of organomercurials. Angew. Chem. Int. Edit., 54, 9323–9327. doi:10.1002/anie.201504413.
  • Barnett, M. O., Harris, L. A., Turner, R. R., Stevenson, R. J., Henson, T. J., Melton, R. C., and Hoffman, D. P. (1997). Formation of mercuric sulfide in soil. Environ. Sci. Technol., 31, 3037–3043. doi:10.1021/es960389j.
  • Barnett, M. O., Turner, R. R., and Singer, P. C. (2001). Oxidative dissolution of metacinnabar (beta-HgS) by dissolved oxygen. Appl. Geochem., 16, 1499–1512. doi:10.1016/S0883-2927(01)00026-9.
  • Beers, C., and Mousavi, A. (2013). Mercury speciation and safety evaluation of cinnabar-containing traditional medicines: A mini-review. Toxicol. Environ. Chem., 95, 207–213. doi:10.1080/02772248.2013.767905.
  • Benoit, J. M., Gilmour, C. C., and Mason, R. P. (2001). Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl. Environ. Microbiol., 67, 51–58. doi:10.1128/AEM.67.1.51-58.2001.
  • Bernaus, A., Gaona, X., and Valiente, M. (2005). Characterisation of Almaden mercury mine environment by XAS techniques. J. Environ. Monit., 7, 771–777. doi:10.1039/b502060n.
  • Bernaus, A., Gaona, X., van Ree, D., and Valiente, M. (2006). Determination of mercury in polluted soils surrounding a chlor-alkali plant – Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal. Chim. Acta., 565, 73–80. doi:10.1016/j.aca.2006.02.020.
  • Biester, H., and Nehrke, G. (1997). Quantification of mercury in soils and sediments – Acid digestion versus pyrolysis. Fresen. J. Anal. Chem., 358, 446–452. doi:10.1007/s002160050444.
  • Bloom, N. S., Preus, E., Katon, J., and Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. Chim. Acta, 479, 233–248. doi:10.1016/S0003-2670(02)01550-7.
  • Bombach, G., Bombach, K., and Klemm, W. (1994). Speciation of mercury in soils and sediments by thermal evaporation and cold vapor atomic-absorption. Fresen. J. Anal. Chem., 350, 18–20. doi:10.1007/BF00326246.
  • Bone, S. E., Bargar, J. R., and Sposito, G. (2014). Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. Environ. Sci. Technol., 48, 10681–10689. doi:10.1021/es501514r.
  • Burton, E. D., Bush, R. T., Sullivan, L. A., Hocking, R. K., Mitchell, D. R. G., Johnston, S. G., … Jang, L. Y. (2009). Iron-monosulfide oxidation in natural sediments: Resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions, Environ. Sci. Technol., 43, 3128–3134. doi:10.1021/es8036548.
  • Carrasco-Gil, S., Siebner, H., LeDuc, D. L., Webb, S. M., Millan, R., Andrews, J. C., and Hernandez, L. E. (2013). Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ. Sci. Technol., 47, 3082–3090. doi:10.1021/es303310t.
  • Chai, L. Y., Wang, Q. W., Wang, Y. Y., Li, Q. Z., Yang, Z. H., and Shu, Y. D. (2010). Thermodynamic study on reaction path of Hg(II) with S(II) in solution. J. Cent. South Univ. Technol., 17, 289–294. doi:10.1007/s11771-010-0044-0.
  • Chen, Y., Huang, X., and Si, Y. (2014). Effects of humic acid and cysteine on the biotransformation of HgS by Shewanella oneidensis MR-1. Environ. Sci., 34, 526–531. ( in Chinese)
  • Chen, Y., Wang, H., and Si, Y. (2013). Research on the bioaccesibility of HgS by Shewanella oneidensis MR-1. Environ. Sci., 34, 4466–4472. ( in Chinese)
  • Clever, H. L., Johnson, S. A., and Derrick, M. E. (1985). The solubility of mercury and some sparingly soluble mercury salts in water and aqueous-electrolyte solutions. J. Phys. Chem. Ref. Data, 14, 631–681. doi:10.1063/1.555732.
  • Coufalik, P., Krasensky, P., Dosbaba, M., and Komarek, J. (2012). Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Cent. Eur. J. Chem., 10, 1565–1573.
  • Coufalik, P., Zverina, O., and Komarek, J. (2014). Determination of mercury species using thermal desorption analysis in AAS. Chem. Pap., 68, 427–434. doi:10.2478/s11696-013-0471-0.
  • Craig, P. J., and Bartlett, P. D. (1978). The role of hydrogen sulphide in environmental transport of mercury. Nature, 275, 635–637. doi:10.1038/275635a0.
  • Deonarine, A., and Hsu-Kim, H. (2009). Precipitation of mercuric sulfide nanoparticles in NOM-containing water: Implications for the natural environment. Environ. Sci. Technol., 43, 2368–2373. doi:10.1021/es803130h.
