1,738
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments

&
Pages 1-38 | Published online: 09 Mar 2018

References

  • Abdeen, Z., Huda, K. E. S., and Moustafa, Y. (2014). Enhancement of crude oil biodegradation by immobilizing of different bacterial strains on porous PVA hydrogels or combining of them with their produced biosurfactants. J Pet Environ Biotechnol, 5, 1–10.
  • Abou Seoud, M., and Maachi, R. (2003). Biodegradation of naphthalene by free and alginate entrapped Pseudomonas sp. Z Naturforsch C, 58, 726–31.
  • Ahmad, S. A., Shamaan, N. A., Arif, N. M., Koon, G. B., Shukor, M. Y. A., and Syed, M. A. (2012). Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World Journal of Microbiology and Biotechnology, 28, 347–52. doi:10.1007/s11274-011-0826-z.
  • Alessandrello, M. J., Parellada, E. A., Juárez Tomás, M. S., Neske, A., Vullo, D. L., and Ferrero, M. A. (2017). Polycyclic aromatic hydrocarbons removal by immobilized bacterial cells using annonaceous acetogenins for biofilm formation stimulation on polyurethane foam. Journal of Environmental Chemical Engineering, 5, 189–95. doi:10.1016/j.jece.2016.11.037.
  • Alvarez, J. P., and Illman, A. W. (2006). Bioremediation and natural attenuation: process fundamentals and mathematical models. Hoboken, New Jersey, USA: Wiley-Interscience.
  • Andriani, A., and Tachibana, S. (2016). Lignocellulosic materials as solid support agents for Bjerkandera adusta SM46 to enhance polycyclic aromatic hydrocarbon degradation on sea sand and sea water media. Biocatalysis and Agricultural Biotechnology, 8, 310–20. doi:10.1016/j.bcab.2016.10.011.
  • Armentano, I., Arciola, C. R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C. F., and Visai, L. (2014). The interaction of bacteria with engineered nanostructured polymeric materials: A review. The Scientific World Journal, 2014, 18. doi:10.1155/2014/410423.
  • Ausheva, K., Goncharuk, D., Babusenko, E., Nekhaev, S., Sultygova, Z., and Markvichev, N. (2008). Development of a bacterial preparation based on immobilized cells. Theoretical Foundations of Chemical Engineering, 42, 767–73. doi:10.1134/S0040579508050503.
  • Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., Desvaux, M., Di Bonaventura, G., Hébraud, M., Jaglic, Z., Kačániová, M., Knøchel, S., Louren¸o, A., Mergulhão, F., Meyer, R. L., Nychas, G., Simões, M., Tresse, O., and Sternberg, C. (2016). Critical review on biofilm methods. Critical Reviews in Microbiology, 43, 313–51. doi:10.1080/1040841X.2016.1208146.
  • Barreto, R. V. G., Hissa, D. C., Paes, F. A., Grangeiro, T. B., Nascimento, R. F., Rebelo, L. M., Craveiro, A. A., and Melo, V. M. M. (2010). New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads. Bioresource Technology, 101, 2121–25. doi:10.1016/j.biortech.2009.11.004.
  • Bettmann, H., and Rehm, H. (1984). Degradation of phenol by polymer entrapped microorganisms. Applied Microbiology and Biotechnology, 20, 285–90. doi:10.1007/BF00270587.
  • Bickerstaff, G. F. (1997). Immobilization of enzymes and cells. In G. F. Bickerstaff (Ed.), Immobilization of enzymes and cells (pp. 1–11). Totowa, NJ: Humana Press.
  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67. doi:10.1016/S0960-8524(99)00144-3.
  • Brena, B. M., and Batista-Viera, F. (2006). Immobilization of enzymes. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (pp. 15–30). Totowa, NJ: Humana Press.
  • Brinda Lakshmi, M., Muthukumar, K., and Velan, M. (2012). Immobilization of Mycoplana sp. MVMB2 isolated from petroleum contaminated soil onto papaya stem (Carica papaya L.) and its application on degradation of phenanthrene. CLEAN – Soil, Air, Water, 40, 870–77. doi:10.1002/clen.201100639.
  • Brinda Lakshmi, M., Anandaraj, V. P., and Velan, M. (2013). Bioremediation of phenanthrene by Mycoplana sp. MVMB2 isolated from contaminated soil. CLEAN – Soil, Air, Water, 41, 86–93. doi:10.1002/clen.201000472.
  • Cassidy, M. B., Lee, H., and Trevors, J. T. (1996). Environmental applications of immobilized microbial cells: A review. Journal of Industrial Microbiology, 16, 79–101. doi:10.1007/BF01570068.
