611
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems

, , , &
Pages 773-805 | Received 09 Nov 2017, Accepted 12 May 2018, Published online: 15 Nov 2018

References

  • Ahmadi, M., Jorfi, S., Kujlu, R., Ghafari, S., Darvishi Cheshmeh Soltani, R., & Jaafarzadeh Haghighifard, N. (2017). A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. Journal of Environmental Management, 191, 198–208.
  • Álvarez, A., Benimeli, C. S., Saez, J. M., Giuliano, A., & Amoroso, M. J. (2015). Lindane removal using Streptomyces strains and maize plants: A biological system for reducing pesticides in soils. Plant and Soil, 395, 401–413.
  • Álvarez, A., Saez, J. M., Davila, J. S., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., … Amoroso, M. J. (2017). Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62.
  • Aparicio, J. D., Benimeli, C. S., Almeida, C. A., Polti, M. A., & Colin, V. L. (2017). Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation. Chemosphere, 181, 478–484.
  • Aparicio, J. D., Raimondo, E. M., Gil, R. A., Benimeli, C. S., & Polti, M. A. (2018). Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization. Journal of Hazardous Materials, 342, 408–417.
  • Aparicio, J. D., Saez, M. J., Raimondo, E. E., Benimeli, C. S., & Polti, M. A. (2018). Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. Journal of Environmental Chemical Engineering. (in press). doi.org/10.1016/j.jece.2018.03.030.
  • Aparicio, J. D., Simón, M. Z., Benimeli, C. S., Amoroso, M. J., & Polti, M. A. (2015). Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr (VI) and lindane. Ecotoxicology and Environmental Safety, 116, 34–39.
  • Benimeli, C. S., Amoroso, M. J., Chaile, A. P., & Castro, G. R. (2003). Isolation of four aquatic Streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technology, 89, 133–138.
  • Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2006). Lindane removal induction by Streptomyces sp. M7. Journal of Basic Microbiology, 46, 348–357.
  • Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2007). Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. International Biodeterioration & Biodegradation, 59, 148–155.
  • Benimeli, C. S., Fuentes, M. S., Abate, C. M., & Amoroso, M. J. (2008). Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. International Biodeterioration & Biodegradation, 61, 233–239.
  • Bourguignon, N., Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A., & Amoroso, M. J. (2014). Aerobic removal of methoxychlor by a native Streptomyces strain: Identification of intermediate metabolites. International Biodeterioration & Biodegradation, 96, 80–86.
  • Briceño, G., Fuentes, M. S., Palma, G., Jorquera, M. A., Amoroso, M. J., & Diez, M. C. (2012). Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. International Biodeterioration & Biodegradation, 73, 1–7.
  • Briceño, G., Fuentes, M. S., Rubilar, O., Jorquera, M., Tortella, G., Palma, G., Amoroso, M. J., & Diez, M. C. (2015). Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. Journal of Basic Microbiology, 55, 293–302.
  • Briceño, G., Palma, G., & Duran, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environment, Science and Technology, 37, 233–271.
  • Briceño, G., Pizzul, L., & Diez, M. C. (2013). Biodegradation of pesticides by Actinobacteria and their possible application in biobed systems. In M. J. Amoroso, C. S. Benimeli, & S. A. Cuozzo (Eds.), Actinobacteria: Application in bioremediation and production of industrial enzymes (pp. 165–191). Boca Raton, FL: CRC Press.
  • Briceño, G., Schalchli, H., Mutis, A., Benimeli, C. S., Palma, G., Tortella, G. R., & Diez, M. C. (2016). Use of pure and mixed culture of diazinon-degrading Streptomyces to remove other organophosphorus pesticides. International Biodeterioration & Biodegradation, 114, 193–201.
  • Briceño, G., Schalchli, H., Rubilar, O., Tortella, G. R., Mutis, A., Benimeli, C. S., Palma, G., & Diez, M. C. (2016). Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere, 156, 195–203.
  • Briceño, G., Tortella, G., Rubilar, O., Palma, G., & Diez, M. C. (2014). Advances in Chile for the treatment of pesticide residues: Biobeds technology. In A. Alvarez & M.A. Polti (Eds.), Bioremediation in Latin America Current Research and Perspectives (pp. 53–68). New York: Springer.
  • Briceño, G., Vergara, K., Schalchli, H., Palma, G., Tortella, G., Fuentes, M. S., & Diez, M. C. (2017). Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. Environmental Science and Pollution Research. Jul 26. doi:10.1007/s11356-017-9790-y.