  • Dong, W., Liu, J., Wei, L. X., Yang, J. F., Chernick, M., and Hinton, D. E. (2016). Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ, 4, e2282. doi:10.7717/peerj.2282.
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol., 47, 4967–4983. doi:10.1021/es305071v.
  • Enescu, M., Nagy, K. L., and Manceau, A. (2016). Nucleation of mercury sulfide by dealkylation. Sci. Rep., 6, 39359. doi:10.1038/srep39359.
  • Esbri, J. M., Bernaus, A., Avila, M., Kocman, D., Garcia-Noguero, E. M., Guerrero, B., … Loredo, J. (2010). XANES speciation of mercury in three mining districts – Almaden, Asturias (Spain), Idria (Slovenia). J. Synchrotron Radiat., 17, 179–186. doi:10.1107/S0909049510001925.
  • Essa, A. M. M., Macaskie, L. E., and Brown, N. L. (2005). A new method for mercury removal. Biotechnol. Lett., 27, 1649–1655. doi:10.1007/s10529-005-2722-9.
  • Fagerstrom, T., and Jernelov, A. (1971). Formation of methyl mercury from pure mercuric sulphide in aerobic organic sediment. Water Res., 5, 121–122. doi:10.1016/0043-1354(71)90127-8.
  • Feng, X. B., Lu, J. Y., Gregoire, D. C., Hao, Y. J., Banic, C. M., and Schroeder, W. H. (2004). Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: Method development. Anal. Bioanal. Chem., 380, 683–689. doi:10.1007/s00216-004-2803-y.
  • Fernandez-Martinez, R., and Rucandio, M. I. (2003). Study of extraction conditions for the quantitative determination of Hg bound to sulfide in soils from Almaden (Spain). Anal. Bioanal. Chem., 375, 1089–1096. doi:10.1007/s00216-002-1712-1.
  • Fleming, E. J., Mack, E. E., Green, P. G., and Nelson, D. C. (2006). Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microbiol., 72, 457–464. doi:10.1128/AEM.72.1.457-464.2006.
  • Gai, K., Hoelen, T. P., Hsu-Kim, H., and Lowry, G. V. (2016). Mobility of four common mercury species in model and natural unsaturated soils. Environ. Sci. Technol., 50, 3342–3351. doi:10.1021/acs.est.5b04247.
  • Gerbig, C. A., Kim, C. S., Stegemeier, J. P., Ryan, J. N., and Aiken, G. R. (2011). Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environ. Sci. Technol., 45, 9180–9187. doi:10.1021/es201837h.
  • Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., and Wall, J. D. (2011). Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl. Environ. Microbiol., 77, 3938–3951. doi:10.1128/AEM.02993-10.
  • Gilmour, C. C., Henry, E. A., and Mitchell, R. (1992). Sulfate stimulation of mercury methylation in fresh-water sediments. Environ. Sci. Technol., 26, 2281–2287. doi:10.1021/es00035a029.
  • Glendinning, K. J., Macaskie, L. E., and Brown, N. L. (2005). Mercury tolerance of thermophilic Bacillus sp and Ureibacillus sp. Biotechnol. Lett., 27, 1657–1662. doi:10.1007/s10529-005-2723-8.
  • Gondikas, A. P., Jang, E. K., and Hsu-Kim, H. (2010). Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids. J. Colloid. Interf. Sci., 347, 167–171. doi:10.1016/j.jcis.2010.03.051.
  • Gong, Y. Y., Liu, Y. Y., Xiong, Z., and Zhao, D. Y. (2014). Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol., 48, 3986–3994. doi:10.1021/es404418a.
  • Graham, A. M., Aiken, G. R., and Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ. Sci. Technol., 46, 2715–2723. doi:10.1021/es203658f.
  • Gray, J. E., Hines, M. E., and Biester, H. (2006). Mercury methylation influenced by areas of past mercury mining in the Terlingua district, Southwest Texas, USA. Appl. Geochem., 21, 1940–1954. doi:10.1016/j.apgeochem.2006.08.016.
  • Haitzer, M., Aiken, G. R., and Ryan, J. N. (2002). Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio. Environ. Sci. Technol., 36, 3564–3570. doi:10.1021/es025699i.
  • Hall, G. E. M., Pelchat, P., and Percival, J. B. (2005). The design and application of sequential extractions for mercury, Part 1. Optimization of HNO3 extraction for all non-sulphide forms of Hg. Geochem-Explor. Env. A., 5, 107–113. doi:10.1144/1467-7873/03-061.
  • Han, C., Wang, W., Xie, F., and Zhang, T. A. (2017). Mechanism and kinetics of mercuric sulfide leaching with cuprous-thiosulfate solutions. Sep. Purif. Technol., 177, 223–232. doi:10.1016/j.seppur.2017.01.001.
  • Han, F. X., Su, Y., Monts, D. L., Waggoner, C. A., and Plodinec, M. J. (2006). Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci. Total Environ., 368, 753–768. doi:10.1016/j.scitotenv.2006.02.026.