  • Cassidy, M. B., Mullineers, H., Lee, H., and Trevors, J. T. (1997). Mineralization of pentachlorophenol in a contaminated soil by Pseudomonas sp. UG30 cells encapsulated in κ-carrageenan. Journal of Industrial Microbiology & Biotechnology, 19, 43–48. doi:10.1038/sj.jim.2900415.
  • Cheetham, P. S. J., Blunt, K. W., and Bocke, C. (1979). Physical studies on cell immobilization using calcium alginate gels. Biotechnology and Bioengineering, 21, 2155–68. doi:10.1002/bit.260211202.
  • Chen, B., Yuan, M., and Qian, L. (2012). Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and Sediments, 12, 1350–1359.
  • Chen, K. C., and Lin, Y. F. (1994). Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme and Microbial Technology, 16, 79–83. doi:10.1016/0141-0229(94)90113-9.
  • Chen, Y., Yu, B., Lin, J., Naidu, R., and Chen, Z. (2016). Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 289, 463–70. doi:10.1016/j.cej.2016.01.010.
  • Chikhi, S., Ferradji, F. Z., Badis, A., and Bouzid, B. (2016). Microbial removal of xylene using free and immobilized Streptomyces sp. AB1: bioreactors application. Desalination and Water Treatment, 57, 6148–56. doi:10.1080/19443994.2015.1060581.
  • Costa, S. P., Angelim, A. L., de Fátima Vieira de Queiroz Sousa, M., and Melo, V. M. M. (2014). Vegetative cells of Bacillus pumilus entrapped in chitosan beads as a product for hydrocarbon biodegradation. International Biodeterioration & Biodegradation, 87, 122–27. doi:10.1016/j.ibiod.2013.11.011.
  • Cubitto, M. A., and Gentili, A. R. (2015). Bioremediation of crude oil-contaminated soil by immobilized bacteria on an agroindustrial waste–sunflower seed husks. Bioremediation Journal, 19, 277–86. doi:10.1080/10889868.2014.995376.
  • Cunningham, C. J., Ivshina, I. B., Lozinsky, V. I., Kuyukina, M. S., and Philp, J. C. (2004). Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. International Biodeterioration & Biodegradation, 54, 167–74. doi:10.1016/j.ibiod.2004.03.005.
  • Cutright, T. J. (2005). Bioremediation. In S. Lee (Ed.) Encyclopedia of chemical processing (pp. 207–19). New York: Marcel Dekker.
  • Deng, F., Liao, C., Yang, C., Guo, C., and Dang, Z. (2016). Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials. International Biodeterioration & Biodegradation, 110, 46–52. doi:10.1016/j.ibiod.2016.02.016.
  • Djefal-Kerrar, A., Gais, S., Ouallouche, K., Nacer Khodja, A., Mahlous, M., and Hacène, H. (2007). Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 265, 370–74. doi:10.1016/j.nimb.2007.09.005.
  • El-Mohdy, H. L. A. (2017). Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arabian Journal of Chemistry, 10, 431–38. doi:10.1016/j.arabjc.2012.10.003.
  • Eweis, J. B., Eragas, S. J., Chang, D. P. Y., and Schroeder, E. D. (1998). Bioremediation Principles. Toronto: McGraw-Hill.
  • Farag, S., Abdel-Fattah, Y. R., and Soliman, N. A. (2010). Optimization of immobilization conditions for petroleum oil biodegradation using wood chips and wax as carrier for Candida spp. Journal of Biotechnology, 150(Supplement), 231. doi:10.1016/j.jbiotec.2010.09.075.
  • Feijoo-Siota, L., Rosa-Dos-Santos, F., de Miguel, T., and Villa, T. G. (2008). Biodegradation of Naphthalene by Pseudomonas stutzeri in marine environments: Testing cells entrapment in calcium alginate for use in water detoxification. Bioremediation Journal, 12, 185–92. doi:10.1080/10889860802477168.
  • Ferreira, L., Rosales, E., Sanromán, M. A., and Pazos, M. (2015). Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices. Journal of Chemical Technology & Biotechnology, 90, 500–506. doi:10.1002/jctb.4338.
  • Fraser, J. E., and Bickerstaff, G. F. (1997). Entrapment in Calcium Alginate. In G. F. Bickerstaff (Ed.), Immobilization of enzymes and cells (pp. 61–66). Totowa, NJ: Humana Press.
  • Garrett, T. R., Bhakoo, M., and Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18, 1049–56. doi:10.1016/j.pnsc.2008.04.001.