  • Čadková, E., Komárek, M., Kaliszová, R., Vaněk, A., & Balíková, M. (2013). Tebuconazole sorption in contrasting soil types. Soil and Sediment Contamination, 22, 404–414.
  • Campos, M., Perruchon, C., Karas, P. A., Karavasilis, D., Diez, M. C., & Karpouzas, D. G. (2017). Bioaugmentation and rhizosphere-assisted biodegradation as strategies for optimization of the dissipation capacity of biobeds. Journal of Environmental Management, 187, 103–110.
  • Castillo, M. A., Felis, N., Aragón, P., Cuesta, G., & Sabater, C. (2006). Biodegradation of the herbicide diuron by Streptomycetes isolated from soil. International Biodeterioration & Biodegradation, 58, 196–202.
  • Castillo, M. P., & Tortensson, L. (2007). Effect of biobed composition, moisture, and temperature on the degradation of pesticides. Journal of Agricultural and Food Chemistry, 55, 5725–5733.
  • Castillo, M. P., Torstensson, L., & Stenstrom, J. (2008). Biobeds for environmental protection from pesticide use: A review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.
  • Chen, S., Geng, P., Xiao, Y., & Hu, M. (2012). Bioremediation of β -cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology and Biotechnology, 94, 505–515.
  • Chen, S., Hu, M., Liu, J., Zhong, G., Yang, L., Rizwan-ul-haq, M., & Han, H. (2011). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials, 187, 433–440.
  • Chen, S., Lai, K., Li, Y., Hu, M., Zhang, Y., & Zeng, Y. (2011). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90, 1471–1483.
  • Chen, S., Lin, Q., Xiao, Y., Deng, Y., Chang, C., Zhong, G., Hu, M., & Zhang, L. H. (2013). Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. Plos One, 8, 1–9.
  • Chen, S., Luo, J., Hu, M., Lai, K., Geng, P., & Huang, H. (2012). Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology, 110, 97–104.
  • Chin-Pampillo, J. S., Carazo-Rojas, E., Pérez-Rojas, G., Castro-Gutiérrez, V., & Rodríguez-Rodríguez C. E. (2015). Accelerated biodegradation of selected nematicides in tropical crop soils from Costa Rica. Environmental Science and Pollution Research International, 22, 1240–1249.
  • Christodoulatos, C., & Koutsospyros, A. (1998). Bioslurry reactors. In G. A. Lewandowsky & L. J. DeFilippi (Eds.), Biological treatment of hazardous wastes (pp. 69–103). New York: John Wiley & Sons, Inc.
  • Chu, X., Fang, H., Pan, X., Wang, X., Shan, M., Feng, B., & Yu, Y. (2008). Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. Journal of Environmental Sciences, 204, 464–469.
  • Cuozzo, S. A., Fuentes, M. S., Bourguignon, N., Benimeli, C. S., & Amoroso, M. J. (2012). Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. International Biodeterioration & Biodegradation, 66, 19–24.
  • Cuozzo, S. A., Rollán, G. G., Abate, C. M., & Amoroso, M. J. (2009). Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World Journal of Microbiology and Biotechnology, 25, 1539–1546.
  • Cycón, M., Mrozik, A., & Piotrowska-Seget, Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere, 172, 52–71.
  • De Schrijver, A., & De Mot, R. (1999). Degradation of pesticides by actinomycetes. Critical Reviews in Microbiology, 25, 85–119.
  • Delille, D., Coulon, F., & Pelletier, E. (2004). Effects of temperature warming during a bioremediation study of natural and nutrient amended hydrocarbon-contaminated sub-Antarctic soils. Cold Regions Science and Technology, 40, 61–70.
  • Ding, M. Z., Song, H., Wang, E. X., Liu, Y., & Yuan, Y. J. (2016). Design and construction of synthetic microbial consortia in China. Synthetic and Systems Biotechnology, 1, 230–235.
  • Dzionek, A., Wojcieszy, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36.
  • Ensign, J. C. (1978). Formation, properties, and germination of actinomycete spores. Annual Review of Microbiology, 32, 185–219.
  • Fadullon, F. S., Karns, J. S., & Torrents, A. (1998). Degradation of atrazine in soil by Streptomyces. J. Environ. Sci. Health, B. 33, 37–49.
