1,459
Views
58
CrossRef citations to date
0
Altmetric
Reviews

Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review

, , , & ORCID Icon
Pages 1127-1164 | Received 25 Feb 2018, Accepted 20 Aug 2018, Published online: 05 Nov 2018

References

  • Alemayehu, E., & Lennartz, B. (2009). Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169(1–3), 395–401.
  • An, M. I., Zhang, X., Yang, T., Chen, M., & Wang, J. (2012). Uptake and speciation of inorganic arsenic with cellulose fibre coated with yttrium hydroxide layer as a novel green sorbent. Chinese Journal of Chemistry, 30(9), 2225–2231.
  • Anawar, H., Akai, J., Mostofa, K., Safiullah, S., & Tareq, S. (2002). Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Environment International, 27(7), 597–604.
  • Anderson, M. A., Ferguson, J. F., & Gavis, J. (1976). Arsenate adsorption on amorphous aluminum hydroxide. Journal of Colloid and Interface Science, 54(3), 391–399.
  • Asere, T. G., Verbeken, K., Tessema, D. A., Fufa, F., Stevens, C. V., & Du, L. G. (2017). Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environmental Science and Pollution Research International, 24(25), 20446–20458.
  • Babaeivelni, K., Khodadoust, A. P., & Bogdan, D. (2014). Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength. Journal of Environmental Science & Health Part A, 49(13), 1462–1473.
  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.
  • Barkam, S., Ortiz, J., Saraf, S., Eliason, N., Mccormack, R., Das, S., … Hanson, C. (2017). Modulating the catalytic activity of cerium oxide nanoparticles with the anion of the precursor salt. The Journal of Physical Chemistry C, 121(36), 20039.
  • Basu, T., & Ghosh, U. C. (2013). Nano-structured iron(III)–cerium(IV) mixed oxide: Synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment. Applied Surface Science, 283, 471–481.
  • Bhattacharya, S., Gupta, K., & Ghosh, U. C. (2017). Synthesis, characterization and trivalent arsenic sorption potential of Ce-Al nanostructured mixed oxide. IOP Conference Series: Materials Science and Engineering, 188, 012003.
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), 114–131.
  • Biswas, B. K., Inoue, K., Ghimire, K. N., Kawakita, H., Ohto, K., & Harada, H. (2008). Effective removal of arsenic with lanthanum(III)- and cerium(III)-loaded orange waste gels. Separation Science & Technology, 43(8), 2144–2165.
  • Breck, D. W. (1974). Zeolite molecular sieves: Structure, chemistry, and use. New York: Wiley.
  • Chen, C.-C., Do, J.-S., & Gu, Y. (2009). Immobilization of HRP in mesoporous silica and its application for the construction of polyaniline modified hydrogen peroxide biosensor. Sensors, 9(6), 4635–4648.
  • Cheng, W., Zhang, W., Hu, L., Ding, W., Wu, F., & Li, J. (2016). Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water. RSC Advances, 6(19), 15900–15910.
  • Chen, G., Xu, C., Song, X., Xu, S., Ding, Y., & Sun, S. (2008). Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes. Crystal. Growth and Design, 8(12), 4449–4453.
  • Chen, B., Zhu, Z., Guo, Y., Qiu, Y., & Zhao, J. (2013). Facile synthesis of mesoporous Ce–Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. Journal of Colloid and Interface Science, 398, 142–151.
  • Chen, B., Zhu, Z., Liu, S., Hong, J., Ma, J., Qiu, Y., & Chen, J. (2014a). Facile hydrothermal synthesis of nanostructured hollow iron–cerium alkoxides and their superior arsenic adsorption performance. ACS Applied Materials & Interfaces, 6(16), 14016–14025.
  • Chen, B., Zhu, Z., Hong, J., Wen, Z., Ma, J., Qiu, Y., & Chen, J. (2014b). Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As(V) and Cr(VI) removal from aqueous solutions. Dalton Transactions, 43(28), 10767–10777.