  • Gentili, A. R., Cubitto, M. A., Ferrero, M., and Rodriguéz, M. S. (2006). Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. International Biodeterioration & Biodegradation, 57, 222–28. doi:10.1016/j.ibiod.2006.02.009.
  • Ha, J. (2005). Bioremediation of the organophosphate pesticide, coumaphos, using microorganisms immobilized in calciumalginate gel beads (Thesis). Texas A&M University, 181 pp.
  • Haritash, A. K., and Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1–15. doi:10.1016/j.jhazmat.2009.03.137.
  • Hou, D., Shen, X., Luo, Q., He, Y., Wang, Q., and Liu, Q. (2013). Enhancement of the diesel oil degradation ability of a marine bacterial strain by immobilization on a novel compound carrier material. Marine Pollution Bulletin, 67, 146–51. doi:10.1016/j.marpolbul.2012.11.021.
  • Huang, R. Y., Tian, W. J., Liu, Q., Yu, H. B., Jin, X., Zhao, Y. G., Zhou, Y. H., and Feng, G. (2016). Enhanced biodegradation of pyrene and indeno(1,2,3-cd)pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Marine Pollution Bulletin, 102, 128–33. doi:10.1016/j.marpolbul.2015.11.044.
  • Idris, A., Zain, N. A. M., and Suhaimi, M. S. (2008). Immobilization of Baker's yeast invertase in PVA–alginate matrix using innovative immobilization technique. Process Biochemistry, 43, 331–38. doi:10.1016/j.procbio.2007.12.008.
  • Jack, T. R., and Zajic, J. E. (1977). The immobilization of whole cells. In Advances in biochemical engineering (Vol. 5). Berlin, Heidelberg: Springer.
  • Jeùrabkova, H., Kralova, B., Krejè, V., Sanchez, J. L. I., and Roig, M. G. (1997). Use of polyurethane foam for the biodegradation of n-alkanes by immobilised cells of Pseudomonas. Biotechnology Techniques, 11, 391–94. doi:10.1023/A:1018408504477.
  • Jiang, B., Zhou, Z., Dong, Y., Wang, B., Jiang, J., Guan, X., Gao, S., Yang, A., Chen, Z., and Sun, H. (2015). Bioremediation of petrochemical wastewater containing BTEX compounds by a new immobilized bacterium comamonas sp. JB in magnetic gellan gum. Applied Biochemistry and Biotechnology, 176, 572–81. doi:10.1007/s12010-015-1596-0.
  • Jianlong, W., Liping, H., Hanchang, S., and Yi, Q. (2001). Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere, 44, 1041–46. doi:10.1016/S0045-6535(00)00469-0.
  • Jianlong, W., Xiangchun, Q., Liping, H., Yi, Q., and Hegemann, W. (2002). Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Research, 36, 2288–96. doi:10.1016/S0043-1354(01)00457-2.
  • Jin, X., Tian, W., Liu, Q., Qiao, K., Zhao, J., and Gong, X. (2017). Biodegradation of the benzo[a]pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization. Marine Pollution Bulletin, 117, 283–90. doi:10.1016/j.marpolbul.2017.02.001.
  • Kampf, N. (2002). The use of polymers for coating of cells. Polymers for Advanced Technologies, 13, 895–904. doi:10.1002/pat.277.
  • Karel, S. F., Libicki, S. B., and Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321–54. doi:10.1016/0009-2509(85)80074-9.
  • Kermanshahi pour, A., Karamanev, D., and Margaritis, A. (2005). Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor. Water Research, 39, 3704–14. doi:10.1016/j.watres.2005.06.022.
  • Kok Kee, W., Hazaimeh, H., Mutalib, S. A., Abdullah, P. S., and Surif, S. (2015). Self-immobilised bacterial consortium culture as ready-to-use seed for crude oil bioremediation under various saline conditions and seawater. International Journal of Environmental Science and Technology, 12, 2253–62. doi:10.1007/s13762-014-0619-7.
  • Kuyukina, M. S., Ivshina, I. B., Kamenskikh, T. N., Bulicheva, M. V., and Stukova, G. I. (2013). Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency. International Biodeterioration & Biodegradation, 84, 118–25. doi:10.1016/j.ibiod.2012.05.035.
  • Kuyukina, M. S., Ivshina, I. B., Gavrin, A. Y., Podorozhko, E. A., Lozinsky, V. I., Jeffree, C. E., and Philp, J. C. (2006). Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant. Journal of Microbiological Methods, 65, 596–603. doi:10.1016/j.mimet.2005.10.006.
  • Kuyukina, M. S., Ivshina, I. B., Serebrennikova, M. K., Krivorutchko, A. B., Podorozhko, E. A., Ivanov, R. V., and Lozinsky, V. I. (2009). Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells. International Biodeterioration & Biodegradation, 63, 427–432.