  • Finger, R., Möhring, N., Dalhaus, T., & Böcker, T. (2017). Revisiting Pesticide Taxation Schemes. Ecological Economics, 134, 263–266.
  • Fosu-Mensah, B. Y., Okoffo, E. D., Darko, G., & Gordon, C. (2016). Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environmental Systems Research, 2016, 5–10.
  • Fuentes, M. S., Alvarez, A., Saez, J.M., Benimeli, C. S., & Amoroso, M. J. (2014). Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. International Journal of Environmental Science and Technology, 11, 1147–1156.
  • Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A., & Amoroso, M. J. (2010). Isolation of pesticide degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. International Biodeterioration & Biodegradation, 64, 434–441.
  • Fuentes, M. S., Briceño, G. E., Saez, J. M., Benimeli, C. S., Diez, M. C., & Amoroso, M. J. (2013). Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Research International, 2013, 1–9.
  • Fuentes, M. S., Raimondo, E. E., Amoroso, M. J., & Benimeli, C. S. (2017). Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere, 173, 359–367.
  • Fuentes, M. S., Sáez, J. M., Benimeli, C. S., & Amoroso, M. J. (2011). Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water, Air, & Soil Pollution, 222, 217–231.
  • Ghaly A. E., & Dave, D. (2012). Kinetics of biological treatment of low level pesticide wastewater. American Journal of Environmental Sciences, 8, 424–432.
  • Gupta, S., Pathak, B., & Fulecar, M. H. (2015). Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: A review. Reviews in Environmental Science and Bio/Technology, 14, 241–269.
  • Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: Engineering and application of microbial symbioses. Current Opinion in Biotechnology, 36, 40–49.
  • Hu, J., Xue, Y., Guo, H., Gao, M., Li, J., Zhang, S., & Tsang, Y. F. (2017). Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity. Bioresource Technology, 227, 247–255.
  • Jayabarath, J., Musfira, S. A., Giridhar, R., Shyam sundar, S., & Arulmurugan, R. (2010). Biodegradation of carbofuran pesticide by saline soil actinomycetes. International Journal of Biochemistry and Biotechnology, 6, 187–192.
  • Kah, M., & Brown, C.D. (2006). Adsorption of ionizable pesticides in soils. Reviews of Environmental Contamination and Toxicology, 188, 149–217.
  • Kämpfer, P. (2012). Genus I. Streptomyces. In K. Goodfellow, T. Busse, & L. W. Suzuki (Eds.), Bergey´s manual of systematic bacteriology, 2nd edn, vol. 5, The Actinobacteria Part A (pp. 1455–1767). New York: Springer.
  • Kandasamy, S., Muthusamy, G., Thangaswamy, S., & Senthilkumar, B. (2012). Screening and identification of antibiotic producing actinomycetes and their antagonistic activity against common pathogens. World Research Journal of Antimicrobial Agents, 1, 7–10.
  • Karagouni, A. D., Vionis, A. P., Baker, P. W., & Wellington, E. M. H. (1993). The effect of soil moisture content on spore germination, mycelium development and survival of a seeded Streptomycete in soil. Microbiology Releases, 2, 47–51.
  • Karas, P. A., Perruchon, C., Karanasios, E., Papadopoulou, E. S., Manthou, E., Sitra, S., Ehaliotis, C., & Karpouzas, D. G. (2016). Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: Bioaugmentation, risk assessment and optimized management. Journal of Hazardous Materials, 320, 635–644.
  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 1–11.
  • Kensa V.M. (2011). Bioremediation: An overview. Indian Pollution Control, 27, 161–168.
  • Köck-schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458–460, 466–476.
  • Kodešová, R., Kočárek, M., Kodeš, V., Drábek, O., Kozák, J., & Hejtmánková, K. (2011). Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186, 540–550.
  • Kurzbaum, E., Raizner, Y., Cohen, O., Suckeveriene, R. Y., Kulikov, A., Hakimi, B., … Menashe, O. (2017). Encapsulated Pseudomonas putida for phenol biodegradation: Use of a structural membrane for construction of a well-organized confined particle. Water Research, 121, 37–45.
  • Lin, Q. S., Chen, S. H., Hu, M. Y., Haq, M. R., Yang, L., & Li, H. (2011). Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science and Technology, 8, 45–56.
  • Ludwig, W., & Klenk, H. P. (2005). Overview: A phylogenetic backbone and taxonomic framework for procaryotic systematics. In K. Brenner, & G. Staley (Eds.), Bergey´s manual of systematic bacteriology, 2nd edn, vol. 2, The Proteobacteria Part A, introductory essays (pp. 49–65). New York: Springer.