  • Han, F. X. X., Shiyab, S., Chen, J., Su, Y., Monts, D. L., Waggoner, C. A., and Matta, F. B. (2008). Extractability and bioavailability of mercury from a mercury sulfide contaminated soil in Oak Ridge, Tennessee, USA. Water Air Soil Pollut., 194, 67–75. doi:10.1007/s11270-008-9699-7.
  • Han, Y., Kingston, H. M., Boylan, H. M., Rahman, G. M. M., Shah, S., Richter, R. C., … Bhandari, S. (2003). Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal. Bioanal. Chem., 375, 428–436. doi:10.1007/s00216-002-1701-4.
  • Harris, R. C., Rudd, J. W. M., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., … Tate, M. T. (2007). Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. P. Nat. Acad. Sci. USA, 104, 16586–16591. doi:10.1073/pnas.0704186104.
  • Hellal, J., Guedron, S., Huguet, L., Schafer, J., Laperche, V., Joulian, C., … Battaglia-Brunet, F. (2015). Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. J. Contam. Hydrol. 180, 56–68. doi:10.1016/j.jconhyd.2015.08.001.
  • Hesterberg, D., Chou, J. W., Hutchison, K. J., and Sayers, D. E. (2001). Bonding of Hg(II) to reduced organic, sulfur in humic acid as affected by S/Hg ratio. Environ. Sci. Technol., 35, 2741–2745. doi:10.1021/es001960o.
  • Higueras, P., Oyarzun, R., Biester, H., Lillo, J., and Lorenzo, S. (2003). A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. J. Geochem. Explor., 80, 95–104. doi:10.1016/S0375-6742(03)00185-7.
  • Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., … St Louis, V. L. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environ. Sci. Technol., 36, 5034–5040. doi:10.1021/es025572t.
  • Hojdova, M., Navratil, T., and Rohovec, J. (2008). Distribution and speciation of mercury in mine waste dumps. B. Environ. Contam. Tox., 80, 237–241. doi:10.1007/s00128-007-9352-y.
  • Holley, E. A., McQuillan, A. J., Craw, D., Kim, J. P., and Sander, S. G. (2007). Mercury mobilization by oxidative dissolution of cinnabar (alpha-HgS) and metacinnabar (beta-HgS). Chem. Geol., 240, 313–325. doi:10.1016/j.chemgeo.2007.03.001.
  • Hsieh, Y. H., Tokunaga, S., and Huang, C. P. (1991). Some chemical-reactions at the HgS(s)-water interface as affected by photoirradiation. Colloid Surface, 53, 257–274. doi:10.1016/0166-6622(91)80141-A.
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., and Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol., 47, 2441–2456. doi:10.1021/es304370g.
  • Jeong, H. Y., Klaue, B., Blum, J. D., and Hayes, K. F. (2007). Sorption of mercuric ion by synthetic manocrystalline mackinawite (FeS). Environ. Sci. Technol., 41, 7699–7705. doi:10.1021/es070289l.
  • Jeong, H. Y., Sun, K., and Hayes, K. F. (2010). Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS). Environ. Sci. Technol., 44, 7476–7483. doi:10.1021/es100808y.
  • Jew, A. D., Behrens, S. F., Rytuba, J. J., Kappler, A., Spormann, A. M., and Brown, G. E. (2014). Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range. Geobiology, 12, 20–33. doi:10.1111/gbi.12066.
  • Jiang, P., Li, Y. B., Liu, G. L., Yang, G. D., Lagos, L., Yin, Y. G., … Cai, Y. (2016). Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique. J. Hazard. Mater., 317, 466–475. doi:10.1016/j.jhazmat.2016.05.084.
  • Jonsson, S., Mazrui, N. M., and Mason, R. P. (2016). Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces. Sci. Rep., 6, 27958. doi:10.1038/srep27958.
  • Jonsson, S., Skyllberg, U., Nilsson, M. B., Lundberg, E., Andersson, A., and Bjorn, E. (2014). Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat. Commun., 5, 4624. doi:10.1038/ncomms5624.
  • Jonsson, S., Skyllberg, U., Nilsson, M. B., Westlund, P. O., Shchukarev, A., Lundberg, E., and Bjorn, E. (2012). Mercury methylation rates for geochemically relevant Hg-II species in sediments. Environ. Sci. Technol., 46, 11653–11659. doi:10.1021/es3015327.
  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., and Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol., 45, 3902–3908. doi:10.1021/es1041892.
  • Kelly, D., Budd, K., and Lefebvre, D. D. (2006a). Mercury analysis of acid- and alkaline-reduced biological samples: Identification of meta-cinnabar as the major biotransformed compound in algae. Appl. Environ. Microbiol., 72, 361–367. doi:10.1128/AEM.72.1.361-367.2006.
  • Kelly, D. J. A., Budd, K., and Lefebvre, D. D. (2006b). The biotransformation of mercury in pH-stat cultures of microfungi. Can. J. Bot., 84, 254–260. doi:10.1139/b05-156.