  • Lee, Y. C., Shin, H. J., Ahn, Y., Shin, M. C., Lee, M., and Yang, J. W. (2010). Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: A batch experiment. Journal of Hazardous Materials, 183, 940–44. doi:10.1016/j.jhazmat.2010.07.028.
  • Levinson, W. E., Stormo, K. E., Tao, H. L., and Crawford, R. L. (1994). Hazardous waste clean-up and treatment with encapsulated or entrapped microorganisms. In G. R. Chaudry (Ed.), Biological Degradation and Bioremediation of Toxic Chemicals (pp. 455–469). London: Chapman and Hall.
  • Li, J., Guo, C., Liao, C., Zhang, M., Liang, X., Lu, G., Yang, C., and Dang, Z. (2016). A bio-hybrid material for adsorption and degradation of phenanthrene: bacteria immobilized on sawdust coated with a silica layer. RSC Advances, 6, 107189–99. doi:10.1039/C6RA22683C.
  • Li, P. J., Wang, X., Stagnitti, F., Li, L., Gong, Z. Q., Zhang, H. R., Xiong, X. Z., and Austin, C. (2005). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environmental Engineering Science, 22, 390–99. doi:10.1089/ees.2005.22.390.
  • Liang, Y., Zhang, X., Dai, D., and Li, G. (2009). Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation, 63, 80–87. doi:10.1016/j.ibiod.2008.07.005.
  • Lin, C. W., Wu, C. H., Tang, C. T., and Chang, S. H. (2012). Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology, 124, 45–51. doi:10.1016/j.biortech.2012.07.099.
  • Lin, C., Gan, L., Chen, Z., Megharaj, M., and Naidu, R. (2014). Biodegradation of naphthalene using a functional biomaterial based on immobilized Bacillus fusiformis (BFN). Biochemical Engineering Journal, 90, 1–7. doi:10.1016/j.bej.2014.05.003.
  • Lin, J., Gan, L., Chen, Z., and Naidu, R. (2015). Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochemical Engineering Journal, 100, 76–82. doi:10.1016/j.bej.2015.04.014.
  • Lin, M., Liu, Y., Chen, W., Wang, H., and Hu, X. (2014). Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. International Biodeterioration & Biodegradation, 88, 8–12. doi:10.1016/j.ibiod.2013.11.015.
  • Liu, P. W. G., Chang, T. C., Whang, L. M., Kao, C. H., Pan, P. T., and Cheng, S. S. (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation, 65, 1119–27. doi:10.1016/j.ibiod.2011.09.002.
  • Liu, P. W. G., Yang, D. S., Tang, J. Y., Hsu, H. W., Chen, C. H., and Lin, I. K. (2016). Development of a cell immobilization technique with polyvinyl alcohol for diesel remediation in seawater. International Biodeterioration & Biodegradation, 113, 397–407. doi:10.1016/j.ibiod.2016.05.022.
  • Lobakova, E., Vasilieva, S., Kashcheeva, P., Ivanova, E., Dolnikova, G., Chekanov, K., Idiatulov, R., Kirpichnikov, M., Buznik, V., and Dedov, A. (2016). New bio-hybrid materials for bioremoval of crude oil spills from marine waters. International Biodeterioration & Biodegradation, 108, 99–107. doi:10.1016/j.ibiod.2015.12.016.
  • Lozinsky, V. I., and Plieva, F. M. (1998). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–42. doi:10.1016/S0141-0229(98)00036-2.
  • Lozinsky, V. I., Zubov, A. L., and Titova, E. F. (1997). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier. Enzyme and Microbial Technology, 20, 182–90. doi:10.1016/S0141-0229(96)00110-X.
  • Lu, X. Y., Zhang, T., and Fang, H. H. P. (2011). Bacteria-mediated PAH degradation in soil and sediment. Applied Microbiology and Biotechnology, 89, 1357–71. doi:10.1007/s00253-010-3072-7.
  • Luckarift, H. R., Sizemore, S. R., Farrington, K. E., Fulmer, P. A., Biffinger, J. C., Nadeau, L. J., and Johnson, G. R. (2011). Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats. Biotechnology Progress, 27, 1580–87. doi:10.1002/btpr.701.
  • Lyngberg, O. K., Thiagarajan, V., Stemke, D. J., Schottel, J. L., Scriven, L. E., and Flickinger, M. C. (1999). A patch coating method for preparing biocatalytic films of Escherichia coli. Biotechnology and Bioengineering, 62, 44–55. doi:10.1002/(SICI)1097-0290(19990105)62:1%3c44::AID-BIT6%3e3.0.CO;2-W.