  • Chen, B., Zhu, Z., Ma, J., Qiu, Y., & Chen, J. (2013). Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry A, 1(37), 11355–11367.
  • Chong, S., Holmstrom, D., Li, Q., & Tong, O. (2009). Preparation and evaluation of a Ce (IV)-La (III) binary hydroxide adsorbent as recovery of waste ceria powder from glass polishing process for effective arsenic removal. Vatten, 65, 193–200.
  • Cotton, S. (2013). Lanthanide and actinide chemistry. Chichester, UK: John Wiley & Sons.
  • Cotton, S. A. (1994). Scandium, Yttrium & the Lanthanides: Inorganic & Coordination Chemistry. Encyclopedia of inorganic chemistry, Chichester, UK: John Wiley & Sons.
  • Deng, S., Li, Z., Huang, J., & Yu, G. (2010). Preparation, characterization and application of a Ce–Ti oxide adsorbent for enhanced removal of arsenate from water. Journal of Hazardous Materials, 179(1–3), 1014–1021.
  • Deng, H., & Yu, X. (2012). Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chemical Engineering Journal, 184, 205–212.
  • Fang, Y. P., Xu, A. W., You, L. P., Song, R. Q., Yu, J. C., Zhang, H. X., … Liu, H. Q. (2003). Hydrothermal synthesis of Rare Earth (TB, Y) hydroxide and oxide nanotubes. Advanced Functional Materials, 13, 955–960.
  • Feng, Q., Zhang, Z., Ma, Y., He, X., Zhao, Y., & Chai, Z. (2012). Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Research Letters, 7(1), 84.
  • Giles, D. E., Mohapatra, M., Issa, T. B., Anand, S., & Singh, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 92(12), 3011–3022.
  • Gojny, F. H., Wichmann, M. H., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1525–1535.
  • Gregg, S. J., Sing, K. S. W., & Salzberg, H. (1967). Adsorption surface area and porosity. Journal of the Electrochemical Society, 114(11), 279C.
  • Gschneider, K. A. (1966). Rare earths: the fraternal fifteen, Oak Ridge. Tennessee, US: United States Atomic Energy Commission, Division of Technical Information.
  • Guo, Y., Zhu, Z., Qiu, Y., & Zhao, J. (2012). Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions. Journal of Hazardous Materials, 239–240, 279–288.
  • Gupta, K., Bhattacharya, S., Chattopadhyay, D., Mukhopadhyay, A., Biswas, H., Dutta, J., … Ghosh, U. C. (2011). Ceria associated manganese oxide nanoparticles: Synthesis, characterization and arsenic(V) sorption behavior. Chemical Engineering Journal, 172(1), 219–229.
  • Gupta, A., Das, S., Neal, C. J., & Seal, S. (2016). Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. Journal of Materials Chemistry B, 4(19), 3195–3202.
  • Hall, A. H. (2002). Chronic arsenic poisoning. Toxicology Letters, 128(1–3), 69–72.
  • Haron, M. J., Ab Rahim, F., Abdullah, A. H., Hussein, M. Z., & Kassim, A. (2008). Sorption removal of arsenic by cerium-exchanged zeolite P. Materials Science and Engineering: B, 149(2), 204–208.
  • Haron, M. J., Masdan, S. A., Hussein, M. Z., Zainal, Z., & Kassim, A. (2007). Kinetics and thermodynamic for sorption of arsenate by lanthanum-exchanged zeolite. The Malaysian Journal of Analytical Sciences, 15, 219–228.
  • He, Z., Tian, S., & Ning, P. (2012). Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. Journal of Rare Earths, 30(6), 563–572.
  • Hirano, M., & Kato, E. (1996). The hydrothermal synthesis of ultrafine cenum(IV) oxide powders. Journal of Materials Science Letters, 15(14), 1249–1250.
  • Hui, B., Zhang, Y., & Ye, L. (2015). Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb (II) removal. Journal of Industrial and Engineering Chemistry, 21, 868–876.