  • Kelly, D. J. A., Budd, K., and Lefebvre, D. D. (2007). Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Arch. Microbiol., 187, 45–53. doi:10.1007/s00203-006-0170-0.
  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., and Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microbiol., 72, 7919–7921. doi:10.1128/AEM.01602-06.
  • Kim, C. S., Bloom, N. S., Rytuba, J. J., and Brown, G. E. (2003). Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: A comparison of speciation methods. Environ. Sci. Technol., 37, 5102–5108. doi:10.1021/es0341485.
  • Kim, C. S., Rytuba, J. J., and Brown, G. E. (2004). Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study. Appl. Geochem., 19, 379–393. doi:10.1016/S0883-2927(03)00147-1.
  • Kocman, D., Vreca, P., Fajon, V., and Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environ. Res., 111, 1–9. doi:10.1016/j.envres.2010.10.012.
  • Koprivova, A., and Kopriva, S. (2016). Hormonal control of sulfate uptake and assimilation. Plant Mol. Biol., 91, 617–627. doi:10.1007/s11103-016-0438-y.
  • Laborda, F., Bolea, E., and Jimenez-Lamana, J. (2014). Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis. Anal. Chem., 86, 2270–2278. doi:10.1021/ac402980q.
  • Lefebvre, D. D., Kelly, D., and Budd, K. (2007). Biotransformation of Hg(II) by cyanobacteria. Appl. Environ. Microbiol., 73, 243–249. doi:10.1128/AEM.01794-06.
  • Lennie, A. R., Charnock, J. M., and Pattrick, R. A. D. (2003). Structure of mercury(II)-sulfur complexes by EXAFS spectroscopic measurements. Chem. Geol., 199, 199–207. doi:10.1016/S0009-2541(03)00118-9.
  • Li, P., Feng, X. B., and Qiu, G. L. (2010). Methylmercury exposure and health effects from rice and fish consumption: A review. Int. J. Environ. Res. Public Health, 7, 2666–2691. doi:10.3390/ijerph7062666.
  • Li, Y. B., Yin, Y. G., Liu, G. L., Tachiev, G., Roelant, D., Jiang, G. B., and Cai, Y. (2012). Estimation of the major source and sink of methylmercury in the Florida Everglades. Environ. Sci. Technol., 46, 5885–5893. doi:10.1021/es204410x.
  • Liem-Nguyen, V., Skyllberg, U., and Bjorn, E. (2017). Thermodynamic modeling of the solubility and chemical speciation of mercury and methylmercury driven by organic thiols and micromolar sulfide concentrations in boreal wetland soils. Environ. Sci. Technol., 51, 3678–3686. doi:10.1021/acs.est.6b04622.
  • Liu, J., Lu, Y. F., Li, W. K., Zhou, Z. P., Li, Y. Y., Yang, X., … Wei, L. X. (2016). Mercury sulfides are much less nephrotoxic than mercury chloride and methylmercury in mice. Toxicol. Lett., 262, 153–160. doi:10.1016/j.toxlet.2016.10.003.
  • Liu, J. R., Valsaraj, K. T., and Delaune, R. D. (2009). Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environ. Eng. Sci., 26, 833–840. doi:10.1089/ees.2008.0243.
  • Liu, J. R., Valsaraj, K. T., Devai, I., and DeLaune, R. D. (2008). Immobilization of aqueous Hg(II) by mackinawite (FeS). J. Hazard. Mater., 157, 432–440. doi:10.1016/j.jhazmat.2008.01.006.
  • Liu, L. H., He, B., Liu, Q., Yun, Z. J., Yan, X. T., Long, Y. M., and Jiang, G. B. (2014). Identification and accurate size characterization of nanoparticles in complex media. Angew. Chem. Int. Edit., 53, 14476–14479. doi:10.1002/anie.201408927.
  • Liu, X. L., Wang, S. X., Zhang, L., Wu, Y., Duan, L., and Hao, J. M. (2013). Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 111, 621–627. doi:10.1016/j.fuel.2013.03.052.
  • Lopez-Anton, M. A., Yuan, Y., Perry, R., and Maroto-Valer, M. M. (2010). Analysis of mercury species present during coal combustion by thermal desorption. Fuel, 89, 629–634. doi:10.1016/j.fuel.2009.08.034.
  • Louie, S. M., Tilton, R. D., and Lowry, G. V. (2013). Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol., 47, 4245–4254. doi:10.1021/es400137x.
  • Lowry, G. V., Shaw, S., Kim, C. S., Rytuba, J. J., and Brown, G. E. (2004). Macroscopic and microscopic observations of particle-facilitated mercury transport from new Idria and sulphur bank mercury mine tailings. Environ. Sci. Technol., 38, 5101–5111. doi:10.1021/es034636c.
  • Luo, H. W., Yin, X. P., Jubb, A. M., Chen, H. M., Lu, X., Zhang, W. H., … Gu, B. H. (2017). Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environ. Pollut., 220, 1359–1365. doi:10.1016/j.envpol.2016.10.099.