  • Mancera-Lopez, M., Esparza-Garcia, F., Chavez-Gomez, B., Rodriguez-Vazquez, R., Saucedo-Castaneda, G., and Barrera-Cortes, J. (2008). Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation, 61, 151–60. doi:10.1016/j.ibiod.2007.05.012.
  • Manohar, S., and Karegoudar, T. B. (1998). Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide. Applied Microbiology and Biotechnology, 49, 785–92. doi:10.1007/s002530051247.
  • Manohar, S., Kim, C. K., and Karegoudar, T. B. (2001). Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Applied Microbiology and Biotechnology, 55, 311–16. doi:10.1007/s002530000488.
  • Martins, S. C. S., Martins, C. M., Fiúza, L. M. C. G., and Santaella, S. T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12, 4412–4418.
  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., and Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37, 1362–75. doi:10.1016/j.envint.2011.06.003.
  • Mikkelsen, A., and Elgsaeter, A. (1995). Density distribution of calcium-induced alginate gels. A numerical study. Biopolymers, 36, 17–41. doi:10.1002/bip.360360104.
  • Mohammadi, A., and Nasernejad, B. (2009). Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse. Journal of Hazardous Materials, 161, 534–37. doi:10.1016/j.jhazmat.2008.03.132.
  • Moslemy, P., Neufeld, R. J., and Guiot, S. R. (2002). Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnology and Bioengineering, 80, 175–84. doi:10.1002/bit.10358.
  • Moslemy P., Guiot S. R., and Neufeld R. J. (2006). Encapsulation of bacteria for biodegradation of gasoline hydrocarbons. In J. M. Guisan (Ed.), Immobilization of enzymes and cells. Methods in Biotechnology™ (Vol. 22, pp. 415–426). USA: Humana Press.
  • Mrozik, A., and Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363–75. doi:10.1016/j.micres.2009.08.001.
  • Mulla, S. I., Talwar, M. P., Bagewadi, Z. K., Hoskeri, R. S., and Ninnekar, H. Z. (2013). Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere, 90, 1920–24. doi:10.1016/j.chemosphere.2012.10.030.
  • Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–80. doi:10.1016/S0013-7952(00)00117-4.
  • Nie, M., Nie, H., He, M., Lin, Y., Wang, L., Jin, P., and Zhang, S. (2016). Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. Journal of Environmental Management, 173, 34–40. doi:10.1016/j.jenvman.2016.02.045.
  • Nilson, K., Birnbaum, S., Flygare, S., Linse, L., Schroder, U., Jeppsson, U., Larson, P., Mosbach, K., and Brodelius, P. (1983). A general method for the immobilization of cells with preserved viability. European Journal of Applied Microbiology and Biotechnology, 17, 319–26. doi:10.1007/BF00499497.
  • Nopcharoenkul, W., Netsakulnee, P., and Pinyakong, O. (2013). Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation, 24, 387–97. doi:10.1007/s10532-012-9596-z.
  • Norris, R. D., Hinchee, R. E., McCarty, P. L., Semprini, L., Wilson, J. T., Campbell, D. H., Reinhard, M., and Bouwer, E. J. (1994). Handbook of Bioremediation. Boca Raton: Lewis Publishers.
  • Nwankwegu, A. S., Onwosi, C. O., Azi, F., Azumini, P., and Anaukwu, C. G. (2017). Use of rice husk as bulking agent in bioremediation of automobile gas oil impinged agricultural soil. Soil and Sediment Contamination: An International Journal, 26, 96–114. doi:10.1080/15320383.2017.1245711.
  • Obuekwe, C. O., and Al-Muttawa, E. M. (2001). Self-immobilized bacterial cultures with potential for application as ready-to-use seeds for petroleum bioremediation. Biotechnology Letters, 23, 1025–32. doi:10.1023/A:1010544320118.
  • Ogbonna, J., Matsumura, M., and Kataoka, H. (1991). Effective oxygenation of immobilized cells through reduction in bead diameters: a review. Process Biochemistry, 26, 109–21. doi:10.1016/0032-9592(91)80025-K.
  • Oh, Y. S., Maeng, J., and Kim, S. J. (2000). Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface. Applied Microbiology and Biotechnology, 54, 418–23. doi:10.1007/s002530000384.
  • Omar, S. H., Büdecker, U., and Rehm, H. J. (1990). Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Applied Microbiology and Biotechnology, 34, 259–63. doi:10.1007/BF00166792.
