730
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Use of differential absorbance to estimate concentrations of chlorinated disinfection by-product in drinking water: Critical review and research needs

ORCID Icon, , &
Pages 210-241 | Published online: 21 Mar 2018

References

  • Adin, A., Katzhendler, J., Alkaslassy, D., and Rav-Acha, C. (1991). Trihalomethane formation in chlorinated drinking water: A kinetic model. Water Research 25, 797–805. doi:10.1016/0043-1354(91)90159-N.
  • American Public Health Association. (2012). Standard methods for the examination of water and wastewater. 22nd ed. [ place unknown]: American Public Health Association.
  • Ates, N., Kitis, M., and Yetis, U. (2007). Formation of chlorination byproducts in waters with low SUVA—correlations with SUVA and differential UV spectroscopy. Water Research 41(18), 4139–4148. https://doi.org/10.1016/j.watres.2007.05.042
  • Awad, J., van Leeuwen, J., Chow, C., Drikas, M., Smernik, R. J., Chittleborough, D. J., and Bestland, E. (2016). Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters. Journal of Hazardous Materials 308, 430–439. doi:10.1016/j.jhazmat.2016.01.030.
  • Babcock, D. B., and Singer, P. C. (1979). Chlorination and coagulation of humic and fulvic acids. Journal (American Water Works Association) 71, 149–152. doi:10.1002/j.1551-8833.1979.tb04318.x.
  • Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C. (1974). The occurrence of organohalides in chlorinated drinking waters. Journal (American Water Works Association) 66, 703–706. doi:10.1002/j.1551-8833.1974.tb02129.x.
  • Bond, T., Templeton, M. R., and Graham, N. (2012). Precursors of nitrogenous disinfection by-products in drinking water—-A critical review and analysis. Journal of Hazardous Materials. 235–236, 1–16. doi:10.1016/j.jhazmat.2012.07.017.
  • Boyce, S. D., and Hornig, J. F. (1983). Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science & Technology 17, 202–211. doi:10.1021/es00110a005.
  • Chadik, P. A., and Amy, G. L. (1983). Removing trihalomethane precursors from various natural waters by metal coagulants. Journal (American Water Works Association) 75, 532–536. doi:10.1002/j.1551-8833.1983.tb05215.x.
  • Chu, W., Gao, N., Yin, D., Krasner, S. W., and Templeton, M. R. (2012). Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. Journal of Chromatography A 1235, 178–181. doi:10.1016/j.chroma.2012.02.074.
  • Crittenden, J. C. (2012). MWH's water treatment principles and design [Internet]. Hoboken, N.J: John Wiley and Sons. Available from: http://onlinelibrary.wiley.com/book/10.1002/9781118131473
  • Deborde, M., and von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research 42, 13–51. doi:10.1016/j.watres.2007.07.025.
  • Dobbs, R., Wise, R., and Dean, R. (1972). The use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater. Water Research 6, 1173–1180. doi:10.1016/0043-1354(72)90017-6.
  • Dryer, D. J., Korshin, G. V., and Fabbricino, M. (2008). In situ examination of the protonation behavior of fulvic acids using differential absorbance spectroscopy. Environmental Science & Technology 42, 6644–6649. doi:10.1021/es800741u.
  • Edzwald, J. K., Becker, W. C., and Wattier, K. L. (1985). Surrogate parameters for monitoring organic matter and THM precursors. Journal (American Water Works Association) 77, 122–132. doi:10.1002/j.1551-8833.1985.tb05521.x.
  • Edzwald, J. K., and Kaminski, G. S. (2007). A simple method for water optimization and operation of coagulation. In: Water Quality and Technology Conference: Fast Tracks to Water Quality. Charlotte, North Carolina.
  • Gallard, H., and von Gunten, U. (2002a). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research 36, 65–74. doi:10.1016/S0043-1354(01)00187-7.
  • Gallard, H., and von Gunten, U. (2002b). Chlorination of phenols: Kinetics and formation of chloroform. Environmental Science & Technology 36, 884–890. doi:10.1021/es010076a.
  • Giese, N., and Darby, J. (2000). Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems. Water Research 34, 4007–4013. doi:10.1016/S0043-1354(00)00172-X.
  • Gonzalez, C., Touraud, E., Spinelli, S., and Thomas, O. (2007). Chapter 3 Organic constituents. In: O. Thomas and C. Burgess, editor. UV-Visible Spectrophotometry of Water and Wastewater [Internet]. Vol. Volume 27. [place unknown]: Elsevier; pp. 47–87. Available from: http://www.sciencedirect.com/science/article/pii/S0167924407800059
  • Hrudey, S. (2009). Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research 43, 2057–2092. doi:10.1016/j.watres.2009.02.011.