  • Manceau, A., Enescu, M., Simionovici, A., Lanson, M., Gonzalez-Rey, M., Rovezzi, M., … Bourdineaud, J.-P. (2016). Chemical forms of mercury in human hair reveal sources of exposure. Environ. Sci. Technol., 50, 10721–10729. doi:10.1021/acs.est.6b03468.
  • Manceau, A., Lemouchi, C., Enescu, M., Gaillot, A. C., Lanson, M., Magnin, V., … Nagy, K. L. (2015). Formation of mercury sulfide from Hg(II)-thiolate complexes in natural organic matter. Environ. Sci. Technol., 49, 9787–9796. doi:10.1021/acs.est.5b02522.
  • Martian-Doimeadios, R. C. R., Wasserman, J. C., Bermejo, L. F. G., Amouroux, D., Nevado, J. J. B., and Donard, O. F. X. (2000). Chemical availability of mercury in stream sediments from the Almaden area, Spain. J. Environ. Monitor., 2, 360–366. doi:10.1039/a909597g.
  • McCormack, J. K. (2000). The darkening of cinnabar in sunlight. Miner. Deposita, 35, 796–798. doi:10.1007/s001260050281.
  • Miclaus, T., Beer, C., Chevallier, J., Scavenius, C., Bochenkov, V. E., Enghild, J. J., and Sutherland, D. S. (2016). Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat. Commun., 7, 11770. doi:10.1038/ncomms11770.
  • Mikac, N., Foucher, D., Niessen, S., Lojen, S., and Fischer, J. C. (2003). Influence of chloride and sediment matrix on the extractability of HgS (cinnabar and metacinnabar) by nitric acid. Anal. Bioanal. Chem., 377, 1196–1201. doi:10.1007/s00216-003-2204-7.
  • Miller, C. L., Mason, R. P., Gilmour, C. C., and Heyes, A. (2007). Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environ. Toxicol. Chem., 26, 624–633. doi:10.1897/06-375R.1.
  • Minganti, V., Capelli, R., Drava, G., and De Pellegrini, R. (2007). Solubilization and methylation of HgS, PbS, and SnS by iodomethane, a model experiment for the aquatic environment. Chemosphere, 67, 1018–1024. doi:10.1016/j.chemosphere.2006.10.053.
  • Oyetibo, G. O., Miyauchi, K., Suzuki, H., and Endo, G. (2016). Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp. AMB. Expr., 6, 99. doi:10.1186/s13568-016-0271-3.
  • Palmieri, H. E. L., Nalini, H. A., Leonel, L. V., Windmoller, C. C., Santos, R. C., and de Brito, W. (2006). Quantification and speciation of mercury in soils from the Tripui, Ecological Station, Minas Gerais, Brazil. Sci. Total Environ., 368, 69–78. doi:10.1016/j.scitotenv.2005.09.085.
  • Paquette, K., and Helz, G. (1995). Solubility of cinnabar (red HgS) and implications for mercury speciation in sulfidic waters. Water Air Soil Pollut., 80, 1053–1056. doi:10.1007/BF01189765.
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., … Liang, L. Y. (2013). The genetic basis for bacterial mercury methylation. Science, 339, 1332–1335. doi:10.1126/science.1230667.
  • Patty, C., Barnett, B., Mooney, B., Kahn, A., Levy, S., Liu, Y. J., … Andrews, J. C. (2009). Using X-ray microscopy and Hg L-3 XAMES to study Hg binding in the rhizosphere of Spartina cordgrass. Environ. Sci. Technol., 43, 7397–7402. doi:10.1021/es901076q.
  • Pham, A. L. T., Morris, A., Zhang, T., Ticknor, J., Levard, C., and Hsu-Kim, H. (2014). Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: Structural properties, aggregation, and biotransformation. Geochim. Cosmochim. Ac., 133, 204–215. doi:10.1016/j.gca.2014.02.027.
  • Poulin, B. A., Aiken, G. R., Nagy, K. L., Manceau, A., Krabbenhoft, D. P., and Ryan, J. N. (2016). Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim. Cosmochim. Ac., 176, 118–138. doi:10.1016/j.gca.2015.12.024.
  • Prol-Ledesma, R. M., Canet, C., Melgarejo, J. C., Tolson, G., Rubio-Ramos, M. A., Cruz-Ocampo, J. C., … Reyes, A. (2002). Cinnabar deposition in submarine coastal hydrothermal vents, pacific margin of central Mexico. Econ. Geol. Bull. Soc., 97, 1331–1340. doi:10.2113/gsecongeo.97.6.1331.
  • Proux, O., Lahera, E., Del Net, W., Kieffer, I., Rovezzi, M., Testemale, D., … Hazemann, J.-L. (2017). High-energy resolution fluorescence detected X-ray absorption spectroscopy: A powerful new structural tool in environmental biogeochemistry sciences. J. Environ. Qual., 46, 1146–1157. doi:10.2134/jeq2017.01.0023.