  • Paje, M. L., Marks, P., and Couperwhite, I. (1998). Degradation of benzene by a Rhodococcus sp. using immobilized cell systems. World Journal of Microbiology and Biotechnology, 14, 675–80. doi:10.1023/A:1008898922908.
  • Pala, D. M., de Carvalho, D. D., Pinto, J. C., and Sant'Anna, J. G. L. (2006). A suitable model to describe bioremediation of a petroleum-contaminated soil. International Biodeterioration & Biodegradation, 58, 254–60. doi:10.1016/j.ibiod.2006.06.026.
  • Parameswarappa, S., Karigar, C., and Nagenahalli, M. (2008). Degradation of ethylbenzene by free and immobilized Pseudomonas fluorescens-CS2. Biodegradation, 19, 137–44. doi:10.1007/s10532-007-9121-y.
  • Partovinia, A., and Naeimpoor, F. (2013). Phenanthrene biodegradation by immobilized microbial consortium in polyvinyl alcohol cryogel beads. International Biodeterioration & Biodegradation, 85, 337–44. doi:10.1016/j.ibiod.2013.08.017.
  • Partovinia, A., and Naeimpoor, F. (2014). Comparison of phenanthrene biodegradation by free and immobilized cell systems: formation of hydroxylated compounds. Environmental Science and Pollution Research, 21, 5889–98. doi:10.1007/s11356-014-2516-5.
  • Partovinia, A., Naeimpoor, F., and Hejazi, P. (2010). Carbon content reduction in a model reluctant clayey soil: Slurry phase n-hexadecane bioremediation. Journal of Hazardous Materials, 181, 133–39. doi:10.1016/j.jhazmat.2010.04.106.
  • Podorozhko, E. A., Lozinsky, V. I., Ivshina, I. B., Kuyukina, M. S., Krivorutchko, A. B., Philp, J. C., and Cunningham, C. J. (2008). Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber. Bioresource Technology, 99, 2001–2008. doi:10.1016/j.biortech.2007.03.024.
  • Přenosil, J. E., Kut, Ö.M., Dunn, I. J., and Heinzle, E. (2009). Biocatalysis, 2. Immobilized biocatalysts. Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag, 5, 478–527.
  • Quek, E., Ting, Y. P., and Tan, H. M. (2006). Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresource Technology, 97, 32–38. doi:10.1016/j.biortech.2005.02.031.
  • Radwan, S. S., Al-Hasan, R. H., Salamah, S., and Al-Dabbous, S. (2002). Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. International Biodeterioration & Biodegradation, 50, 55–59. doi:10.1016/S0964-8305(02)00067-7.
  • Rahman, R. N. Z. A., Ghazali, F. M., Salleh, A. B., and Basri, M. (2006). Biodegradation of hydrocarbon contamination by immobilized bacterial cells. The Journal of Microbiology, 44, 354–59.
  • Ramteke, L. P., and Gogate, P. R. (2016). Removal of benzene, toluene and xylene (BTX) from wastewater using immobilized modified prepared activated sludge (MPAS). Journal of Chemical Technology & Biotechnology, 91, 456–66. doi:10.1002/jctb.4599.
  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: Biological, chemical and physical processes. Boston: Lewis Publishers.
  • Robledo-Ortíz, J. R., Ramírez-Arreola, D. E., Pérez-Fonseca, A. A., Gómez, C., González-Reynoso, O., Ramos-Quirarte, J., and González-Núñez, R. (2011). Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration & Biodegradation, 65, 539–46. doi:10.1016/j.ibiod.2010.12.011.
  • Rosevear, A. (1984). Immobilised biocatalysts–a critical review. Journal of Chemical Technology and Biotechnology, 34, 127–50. doi:10.1002/jctb.280340302.
  • Rosevear, A., Kennedy, J. F., and Cabral, J. M. S. (1987). Immobilized enzymes and cells. Philadelphia, PA: Adam Hilger.
  • Sarma, S. J., and Pakshirajan, K. (2011). Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. International Biodeterioration & Biodegradation, 65, 73–77. doi:10.1016/j.ibiod.2010.09.004.
  • Sarma, S. J., Pakshirajan, K., and Saamrat, K. B. G. (2011). Pyrene biodegradation by free and immobilized cells of Mycobacterium frederiksbergense using a solvent encapsulated system. Indian Journal of Biotechnology, 10, 496–501.
  • Singh, A., Kuhad, R. C., and Ward, O. P. (2009). Advances in Applied Bioremediation. Berlin: Springer-Verlag.
  • Singh, R., Paul, D., and Jain, R. K. (2006). Biofilms: implications in bioremediation. Trends in Microbiology, 14, 389–97. doi:10.1016/j.tim.2006.07.001.