  • Inoue, M., Kimura, M., & Inui, T. (1999). Transparent colloidal solution of 2 nm ceria particles. Chemical Communications, 11(11), 957–958.
  • Jais, F. M., Ibrahim, S., Yoon, Y., & Jang, M. (2016). Enhanced arsenate removal by lanthanum and nano–magnetite composite incorporated palm shell waste–based activated carbon. Separation and Purification Technology, 169, 93–102.
  • Jang, M., Park, J. K., & Shin, E. W. (2004). Lanthanum functionalized highly ordered mesoporous media: Implications of arsenate removal. Microporous and Mesoporous Materials, 75(1–2), 159–168.
  • Jayakumar, R., Nwe, N., Tokura, S., & Tamura, H. (2007). Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40(3), 175–181.
  • Jennifer, L. M. R., Drobek, T., Rossi, A., & Gauckler, L. J. (2007). Chemical analysis of spray pyrolysis gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells. Chemistry of Materials, 19(5), 1134–1142.
  • Jiao, F., Harrison, A., Jumas, J.-C., Chadwick, A. V., Kockelmann, W., & Bruce, P. G. (2006). Ordered mesoporous Fe2O3 with crystalline walls. Journal of the American Chemical Society, 128(16), 5468–5474.
  • Jomekian, A., Pakizeh, M., Shafiee, A. R., & Mansoori, S. A. A. (2011). Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS. Separation and Purification Technology, 80(3), 556–565.
  • Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning–a review. Journal of Environmental Science and Health Part A, 41(10), 2399–2428.
  • Kesraoui-Ouki, S., Cheeseman, C. R., & Perry, R. (1994). Natural zeolite utilisation in pollution control: A review of applications to metals' effluents. Journal of Chemical Technology and Biotechnology, 59(2), 121–126.
  • Kim, J., & Benjamin, M. M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38(8), 2053–2062.
  • Krishna, B., Murty, D., & Prakash, B. J. (2000). Thermodynamics of chromium (VI) anionic species sorption onto surfactant-modified montmorillonite clay. Journal of Colloid and Interface Science, 229(1), 230–236.
  • Lee, H., & Choi, W. (2002). Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environmental Science & Technology, 36(17), 3872–3878.
  • Lee, S.-H., Kim, K.-W., Lee, B.-T., Bang, S., Kim, H., Kang, H., & Jang, A. (2015). Enhanced arsenate removal performance in aqueous solution by yttrium-based adsorbents. International Journal of Environmental Research and Public Health, 12(10), 13523–13541.
  • Li, Z., Deng, S., Yu, G., Huang, J., & Lim, V. C. (2010). As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chemical Engineering Journal, 161(1–2), 106–113.
  • Li, Y., Ding, J., Chen, J., Xu, C., Wei, B., Liang, J., & Wu, D. (2002). Preparation of ceria nanoparticles supported on carbon nanotubes. Materials Research Bulletin, 37(2), 313–318.
  • Li, R., Li, Q., Gao, S., & Shang, J. K. (2012). Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism. Chemical Engineering Journal, 185–186, 127–135.
  • Lin, S.-H., & Juang, R.-S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), 315–326.
  • Lin, S.-H., & Juang, R.-S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management, 90(3), 1336–1349.
  • Mazumder, D. N. G., Haque, R., Ghosh, N., De Binay, K., Santra, A., Chakraborty, D., & Smith, A. H. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27(5), 871–877.
  • Miao, Q., Xiong, G., Sheng, S., Cui, W., Xu, L., & Guo, X. (1997). Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Applied Catalysis A: General, 154(1–2), 17–27.
  • Moeller, T., & Ferrus, R. (1961). Observations on the rare earths—LXXIII the heat and entropy of formation of the 1: 1 chelates of N-hydroxyethylethylenediaminetriacetic acid with the tripositive cations. Journal of Inorganic and Nuclear Chemistry, 20(3–4), 261–273.