  • Hu, Y., and Wang, X. (2017). Application of surrogate parameters in characteristic UV–vis absorption bands for rapid analysis of water contaminants. Sensors and Actuators B: Chemical 239, 718–726. doi:10.1016/j.snb.2016.08.072.
  • Hua, G., Reckhow, D. A., and Abusallout, I. (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere 130, 82–89. doi:10.1016/j.chemosphere.2015.03.039.
  • Hureiki, L., Croué, J. P., and Legube, B. (1994). Chlorination studies of free and combined amino acids. Water Research 28, 2521–2531. doi:10.1016/0043-1354(94)90070-1.
  • Kitis, M., Karanfil, T., Wigton, A., and Kilduff, J. E. (2001). The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance. Water Science and Technology 43, 9–16.
  • Korshin, G. V., and Chang, H.-S. (2008). Spectroscopic Studies of the Roles of Distinct Chromophores in NOM Chlorination and DBP Formation. In Disinfection By-Products in Drinking Water (Vol. 995, pp. 158–171). American Chemical Society. https://doi.org/10.1021/bk-2008-0995.ch011
  • Korshin, G. V., Benjamin, M. M., and Chang, H.-S. (2004). Modeling DBP formation kinetics: Mechanistic and spectroscopic approaches. Denver, CO: AWWA Research Foundation.
  • Korshin, G. V., Benjamin, M. M., Chang, H.-S., and Gallard, H. (2007). Examination of NOM chlorination reactions by conventional and stop-flow differential absorbance spectroscopy. Environmental Science & Technology 41, 2776–2781. doi:10.1021/es062268h.
  • Korshin, G. V., Benjamin, M. M., Hemingway, O., and Wu, W. W. (2002). Development of differential UV spectroscopy for DBP monitoring. Denver, CO: AWWA Research Foundation.
  • Korshin, G. V., Benjamin, M. M., and Li, C.-W. (1999). Use of differential spectroscopy to evaluate the structure and reactivity of humics. Water Science & Technology 40, 9.
  • Korshin, G. V., Benjamin, M. M., and Xiao, H.-B. (2000). Interactions of chlorine with natural organic matter and formation of intermediates: Evidence by differential spectroscopy. Acta Hydrochim Hydrobiol 28, 378–384. doi:10.1002/1521-401X(20017)28:7<378::AID-AHEH378>3.0.CO;2-2.
  • Korshin, G. V., Li, C.-W., and Benjamin, M. M. (1996). Use of UV spectroscopy to study chlorination of natural organic matter. In: Water disinfection and natural organic matter [Internet]. vol. 649. [ place unknown]: American Chemical Society; [cited 2017 Mar 6]; p. 182–195. Available from: https://doi.org/10.1021/bk-1996-0649.ch012
  • Korshin, G. V., Li, C.-W., and Benjamin, M. M. (1997a). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research. 31:1787–1795. doi:10.1016/S0043-1354(97)00006-7.
  • Korshin, G. V., Li, C.-W., and Benjamin, M. M. (1997b). The decrease of UV absorbance as an indicator of TOX formation. Water Research 31, 946–949. doi:10.1016/S0043-1354(96)00393-4.
  • Korshin, G. V., Wu, W. W., Benjamin, M. M., and Hemingway, O. (2002). Correlations between differential absorbance and the formation of individual DBPs. Water Research 36, 3273–3282. doi:10.1016/S0043-1354(02)00042-8.
  • Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., and Aieta, E. M. (1989). The occurrence of disinfection by-products in US drinking water. Journal (American Water Works Association) 81, 41–53. doi:10.1002/j.1551-8833.1989.tb03258.x.
  • de Laat, J., Merlet, N., and Dore, M. (1982). Chloration de composés organiques: demande en chlore et réactivite vis-a-vis de la formation des trihalométhanes. Incidence de l'azote ammoniacal. Water Research 16, 1437–1450. doi:10.1016/0043-1354(82)90242-1.
  • Larson, R. A., and Rockwell, A. L. (1978). Citric acid: Potential precursor of chloroform in water chlorination. Naturwissenschaften 65, 490–490. doi:10.1007/BF00702843.
  • Le Roux, J., Gallard, H., and Croué, J.-P. (2012). Formation of NDMA and halogenated DBPs by chloramination of tertiary amines: The influence of bromide ion. Environmental Science & Technology 46, 1581–1589. doi:10.1021/es203785s.
  • van Leeuwen, J., Chow, C. W. K., Bursill, D., and Drikas, M. (1999). Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters. Journal of Water Supply: Research and Technology 48, 115. doi:10.1046/j.1365-2087.1999.00135.x.
  • Li, C.-W., Benjamin, M. M., and Korshin, G. V. (2000). Use of UV Spectroscopy To Characterize the Reaction between NOM and Free Chlorine. Environmental Science & Technology 34, 2570–2575. doi:10.1021/es990899o.