  • Siripattanakul, S., and Khan, E. (2010). Fundamentals and applications of entrapped cell bioaugmentation for contaminant removal.
  • Siripattanakul, S., Wirojanagud, W., McEvoy, J., and Khan, E. (2008). Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water, Air, & Soil Pollution: Focus, 8, 257–66. doi:10.1007/s11267-007-9158-2.
  • Smidsrod, O., and Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78. doi:10.1016/0167-7799(90)90139-O.
  • Somerville, H. J., Mason, J. R., and Ruffell, R. N. (1977). Benzene degradation by bacterial cells immobilized in polyacrylamide gel. Applied Microbiology and Biotechnology, 4, 75–85.
  • Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Cassidy, M. B., Trevors, J. T., Lee, H., and Upatham, S. (2009). Comparing phenanthrene degradation by alginate-encapsulated and free Pseudomonas sp UG14Lr cells in heavy metal contaminated soils. Journal of Chemical Technology and Biotechnology, 84, 1660–68. doi:10.1002/jctb.2226.
  • Song, J., Namgung, H., and Ahmed, Z. (2012). Biodegradation of toluene using Candida tropicalis immobilized on polymer matrices in fluidized bed bioreactors. Journal of Hazardous Materials, 241–242, 316–22. doi:10.1016/j.jhazmat.2012.09.049.
  • Song, S. H., Choi, S. S., Park, K., and Yoo, Y. J. (2005). Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme and Microbial Technology, 37, 567–73. doi:10.1016/j.enzmictec.2005.07.012.
  • Suzuki, T., Yamaguchi, T., and Ishida, M. (1998). Immobilization of Prototheca zopfü in calcium-alginate beads for the degradation of hydrocarbons. Process Biochemistry, 33, 541–46. doi:10.1016/S0032-9592(98)00022-3.
  • Tahseen, R., Afzal, M., Iqbal, S., Shabir, G., Khan, Q. M., Khalid, Z. M., and Banat, I. M. (2016). Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. International Biodeterioration & Biodegradation, 115, 192–98. doi:10.1016/j.ibiod.2016.08.010.
  • Tanaka, H., Matsumura, M., and Veliky, I. A. (1984). Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnology and Bioengineering, 26, 53–58. doi:10.1002/bit.260260111.
  • Tam, N. F. Y., Chan, M. N., and Wong, Y. S. (2010). Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. WIT Transactions on Ecology and the Environment, 140, 391–402.
  • Tao, X. Q., Lu, G. N., Liu, J. P., Li, T., and Yang, L. N. (2009). Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. International Journal of Environmental Research and Public Health, 6, 2470–80. doi:10.3390/ijerph6092470.
  • Trevors, J. T. (1991). Respiratory activity of alginate-encapsulated Pseudomonas fluorescens cells introduced into soil. Applied Microbiology and Biotechnology, 35, 416–19. doi:10.1007/BF00172736.
  • Trevors, J. T., Elsas, J. D., Lee, H., and Wolters, A. C. (1993). Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Applied Microbiology and Biotechnology, 39, 637–43. doi:10.1007/BF00205067.
  • Tsai, S. L., Lin, C. W., Wu, C. H., and Shen, C. M. (2013). Kinetics of xenobiotic biodegradation by the Pseudomonas sp. YATO411 strain in suspension and cell-immobilized beads. Journal of the Taiwan Institute of Chemical Engineers, 44, 303–309. doi:10.1016/j.jtice.2012.11.004.
  • Ueno, R., Wada, S., and Urano, N. (2006). Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fisheries Science, 72, 1027–33. doi:10.1111/j.1444-2906.2006.01252.x.
  • Ueno, R., Wada, S., and Urano, N. (2008). Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Canadian Journal of Microbiology, 54, 66–70. doi:10.1139/W07-112.
  • Van Stempvoort, D., and Biggar, K. (2008). Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Regions Science and Technology, 53, 16–41. doi:10.1016/j.coldregions.2007.06.009.
  • Venkata Mohan, S., Ramakrishna, M., Shailaja, S., and Sarma, P. N. (2007). Influence of soil–water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Bioresource Technology, 98, 2584–89. doi:10.1016/j.biortech.2006.09.018.
  • Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73, 1163–72. doi:10.1351/pac200173071163.
  • Wang, H. Q., Hua, F., Zhao, Y. C., Li, Y., and Wang, X. (2014). Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate. Biotechnology, Biotechnological Equipment, 28, 834–42. doi:10.1080/13102818.2014.961123.
  • Wang, P., Luo, L., Ke, L., Luan, T., and Tam, N. F. Y. (2013). Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environmental Toxicology and Chemistry, 32, 673–83. doi:10.1002/etc.2090.