  • Radepont, M., Coquinot, Y., Janssens, K., Ezrati, J. J., de Nolf, W., and Cotte, M. (2015). Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J. Anal. Atom. Spectrom., 30, 599–612. doi:10.1039/C4JA00372A.
  • Radepont, M., de Nolf, W., Janssens, K., Van der Snickt, G., Coquinot, Y., Klaassen, L., and Cotte, M. (2011). The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (alpha-Hg3S2Cl2), kenhsuite (gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings. J. Anal. Atom. Spectrom., 26, 959–968. doi:10.1039/c0ja00260g.
  • Rallo, M., Lopez-Anton, M. A., Meij, R., Perry, R., and Maroto-Valer, M. M. (2010). Study of mercury in by-products from a Dutch co-combustion power station. J. Hazard. Mater., 174, 28–33. doi:10.1016/j.jhazmat.2009.09.011.
  • Ravichandran, M., Aiken, G. R., Reddy, M. M., and Ryan, J. N. (1998). Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ. Sci. Technol., 32, 3305–3311. doi:10.1021/es9804058.
  • Ravichandran, M., Aiken, G. R., Ryan, J. N., and Reddy, M. M. (1999). Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ. Sci. Technol., 33, 1418–1423. doi:10.1021/es9811187.
  • Reis, A. T., Coelho, J. P., Rodrigues, S. M., Rocha, R., Davidson, C. M., Duarte, A. C., and Pereira, E. (2012). Development and validation of a simple thermo-desorption technique for mercury speciation in soils and sediments. Talanta, 99, 363–368. doi:10.1016/j.talanta.2012.05.065.
  • Reis, A. T., Coelho, J. P., Rucandio, I., Davidson, C. M., Duarte, A. C., and Pereira, E. (2015). Thermo-desorption: A valid tool for mercury speciation in soils and sediments? Geoderma, 237, 98–104. doi:10.1016/j.geoderma.2014.08.019.
  • Reis, A. T., Davidson, C. M., Vale, C., and Pereira, E. (2016). Overview and challenges of mercury fractionation and speciation in soils. TRAC-Trend. Anal. Chem., 82, 109–117. doi:10.1016/j.trac.2016.05.008.
  • Revis, N. W., Osborne, T. R., Sedgley, D., and King, A. (1989). Quantitative method for determining the concentration of mercury(II) sulfide in soils and sediments. Analyst, 114, 823–825. doi:10.1039/an9891400823.
  • Rothenberg, S. E., and Feng, X. B. (2012). Mercury cycling in a flooded rice paddy. J. Geophys. Res.-Biogeo., 117, G03003. doi:10.1029/2011JG001800.
  • Rowland, I. R., Davies, M. J., and Grasso, P. (1977). Volatilisation of methylmercuric chloride by hydrogen sulphide. Nature, 265, 718–719. doi:10.1038/265718a0.
  • Rumayor, M., Diaz-Somoano, M., Lopez-Anton, M. A., and Martinez-Tarazona, M. R. (2013). Mercury compounds characterization by thermal desorption. Talanta, 114, 318–322. doi:10.1016/j.talanta.2013.05.059.
  • Rumayor, M., Diaz-Somoano, M., Lopez-Anton, M. A., and Martinez-Tarazona, M. R. (2015a). Application of thermal desorption for the identification of mercury species in solids derived from coal utilization. Chemosphere, 119, 459–465. doi:10.1016/j.chemosphere.2014.07.010.
  • Rumayor, M., Diaz-Somoano, M., Lopez-Anton, M. A., Ochoa-Gonzalez, R., and Martinez-Tarazona, M. R. (2015b). Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems. Fuel, 148, 98–103. doi:10.1016/j.fuel.2015.01.101.
  • Rumayor, M., Gallego, J. R., Rodriguez-Valdes, E., and Diaz-Somoano, M. (2017). An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption. J. Hazard. Mater., 325, 1–7. doi:10.1016/j.jhazmat.2016.11.068.
  • Rumayor, M., Lopez-Anton, M. A., Diaz-Somoano, M., Maroto-Valer, M. M., Richard, J. H., Biester, H., and Martinez-Tarazona, M. R. (2016). A comparison of devices using thermal desorption for mercury speciation in solids. Talanta, 150, 272–277. doi:10.1016/j.talanta.2015.12.058.
  • Rumayor, M., Lopez-Anton, M. A., Diaz-Somoano, M., and Martinez-Tarazona, M. R. (2015c). A new approach to mercury speciation in solids using a thermal desorption technique. Fuel, 160, 525–530. doi:10.1016/j.fuel.2015.08.028.
  • Rytuba, J. J. (2003). Mercury from mineral deposits and potential environmental impact. Environ. Geol., 43, 326–338.
  • Satake, K., Shibata, K., and Bando, Y. (1990). Mercury sulfide (HgS) crystals in the cell-walls of the aquatic bryophytes, Jungermannia vulcanicola Steph. and Scapania undulata (L.) Dum. Aquat. Bot., 36, 325–341. doi:10.1016/0304-3770(90)90049-Q.