  • Li, C.-W., Korshin, G. V., and Benjamin, M. M. (1998). Monitoring DBP formation with differential UV spectroscopy. Journal (American Water Works Association) 90, 88–100. doi:10.1002/j.1551-8833.1998.tb08488.x.
  • Li, J., and Blatchley, E. R. (2008). Formation of volatile disinfection byproducts from chlorination of Organic-N precursors in recreational water. In: Disinfection By-Products in Drinking Water [Internet]. vol. 995. [ place unknown]: American Chemical Society; [cited 2017 Feb 5]; pp. 172–181. Available from: https://doi.org/10.1021/bk-2008-0995.ch012
  • Li, P., and Hur, J. (2017). Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 0–0.
  • Liang, L., and Singer, P. C. (2003). Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environmental Science & Technology 37, 2920–2928. doi:10.1021/es026230q.
  • Linden, K. G., Shin, G., and Sobsey, M. D. (2001). Comparative effectiveness of UV wavelengths for the inactivation of <em>Cryptosporidium parvum</em>oocysts in water. Water Science & Technology 43, 171.
  • Liu, B., and Reckhow, D. A. (2015). Disparity in disinfection byproducts concentration between hot and cold tap water. Water Research 70, 196–204. doi:10.1016/j.watres.2014.11.045.
  • Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., and Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83, 1431–1442. doi:10.1016/j.chemosphere.2011.01.018.
  • Morris, J. C. (1978). The chemistry of aqueous chlorine in relation to water chlorination. In: Water chlorination: environmental impact and health effects. vol. 1. Ann Arbor, Michigan: Ann Arbor Science Publishers.
  • Oliver, B. G., and Lawrence, J. (1979). Haloforms in drinking water: A study of precursors and precursor removal. Journal (American Water Works Association) 71, 161–163. doi:10.1002/j.1551-8833.1979.tb04321.x.
  • Özdemir, K., Toröz, İ., and Uyak, V. (2013). Assessment of trihalomethane formation in chlorinated raw waters with differential UV spectroscopy approach. The Scientific World Journal 2013, 890854. doi:10.1155/2013/890854.
  • Pomes, M. L., Green, W. R., Thurman, E. M., Orem, W. H., and Lerch, H. E. (1999). DBP formation potential of aquatic humic substances. Journal (American Water Works Association). 91, 103–115. doi:10.1002/j.1551-8833.1999.tb08604.x.
  • Reckhow, D. A., and Singer, P. C. (1990). Chlorination By-products in drinking waters: From formation potentials to finished water concentrations. Journal (American Water Works Association) 82, 173–180. doi:10.1002/j.1551-8833.1990.tb06949.x.
  • Reckhow, D. A., Singer, P. C., and Malcolm, R. L. (1990). Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology 24, 1655–1664. doi:10.1021/es00081a005.
  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., and DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research/Reviews in Mutation Research 636, 178–242. doi:10.1016/j.mrrev.2007.09.001.
  • Roccaro, P., Chang, H.-S., Vagliasindi, F. G. A., and Korshin, G. V. (2008). Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water. Water Research 42, 1879–1888. doi:10.1016/j.watres.2007.11.013.
  • Roccaro, P., and Vagliasindi, F. G. A. (2009). Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: Comparison and applicability. Water Research 43, 744–750. doi:10.1016/j.watres.2008.11.007.
  • Roccaro, P., and Vagliasindi, F. G. A. (2010). Monitoring emerging chlorination by-products in drinking water using UV-absorbance and fl uorescence indexes. Desalination and Water Treatment 23, 118–122. doi:10.5004/dwt.2010.1970.
  • Roccaro, P., Vagliasindi, F. G. A., and Korshin, G. V. (2008). Comparison of the performance of spectroscopic indices developed to quantify the halogenation of natural organic matter at varying chlorine concentrations, reaction times and temperatures. In: Disinfection By-Products in Drinking Water [Internet]. vol. 995. [ place unknown]: American Chemical Society; [cited 2017 Mar 30]; pp. 198–212. Available from: https://doi.org/10.1021/bk-2008-0995.ch014
  • Roccaro, P., Yan, M., and Korshin, G. V. (2015). Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter. Water Research 84, 136–143. doi:10.1016/j.watres.2015.07.029.
  • Rook, J. J. (1974). Formation of haloforms during chlorination of natural waters. Proceedings of the Society for Water Treatment and Examination 23, 234–243.
  • Rook, J. J. (1976). Haloforms in drinking water. Journal (American Water Works Association) 68, 168–172. doi:10.1002/j.1551-8833.1976.tb02376.x.