  • Wang, S., Li, X., Liu, W., Li, P., Kong, L., Ren, W., Wu, H., and Tu, Y. (2012). Degradation of pyrene by immobilized microorganisms in saline-alkaline soil. Journal of Environmental Sciences, 24, 1662–69. doi:10.1016/S1001-0742(11)60963-7.
  • Wang, X., Gong, Z. Q., Li, P. J., and Zhang, L. H. (2007). Degradation of pyrene in soils by free and immobilized yeasts, Candida tropicals. Bulletin of Environmental Contamination and Toxicology, 78, 522–26. doi:10.1007/s00128-007-9156-0.
  • Wang, X., Wang, X., Liu, M., Bu, Y., Zhang, J., Chen, J., and Zhao, J. (2015). Adsorption–synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials. Marine Pollution Bulletin, 92, 195–200. doi:10.1016/j.marpolbul.2014.12.033.
  • Wang, Z. Y., Xu, Y., Wang, H. Y., Zhao, J., Gao, D. M., Li, F. M., and Xing, B. (2012). Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere, 22, 717–25. doi:10.1016/S1002-0160(12)60057-5.
  • Weir, S., Dupuis, S., Providenti, M., Lee, H., and Trevors, J. (1995). Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in creosote-contaminated soil slurries. Applied Microbiology and Biotechnology, 43, 946–51. doi:10.1007/BF02431932.
  • Weir, S. C., Providenti, M. A., Lee, H., and Trevors, J. T. (1996). Effect of alginate encapsulation and selected disinfectants on survival of and phenanthrene mineralization by Pseudomonas sp UG14Lr in creosote-contaminated soil. Journal of Industrial Microbiology, 16, 62–67. doi:10.1007/BF01569923.
  • Willaert, R. (2009). Cell Immobilization: Engineering aspects, in encyclopedia of industrial biotechnology: Bioprocess, bioseparation, and cell technology, M. C. Flickinger (Ed.). New York: John Wiley & Sons, Inc.
  • Willaert, R. G., and Baron, G. V. (1996). Immobilized living cell systems: modelling and experimental methods. 1–17.
  • Wilson, N. G., and Bradley, G. (1996). Enhanced degradation of petrol (Slovene diesel) in an aqueous system by immobilized Pseudomonas fluorescens. Journal of Applied Bacteriology, 80, 99–104. doi:10.1111/j.1365-2672.1996.tb03195.x.
  • Wu, K. Y. A., and Wisecarver, K. D. (1992). Cell immobilization using PVA crosslinked with boric acid. Biotechnology and Bioengineering, 39, 447–49. doi:10.1002/bit.260390411.
  • Xu, H., Li, X., Sun, Y., Shi, X., and Wu, J. (2016). Biodegradation of pyrene by free and immobilized cells of herbaspirillum chlorophenolicum strain FA1. Water, Air, & Soil Pollution, 227, 1–12. doi:10.1007/s11270-016-2824-0.
  • Xu, Y., and Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183, 395–401. doi:10.1016/j.jhazmat.2010.07.038.
  • Yamaguchi, T., Ishida, M., and Suzuki, T. (1999). An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochemistry, 34, 167–72. doi:10.1016/S0032-9592(98)00084-3.
  • Yegorenkova, I. V., Tregubova, K. V., Matora, L. Y., Burygin, G. L., and Ignatov, V. V. (2011). Biofilm formation by Paenibacillus polymyxa strains differing in the production and rheological properties of their exopolysaccharides. Current Microbiology, 62, 1554–59. doi:10.1007/s00284-011-9896-2.
  • Zain, N. A. M., Suhaimi, M. S., and Idris, A. (2011). Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochemistry, 46, 2122–29. doi:10.1016/j.procbio.2011.08.010.
  • Zhang, K., Xu, Y., Hua, X., Han, H., Wang, J., Wang, J., Liu, Y., and Liu, Z. (2008). An intensified degradation of phenanthrene with macroporous alginate–lignin beads immobilized Phanerochaete chrysosporium. Biochemical Engineering Journal, 41, 251–57. doi:10.1016/j.bej.2008.05.003.
  • Zhu, Y. (2007). Immobilized cell fermentation for production of chemicals and fuels, in Bioprocessing for value-added products from renewable resources: new technologies and applications, S. T. Yang (Ed.). Amsterdam, Boston: Elsevier. pp. 373–96.
  • Zinjarde, S. S., and Pant, A. (2000). Crude oil degradation by free and immobilized cells of Yarrowia lipolytica NCIM 3589. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 35, 755–63. doi:10.1080/10934520009377000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.