  • Sathyavathi, S., Manjula, A., Rajendhran, J., and Gunasekaran, P. (2013). Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1. Indian J. Exp. Biol., 51, 973–978.
  • Schippers, A., and Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol., 65, 319–321.
  • Schoof, R. A., and Nielsen, J. B. (1997). Evaluation of methods for assessing the oral bioavailability of inorganic mercury in soil. Risk Anal., 17, 545–555. doi:10.1111/j.1539-6924.1997.tb00896.x.
  • Shaw, S. A., Al, T. A., and MacQuarrie, K. T. B. (2006). Mercury mobility in unsaturated gold mine tailings, Murray Brook Mine, New Brunswick, Canada. Appl. Geochem., 21, 1986–1998. doi:10.1016/j.apgeochem.2006.08.009.
  • Si, L., and Ariya, P. A. (2015). Photochemical reactions of divalent mercury with thioglycolic acid: Formation of mercuric sulfide particles. Chemosphere, 119, 467–472. doi:10.1016/j.chemosphere.2014.07.022.
  • Skyllberg, U., and Drott, A. (2010). Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study, Environ. Sci. Technol., 44, 1254–1259. doi:10.1021/es902091w.
  • Slowey, A. J. (2010). Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochim. Cosmochim. Ac., 74, 4693–4708. doi:10.1016/j.gca.2010.05.012.
  • Slowey, A. J., and Brown, G. E. (2007). Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide. Geochim. Cosmochim. Ac., 71, 877–894. doi:10.1016/j.gca.2006.11.011.
  • Slowey, A. J., Johnson, S. B., Rytuba, J. J., and Brown, G. E. (2005). Role of organic acids in promoting colloidal transport of mercury from mine tailings. Environ. Sci. Technol., 39, 7869–7874. doi:10.1021/es0504643.
  • Smith, R. S., Wiederhold, J. G., and Kretzschmar, R. (2015). Mercury isotope fractionation during precipitation of metacinnabar (beta-HgS) and montroydite (HgO). Environ. Sci. Technol., 49, 4325–4334. doi:10.1021/acs.est.5b00409.
  • St Louis, V. L., Rudd, J. W. M., Kelly, C. A., Bodaly, R. A., Paterson, M. J., Beaty, K. G., … Majewski, A. R. (2004). The rise and fall of mercury methylation in an experimental reservoir. Environ. Sci. Technol., 38, 1348–1358. doi:10.1021/es034424f.
  • Svensson, M., Allard, B., and Duker, A. (2006). Formation of HgS- mixing HgO or elemental Hg with S, FeS or FeS2. Sci. Total Environ., 368, 418–423. doi:10.1016/j.scitotenv.2005.09.040.
  • Tan, Z. Q., Liu, J. F., Guo, X. R., Yin, Y. G., Byeon, S. K., Moon, M. H., and Jiang, G. B. (2015). Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors. Anal. Chem., 87, 8441–8447. doi:10.1021/acs.analchem.5b01827.
  • Terzano, R., Santoro, A., Spagnuolo, M., Vekemans, B., Medici, L., Janssens, K., … Ruggiero, P. (2010). Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ. Pollut., 158, 2702–2709. doi:10.1016/j.envpol.2010.04.016.
  • Thayer, J. S., Olson, G. J., and Brinckman, F. E. (1984). Iodomethane as a potential metal mobilizing agent in nature. Environ. Sci. Technol., 18, 726–729. doi:10.1021/es00127a018.
  • Thomas, S. A., and Gaillard, J.-F. (2017). Cysteine addition promotes sulfide production and 4-Fold Hg(II)–S coordination in actively metabolizing Escherichia coli. Environ. Sci. Technol., 51, 4642–4251. doi:10.1021/acs.est.6b06400.
  • Truong, H. Y. T., Chen, Y. W., and Belzile, N. (2013). Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci. Total Environ., 449, 373–384. doi:10.1016/j.scitotenv.2013.01.054.
  • Vazquez-Rodriguez, A. I., Hansel, C. M., Zhang, T., Lamborg, C. H., Santelli, C. M., Webb, S. M., and Brooks, S. C. (2015). Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury, Front. Microbiol., 6, 596.
  • Vera, M., Schippers, A., and Sand, W. (2013). Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-Part A. Appl. Microbiol. Biot., 97, 7529–7541. doi:10.1007/s00253-013-4954-2.
  • Vogel, C., Krüger, O., Herzel, H., Amidani, L., and Adam, C. (2016). Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers. J. Hazard. Mater., 313, 179–184. doi:10.1016/j.jhazmat.2016.03.079.
  • Wallschlager, D., Desai, M. V. M., and Wilken, R. D. (1996). Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl. Microbiol. Biot., 90, 507–520.
  • Wang, J. X., Feng, X. B., Anderson, C. W. N., Wang, H., and Wang, L. L. (2014). Thiosulphate-induced mercury accumulation by plants: Metal uptake and transformation of mercury fractionation in soil – results from a field study. Plant Soil, 375, 21–33. doi:10.1007/s11104-013-1940-5.