  • Rook, J. J. (1977). Chlorination reactions of fulvic acids in natural waters. Environmental Science & Technology 11, 478–482. doi:10.1021/es60128a014.
  • Sadiq, R., and Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of The Total Environment 321, 21–46. doi:10.1016/j.scitotenv.2003.05.001.
  • Sadiq, R., and Rodriguez, M. J. (2011). Empirical Models to Predict Disinfection By-products (DBPs) in Drinking Water. In: J. O. Nriagu, editor. Encyclopedia of Environmental Health [Internet]. Burlington: Elsevier; pp. 282–295. Available from: http://www.sciencedirect.com/science/article/pii/B9780444522726002828
  • Selbes, M., Shan, J., Bekaroglu, S. S. K., and Karanfil, T. (2015). Carbonaceous and Nitrogenous Disinfecion By-Product Formation Potentials of Amino Acids. In: Recent Advances in Disinfection By-Products [Internet]. vol. 1190. [ place unknown]: American Chemical Society; [cited 2017 Jun 1]; pp. 215–234. Available from: https://doi.org/10.1021/bk-2015-1190.ch012
  • Shah, A. D., and Mitch, W. A. (2012). Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways. Environmental Science & Technology 46, 119–131. doi:10.1021/es203312s.
  • Singer, P. C., and Chang, S. D. (1989). Correlations between trihalomethanes and total organic halides formed during water treatment. Journal (American Water Works Association) 81, 61–65. doi:10.1002/j.1551-8833.1989.tb03260.x.
  • Sohn, J., Amy, G., Cho, J., Lee, Y., and Yoon, Y. (2004). Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products. Water Research 38, 2461–2478. doi:10.1016/j.watres.2004.03.009.
  • Spinelli, S., Gonzalez, C., and Thomas, O. (2007). Chapter 11 UV spectra library. In: O. Thomas and C. Burgess, editor. UV-Visible Spectrophotometry of Water and Wastewater [Internet]. vol. Volume 27. [ place unknown]: Elsevier; pp. 267–356. Available from: http://www.sciencedirect.com/science/article/pii/S0167924407800138
  • Thurman, E. M. (1985). Organic geochemistry of natural waters. Dordrecht: M. Nijhoff.
  • Traina, S. J., Novak, J., and Smeck, N. E. (1990). An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. Journal of Environmental Quality 19, 151–153. doi:10.2134/jeq1990.00472425001900010023x.
  • Uyak, V., and Demirbas, K. D. (2014). Formation of Disinfection Byproducts (DBPs) in Surface Water Sources: Differential Ultraviolet (UV) Absorbance Approach. Environmental Forensics 15(1), 52–65. https://doi.org/10.1080/15275922.2013.853711
  • Wu, W. W., Benjamin, M. M., and Korshin, G. V. (2001). Effects of thermal treatment on halogenated disinfection By-products in drinking water. Water Research 35, 3545–3550. doi:10.1016/S0043-1354(01)00080-X.
  • Yan, M., Benedetti, M. F., and Korshin, G. V. (2013). Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: Comparison of data interpretation based on NICA-Donnan and Stockholm humic models. Water Research 47, 5439–5446. doi:10.1016/j.watres.2013.06.022.
  • Yan, M., Dryer, D., and Korshin, G. V. (2016). Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes. Chemosphere 148, 426–435. doi:10.1016/j.chemosphere.2016.01.055.
  • Yan, M., and Korshin, G. V. (2014). Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter. Environmental Science & Technology 48, 3177–3185. doi:10.1021/es4045314.
  • Yan, M., Korshin, G. V., and Chang, H.-S. (2014). Examination of disinfection by-product (DBP) formation in source waters: A study using log-transformed differential spectra. Water Research 50, 179–188. doi:10.1016/j.watres.2013.11.028.
  • Yan, M., Korshin, G. V., Claret, F., Croué, J.-P., Fabbricino, M., Gallard, H., Schäfer, T., and Benedetti, M. F. (2014). Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin. Water Research 59, 154–164. doi:10.1016/j.watres.2014.03.044.
  • Yan, M., Wang, D., Korshin, G. V., and Benedetti, M. F. (2013). Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra. Water Research 47, 2603–2611. doi:10.1016/j.watres.2013.02.044.
  • Yang, M., and Zhang, X. (2013). Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii. Environmental Science & Technology 47, 10868–10876. doi:10.1021/es401841t.
  • Yu, Y., and Reckhow, D. A. (2015). Kinetic analysis of haloacetonitrile stability in drinking waters. Environmental Science & Technology 49, 11028–11036. doi:10.1021/acs.est.5b02772.
  • Zhang, Z., Wang, L., and Shao, L. (2010). Study of differential UV spectroscopy on mechanism of trihalomethanes formation in drinking water treatment. In: Wuhan, China: IEEE; pp. 154–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.