  • Martins, C. S., Martins, C. M., Guedes, M. L., & Santaella, S. T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12, 4412–4418.
  • Mayfield, C. I., Williams, S. T., Ruddick, S. M., & Hatfield, H. L. (1972). Studies on the ecology of actinomycetes in soil. IV Observations on the form and growth of streptomycetes in soil. Soil Biology and Biochemistry, 4, 79–91.
  • Monsalvo, V. M., Garcia-Mancha, N., Puyol, D., Mohedano, A. F., & Rodriguez, J. J. (2014). Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Science and Technology, 69, 532–538.
  • Morillo, E., & Villaverde, J. (2017). Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586, 576–597.
  • Mueller, J. G., Lantz, S. E., Blattman, B. O., & Chapman, P. J. (1991). Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol and creosote contaminated materials: Slurry-phase bioremediation. Environmental Science & Technology, 25, 1045–1055.
  • Naveena, B., Annalakshmi, G., & Partha, N. (2013). An efficacious degradation of pesticide by salt tolerant Streptomyces venezuelae ACT 1. Bioresource Technology, 132, 378–382.
  • Odukkathil, G., & Vasudevan, N. (2016). Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. Journal of Environmental Management, 165, 72–80.
  • Okoro, C. K., Brown, R., Jones, A. L., Andrews, B. A., Asenjo, J. A., Goodfellow, M., & Bull, A. T. (2009). Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie van Leeuwenhoek, 95, 121–33.
  • Pathom-Aree, W., Stach, J. E., Ward, A. C., Horikoshi, K., Bull, A. T., & Goodfellow, M. (2006). Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles, 10, 181–189.
  • Pavlostathis, S. G., Prytula, M. T., & Yeh, D. H. (2003). Potential and limitations of microbial reductive dechlorination for bioremediation applications. Water, Air, & Soil Pollution, 3, 117–129.
  • Pogell, B. (1996). Bioremediation of pesticides and herbicides by streptomycetes. In M. Moo-Young, W. A. Anderson, & A. M. Chakrabarty (Eds.), Environmental biotechnology: Principles and applications (pp. 38–46). London: Springer-Science + Business Media.
  • Polti, M., Aparicio, J. D., Benimeli, C. S., & Amoroso, M. J. (2014). Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. International Biodeterioration & Biodegradation, 88, 48–55.
  • Pozo, K., Llanos, Y., Estellano, V. H., Cortés, S., Jorquera, H., Gerli, L., … Focardi, S. (2016). Occurrence of chlorpyrifos in the atmosphere of the Araucanía Region in Chile using polyurethane foam-based passive air samplers. Atmospheric Pollution Research, 7, 706–710.
  • Pradeep, V., & Malavalli, U. (2016). Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan. 3 Biotech, 6, 124.
  • Qu, J., Xu, Y., Ai, G., Liu, Y., & Liu, Z. (2015). Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Journal of Environmental Management, 161, 350–357.
  • Rahmansyah, M., Agustiyani, D., Heddy, J., & Dewi, T. K. (2012). Growth and adaptation of four Streptomyces isolates in the media containing propoxur. ARPN: Journal of Agricultural and Biological Science, 7, 773–781.
  • Rama Krishna, K., & Philip, L. (2008). Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. Journal of Hazardous Materials, 160, 559–567.
  • Rama Krishna, K., & Philip, L. (2011). Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide enriched cultures. Applied Biochemistry and Biotechnology, 164, 1257–1277.
  • Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 7, 5.
  • Robles-González, I. V., Ríos-Leal, E., Sastre-Conde, I., Fava, F., Rinderknecht-Seijas, N., & Poggi-Varaldo, H. M. (2012). Slurry bioreactors with simultaneous electron acceptors for bioremediation of an agricultural soil polluted with lindane. Process Biochemistry, 47, 1640–1648.
  • Saez, J. M., Alvarez, A., Benimeli, C. S., & Amoroso, M. J. (2014). Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration & Biodegradation, 93, 63–69.
  • Saez, J. M., Aparicio, J. D., Amoroso, M. J., & Benimeli, C. S. (2015). Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochemistry, 50, 1923–1933.
  • Saez, J. M., Benimeli, C. S., & Amoroso, M. J. (2012). Lindane removal by pure and mixed cultures of immobilized actinobacteria. Chemosphere, 89, 982–987.