  • Nath, B. K., Chaliha, C., Kalita, E., & Kalita, M. C. (2016). Synthesis and characterization of ZnO:CeO2: nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydrate Polymers, 148, 397–405.
  • Ou, E., Zhou, J., Mao, S., Wang, J., Xia, F., & Min, L. (2007). Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1–3), 47–53.
  • Paulenova, A., Creager, S. E., Navratil, J., & Wei, Y. (2002). Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. Journal of Power Sources, 109(2), 431–438.
  • Pearson, R. G. (1990). Hard and soft acids and bases—the evolution of a chemical concept. Coordination Chemistry Reviews, 100, 403–425.
  • Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y., & Tian, B. (2005). Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 59(4), 399–403.
  • Planeix, J., Coustel, N., Coq, B., Brotons, V., Kumbhar, P., Dutartre, R., … Ajayan, P. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis. Journal of the American Chemical Society, 116(17), 7935–7936.
  • Pu, H., Huang, J. & Jiang, Z. (2008). Removal of Arsenic (V) from Aqueous Solutions by Lanthanum – loaded Zeolite. Acta Geologica Sinica (English Edition) 82, 1015–1019.
  • Pramanik, M., Srivastava, S., Samantaray, B., & Bhowmick, A. (2001). Preparation and properties of ethylene vinyl acetate-clay hybrids. Journal of Materials Science Letters, 20(15), 1377–1380.
  • Rahman, M. A., Rahman, M. A., Samad, A., & Alam, A. M. (2008). Removal of arsenic with oyster shell: Experimental measurements. Pakistan Journal of Analytical & Environmental Chemistry, 9, 69–77.
  • Raichur, A., & Panvekar, V. (2002). Removal of As (V) by adsorption onto mixed rare earth oxides. Separation Science and Technology, 37(5), 1095–1108.
  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: A global synthesis. Malden, Mass, US: John Wiley & Sons.
  • Sabbatini, P., Yrazu, F., Rossi, F., Thern, G., Marajofsky, A., & Fidalgo de Cortalezzi, M. M. (2010). Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Water Research, 44(19), 5702–5712.
  • Sahu, U. K., Sahu, M. K., Mohapatra, S. S., & Patel, R. K. (2016). Removal of As (V) from aqueous solution by Ce-Fe bimetal mixed oxide. Journal of Environmental Chemical Engineering, 4(3), 2892–2899.
  • Sakthivel, T., Das, S., Kumar, A., Reid, D. L., Gupta, A., Sayle, D. C., & Seal, S. (2013). Morphological phase diagram of biocatalytically active ceria nanostructures as a function of processing variables and their properties. Chempluschem, 78(12), 1446–1455.
  • Sakthivel, T. S., Das, S., Pratt, C. J., & Seal, S. (2017). One-pot synthesis of a ceria-graphene oxide composite for the efficient removal of arsenic species. Nanoscale, 9(10), 3367–3374.
  • Sawana, R., Somasundar, Y., Iyer, V. S., & Baruwati, B. (2017). Ceria modified activated carbon: An efficient arsenic removal adsorbent for drinking water purification. Applied Water Science, 7(3), 1223–1230.
  • Seida, Y., & Izumi, Y. (2005). Synthesis of clay–cerium hydroxide conjugates for the adsorption of arsenic. Adsorption Science & Technology, 23(8), 607–618.
  • Sen, I. S., & Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the earth’s surface. Environmental Science & Technology, 46(16), 8601–8609.
  • Shao, W., Li, X., Cao, Q., Luo, F., Li, J., & Du, Y. (2008). Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy, 91(1–4), 138–143.
  • Sharma, R., Singh, N., Gupta, A., Tiwari, S., Tiwari, S. K., & Dhakate, S. R. (2014). Electrospun chitosan-polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. Journal of Materials Chemistry A, 2(39), 16669–16677.
  • Shukla, D. P., Dubey, C. S., Singh, N. P., Tajbakhsh, M., & Chaudhry, M. (2010). Sources and controls of Arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology, 395(1–2), 49–66.