  • Wang, J. X., Feng, X. B., Anderson, C. W. N., Wang, H., Zheng, L. R., and Hu, T. D. (2012a). Implications of mercury speciation in thiosulfate treated plants. Environ. Sci. Technol., 46, 5361–5368. doi:10.1021/es204331a.
  • Wang, J. X., Feng, X. B., Anderson, C. W. N., Xing, Y., and Shang, L. H. (2012b). Remediation of mercury contaminated sites – A review. J. Hazard. Mater., 221, 1–18.
  • Wang, J. X., Xia, J. C., and Feng, X. B. (2017). Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. J. Environ. Manage., 186, 233–239. doi:10.1016/j.jenvman.2016.05.031.
  • Wang, Q. R., Kim, D., Dionysiou, D. D., Sorial, G. A., and Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems -A literature review. Environ. Pollut., 131, 323–336. doi:10.1016/j.envpol.2004.01.010.
  • Wang, Y. J., Li, H. Y., Hu, H. F., Li, D. P., Yang, Y. J., and Liu, C. (2013a). Using biochemical system to improve cinnabar dissolution. Bioresource Technol., 132, 1–4. doi:10.1016/j.biortech.2013.01.010.
  • Wang, Y. J., Yang, Y. J., Li, D. P., Hu, H. F., Li, H. Y., and He, X. H. (2013b). Bioxidative dissolution of cinnabar by iron-oxidizing bacteria. Biochem. Eng. J., 74, 102–106. doi:10.1016/j.bej.2013.02.013.
  • Waples, J. S., Nagy, K. L., Aiken, G. R., and Ryan, J. N. (2005). Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim. Cosmochim. Ac., 69, 1575–1588. doi:10.1016/j.gca.2004.09.029.
  • Wiederhold, J. G., Smith, R. S., Siebner, H., Jew, A. D., Brown, G. E., Bourdon, B., and Kretzschmar, R. (2013). Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine. Environ. Sci. Technol., 47, 6137–6145. doi:10.1021/es305245z.
  • Wolfenden, S., Charnock, J. M., Hilton, J., Livens, F. R., and Vaughan, D. J. (2005). Sulfide species as a sink for mercury in lake sediments. Environ. Sci. Technol., 39, 6644–6648. doi:10.1021/es048874z.
  • Wollast, R., Billen, G., and Mackenzie, F. T. (1975). Behavior of mercury in natural systems and its global cycle. In A. D. McIntyre and C. F. Mills (Eds.), Ecological toxicology research: Effects of heavy metal and organohalogen compounds (pp. 145–166). Boston, MA: Springer.
  • Wood, J. M., and Wang, H. K. (1983). Microbial resistance to heavy-metals. Environ. Sci. Technol., 17, A582–A590. doi:10.1021/es00118a717.
  • Wu, Y., and Wang, W. X. (2014a). Bioaccumulation and toxicity of mercury in marine phytoplankton. Asian J. Ecotoxicol., 9, 810–818.
  • Wu, Y., and Wang, W. X. (2014b). Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Aquat. Toxicol., 148, 122–129. doi:10.1016/j.aquatox.2014.01.005.
  • Yu, R. Q., Reinfelder, J. R., Hines, M. E., and Barkay, T. (2013). Mercury methylation by the methanogen methanospirillum hungatei. Appl. Environ. Microbiol., 79, 6325–6330. doi:10.1128/AEM.01556-13.
  • Zhang, T., Kucharzyk, K. H., Kim, B., Deshusses, M. A., and Hsu-Kim, H. (2014). Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ. Sci. Technol., 48, 9133–9141. doi:10.1021/es500336j.
  • Zhao, L., Anderson, C. W. N., Qiu, G. L., Meng, B., Wang, D. Y., and Feng, X. B. (2016a). Mercury methylation in paddy soil: Source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences, 13, 2429–2440. doi:10.5194/bg-13-2429-2016.
  • Zhao, L., Qiu, G. L., Anderson, C. W. N., Meng, B., Wang, D. Y., Shang, L. H., … Feng, X. B. (2016b). Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environ. Pollut., 215, 1–9. doi:10.1016/j.envpol.2016.05.001.
  • Zhou, X. X., Liu, J. F., and Jiang, G. B. (2017). Elemental mass size distribution for characterization, quantification and identification of trace nanoparticles in serum and environmental waters. Environ. Sci. Technol., 51, 3892–3901. doi:10.1021/acs.est.6b05539.
  • Zhou, X. X., Liu, R., and Liu, J. F. (2014). Rapid chromatographic separation of dissoluble Ag(I) and silver-containing nanoparticles of 1–100 nanometer in antibacterial products and environmental waters. Environ. Sci. Technol., 48, 14516–14524. doi:10.1021/es504088e.
  • Zverina, O., Cervenka, R., Komarek, J., and Sysalova, J. (2013). Mercury characterisation in urban particulate matter. Chem. Pap., 67, 186–193. doi:10.2478/s11696-012-0259-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.