  • Saez, J. M., Bigliardo, A. L., Raimondo, E. E., Briceño, G. E., Poltia, M. A., & Benimeli, C. S. (2018). Lindane dissipation in a biomixture: Effect of soil properties and bioaugmentation. Ecotoxicology and Environmental Safety, 156, 97–105.
  • Saez, J. M., Garcia, V. C., & Benimeli, C. S. (2017). Improvement of lindane removal by Streptomyces sp. M7 by using stable microelulsions. Ecotoxicology and Environmental Safety, 144, 351–359.
  • Sambasiva Rao, K. R., Tripathy, N. K., Mahalaxmi, Y., & Prakasham, R. S. (2012). Laccase- and peroxidase-free tyrosinase production by isolated microbial strain. Journal of Microbiology and Biotechnology, 22, 207–214.
  • Schütze, E., Klose, M., Merten, D., Nietzsche, S., Senftleben, D., Roth, M., & Kothe, E. (2014). Growth of streptomycetes in soil and their impact on bioremediation. Journal of Hazardous Materials, 267, 128–135.
  • Sette, L. D., de Oliveira, V. M., & Manfio, G. P. (2005). Isolation and characterization of alachlor-degrading actinomycetes from soil. Antonie van Leeuwenhoek, 87, 81–89.
  • Sette, L. D., Mendonça Alves da Costa, L. A., Marsaioli, A. J., & Manfio, G. P. (2004). Biodegradation of alachlor by soil streptomycetes. Applied Microbiology and Biotechnology, 64, 712–717.
  • Shelton, D. R., Khader, S., Karns, J. S., & Pogell, B. M. (1996). Metabolism of twelve herbicides by Streptomyces. Biodegradation, 7, 129–136.
  • Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Frontiers in Microbiology, 6, 1–29.
  • Singh, B. (2009). Organophosphorus-degrading bacteria: Ecology and industrial applications. Nature Reviews Microbiology, 7, 153–164.
  • Solecka, J., Zajko, J., Postek, M., & Rajnisz, A. (2012). Biologically active secondary metabolities from actinomycetes. Cent. European Journal of Biology 7, 373–390.
  • Storck, V., Karpouzas, D. G., & Martin-Laurent, F. (2017). Towards a better pesticide policy for the European Union. Science of the Total Environment 575, 1027–1033.
  • Troy, M. A. (1994). Bioengineering of soils and ground waters. In K. H. Baker, D. S. Herson (Eds.), Bioremediation. New York: McGraw-Hill, Book Co.
  • Venkata Mohan, S., Ohkuma, T., Kisa, T., Kanalya, R., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and BioTechnology, 5, 347–374.
  • Venkata Mohan, S., Shailaja, S., Rama Krishna, M., Reddy, K. B., & Sarma P. N. (2006). Bioslurry phase degradation of DEP contaminated soil in periodic discontinuous mode operation: Influence of augmentation and substrate partition. Process Biochemistry, 41, 644–652.
  • Venkata Mohan, S., Sirisha, K., Sarma, P. N., & Reddy, S. J. (2004). Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: Bioprocess monitoring. Journal of Hazardous Materials, 116, 39–48.
  • Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & van Sinderen, D. (2007). Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 71, 495–548.
  • Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A-state-of-art. Reviews in Environmental Science and Biotechnology, 13, 429–466.
  • Vischetti, C., Coppola, L., Monaci, E., Cardinali, A., & Castillo, M. P. (2007). Microbial impact of the pesticide chlorpyrifos in Swedish and Italian biobeds. Agronomy for Sustainable Development, 27, 267–272.
  • Yadav, M., Srivastva, N., Sharan, R., Nath, S., & Kumar, S. (2014). Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresource Technology, 165, 265–269.
  • Yu, R., Liu, Q., Liu, J., Wang, Q., & Wang, Y. (2016). Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control, 60, 353–360.
  • Zaborina, O., Baskunov, B., Baryshnikova, L., & Golovleva, L. (1997). Degradation of pentachlorophenol in soil by Streptomyces rochei 303. Journal of Environmental Science and Health, Part B, 32, 55–70.
  • Zafra, G., Absalón, Á. E., Anducho-Reyes, M. A., Fernandez, F. J., & Cortés-Espinosa, D. V. (2017). Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere, 172, 120–126.
  • Zhang, C., Wang, S. H., & Yan, Y. C. (2011). Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresource Technology, 102, 7139–7146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.