  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. The Science of the Total Environment, 409(12), 2430–2442.
  • Sun, W., Li, Q., Gao, S., & Shang, J. K. (2012). Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part B. Integration with silica monoliths and dynamic treatment. Chemical Engineering Journal, 185–186, 136–143.
  • Sun, C., Li, H., Zhang, H., Wang, Z., & Chen, L. (2005). Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 16(9), 1454.
  • Taniguchi, T., Watanabe, T., Sakamoto, N., Matsushita, N., & Yoshimura, M. (2008). Aqueous route to size-controlled and doped organophilic ceria nanocrystals. Crystal Growth and Design, 8(10), 3725–3730.
  • Tokunaga, S., Wasay, S. A., & Park, S.-W. (1997). Removal of arsenic (V) ion from aqueous solutions by lanthanum compounds. Water Science and Technology, 35(7), 71–78.
  • Vinu, A., Murugesan, V., & Hartmann, M. (2004). Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: Influence of pH and aluminum incorporation. The Journal of Physical Chemistry B, 108(22), 7323–7330.
  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101(14), 5070–5075.
  • Wang, H.-J., Gong, W.-X., Liu, R.-P., Liu, H.-J., & Qu, J.-H. (2011). Treatment of high arsenic content wastewater by a combined physical–chemical process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 379(1–3), 116–120.
  • Wang, Y.-J., Ji, F., Wang, W., Yuan, S.-J., & Hu, Z.-H. (2015). Removal of roxarsone from aqueous solution by Fe/La-modified montmorillonite. Desalination and Water Treatment, 57(43), 1–14.
  • Wang, C., Lee, M., Liu, X., Wang, B., Chen, J. P., & Li, K. (2016). Metal-organic framework/α-alumina composite with novel geometry for enhanced adsorptive separation. Chemical Communications, 52(57), 8869.
  • Wang, C., Liu, X., Chen, J. P., & Li, K. (2015). Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports, 5(1), 16613.
  • Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. The Science of the Total Environment, 366(2–3), 701–721.
  • Wang, Y., Wang, J.-H., & Fang, Z.-L. (2005). Octadecyl immobilized surface for precipitate collection with a renewable microcolumn in a lab-on-valve coupled to an electrothermal atomic absorption spectrometer for ultratrace cadmium determination. Analytical Chemistry, 77(16), 5396–5401.
  • Wasay, S., Haran, M. J., & Tokunaga, S. (1996). Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environment Research, 68(3), 295–300.
  • Wasay, S. A., Tokunaga, S., & Park, S-W. (1996). Removal of hazardous anions from aqueous solutions by La (lll)-and Y (lll)-lmpregnated alumina. Separation Science and Technology, 31(10), 1501–1514.
  • Wei, Y.-T., Zheng, Y.-M., & Paul Chen, J. (2011). Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. Journal of Colloid and Interface Science, 356(1), 234–239.
  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97–110.
  • Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862–3875.
  • Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research, 35(3), 613–618.
  • Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., & Cheng, H.-M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107–131.
  • Xiao, H., Ai, Z., & Zhang, L. (2009). Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. The Journal of Physical Chemistry C, 113(38), 16625–16630.
  • Xu, P., Yang, J., Wang, K., Zhou, Z., & Shen, P. (2012). Porous graphene: Properties, preparation, and potential applications. Chinese Science Bulletin, 57(23), 2948–2955.
  • Yan, L., Tu, H., Chan, T., & Jing, C. (2017). Mechanistic study of simultaneous arsenic and fluoride removal using granular TiO2-La adsorbent. Chemical Engineering Journal, 313, 983.
  • Yin, H., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., … Tang, Z. (2013). Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water. Advanced Materials, 25(43), 6270–6276.
  • Yu, Y., & Chen, J. P. (2014). Fabrication and performance of a Mn-La metal composite for remarkable decontamination of fluoride. Journal of Materials Chemistry A, 2(21), 8086–8093.
  • Yu, Q., Deng, S., & Yu, G. (2008). Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research, 42(12), 3089–3097.
  • Yu, L., Ma, Y., Ong, C. N., Xie, J., & Liu, Y. (2015). Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Advances, 5(80), 64983–64990.
  • Yu, Y., Yu, L., & Chen, J. P. (2015). Introduction of an yttrium–manganese binary composite that has extremely high adsorption capacity for arsenate uptake in different water conditions. Industrial & Engineering Chemistry Research, 54(11), 3000–3008.
  • Yu, Y., Yu, L., Sun, M., & Chen, J. P. (2016). Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption. Journal of Colloid and Interface Science, 474, 216–222.
  • Yu, Y., Zhang, C., Yang, L., & Chen, J. P. (2017). Cerium oxide modified activated carbon as an efficient and effective adsorbent for the rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chemical Engineering Journal, 315, 630–638.
  • Yu, Y., Zhao, C., Wang, Y., Fan, W., & Luan, Z. (2013). Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures. Journal of Environmental Sciences, 25(2), 302–307.
  • Zhang, Y., Dou, X.-M., Yang, M., He, H., Jing, C.-Y., & Wu, Z.-Y. (2010). Removal of arsenate from water by using an Fe-Ce oxide adsorbent: Effects of coexistent fluoride and phosphate. Journal of Hazardous Materials, 179(1–3), 208–214.
  • Zhang, Y., Dou, X., Zhao, B., Yang, M., Takayama, T., & Kato, S. (2010). Removal of arsenic by a granular Fe–Ce oxide adsorbent: Fabrication conditions and performance. Chemical Engineering Journal, 162(1), 164–170.
  • Zhang, G., He, Z., & Xu, W. (2012). A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chemical Engineering Journal, 183, 315–324.
  • Zhang, F., Jin, Q., & Chan, S.-W. (2004). Ceria nanoparticles: Size, size distribution, and shape. Journal of Applied Physics, 95(8), 4319–4326.
  • Zhang, G., Qu, J., Liu, H., Liu, R., & Wu, R. (2007). Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research, 41(9), 1921–1928.
  • Zhang, Y., Xu, Y., Zhang, S., Zhang, Y., & Xu, Z. (2012). Study on a novel composite membrane for treatment of sewage containing oil. Desalination, 299, 63–69.
  • Zhang, Y., Yang, M., Dou, X.-M., He, H., & Wang, D.-S. (2005). Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties. Environmental Science & Technology, 39(18), 7246–7253.
  • Zhang, Y., Yang, M., & Huang, X. (2003). Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent . Chemosphere, 51(9), 945–952.
  • Zhang, X., Zhang, J., Wang, R., & Liu, Z. (2004). Cationic surfactant directed polyaniline/CNT nanocables: Synthesis, characterization, and enhanced electrical properties. Carbon, 42(8–9), 1455–1461.
  • Zhang, J., Zhao, B., & Schreiner, B. (2016). Separation hydrometallurgy of rare earth elements. Switzerland: Springer.
  • Zhang, L., Zhu, T., Liu, X., & Zhang, W. (2016). Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent. Journal of Hazardous Materials, 308, 1–10.
  • Zheng, Y.-M., Yu, L., Wu, D., & Paul Chen, J. (2012). Removal of arsenite from aqueous solution by a zirconia nanoparticle. Chemical Engineering Journal, 188, 15–22.
  • Zhong, L.-S., Hu, J.-S., Cao, A.-M., Liu, Q., Song, W.-G., & Wan, L.-J. (2007). 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chemistry of Materials, 19(7), 1648–1655.
  • Zhou, Y., & Rahaman, M. (1993). Hydrothermal synthesis and sintering of ultrafine CeO2 powders. Journal of Materials Research, 8(07), 1680–1686.
  • Zhu, H.-Y., Jiang, R., Xiao, L., & Li, W. (2010). A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. Journal of Hazardous Materials, 179(1–3), 251–257.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.