5,628
Views
236
CrossRef citations to date
0
Altmetric
Original Articles

Toxicity, monitoring and biodegradation of organophosphate pesticides: A review

, , , , & ORCID Icon
Pages 1135-1187 | Published online: 29 Jan 2019

References

  • Adelowo, F. E., Olu-Arotiowa, O. A., & Amuda, O. S. (2014). Biodegradation of glyphosate by fungi species. Advances in Bioscience and Bioengineering, 2(1), 104–118.
  • Adeyinka, A., & Pierre, L. (2018). Organophosphates. In StatPearls [Internet]. StatPearls Publishing. PMID: 29763035.
  • Adhya, T. K., Barik, S., & Sethunathan, N. (1981). Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flooded soil. Journal of Applied Bacteriology, 50(1), 167–172. doi: 10.1111/j.1365-2672.1981.tb00881.x
  • Ahmed, M. K., & Casida, J. E. (1958). Metabolism of some organophosphorus insecticides by microorganisms. Journal of Economic Entomology, 51(1), 59–63. doi: 10.1093/jee/51.1.59
  • Ahsan, N., Lee, D. G., Lee, K. W., Alam, I., Lee, S. H., Bahk, J. D., & Lee, B. H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46, 1062–1070. doi: 10.1016/j.plaphy.2008.07.002
  • Alfonso, L. F., Germán, G. V., del Carmen, P. C. M., & Hossein, G. (2017). Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan. Chemosphere, 166, 292–299. doi: 10.1016/j.chemosphere.2016.09.109
  • Al-Ghanim, K. A. (2014). Effect of cypermethrin toxicity on enzyme activities in the freshwater fish Cyprinus carpio. African Journal of Biotechnology, 13, 1169–1173. doi: 10.5897/AJB12.1724
  • Anguiano, G. A., Amador, A., Moreno‐Legorreta, M., Arcos‐Ortega, F., & Vazquez‐Boucard, C. (2010). Effects of exposure to oxamyl, carbofuran, dichlorvos, and lindane on acetylcholinesterase activity in the gills of the Pacific oyster Crassostrea gigas. Environmental toxicology, 25(4), 327–332. doi: 10.1002/tox.20491
  • Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93, 1866–1873. doi: 10.1016/j.chemosphere.2013.06.041
  • Arfarita, N., Djuhari, D., Prasetya, B., & Imai, T. (2016). The application of Trichoderma viride strain frp 3 for biodegradation of glyphosate herbicide in contaminated land. AGRIVITA Journal of Agricultural Science, 38, 275. doi: 10.17503/agrivita.v38i3.550
  • Armstrong, D. E., & Konrad, J. G. (1974). Nonbiological degradation of pesticides. Pest Soil Water, 123–131.
  • Arregui, M. C., Lenardón, A., Sanchez, D., Maitre, M. I., Scotta, R., & Enrique, S. (2004). Monitoring glyphosate residues in transgenic glyphosate‐resistant soybean. Pest Management Science, 60, 163–166. doi: 10.1002/ps.775
  • Azizullah, A., Richter, P., & Häder, D. P. (2011). Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. Chemosphere, 84, 1392–1400. doi: 10.1016/j.chemosphere.2011.04.068
  • Baarschers, W. H., & Heitland, H. S. (1986). Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. Journal of Agricultural and Food Chemistry, 34, 707–709. doi: 10.1021/jf00070a029
  • Balderacchi, M., Benoit, P., Cambier, P., Eklo, O. M., Gargini, A., Gemitzi, A., … Trevisan, M. (2013). Groundwater pollution and quality monitoring approaches at the European level. Critical Reviews in Environmental Science and Technology, 43, 323–408. 604259. doi: 10.1080/10643389.2011
  • Ballantyne, B., & Marrs, T. C. (2017). Clinical and experimental toxicology of organophosphates and carbamates. London, UK: Elsevier.
  • Balthazor, T. M., & Hallas, L. E. (1986). Glyphosate-degrading microorganisms from industrial activated sludge. Applied and Environmental Microbiology, 51, 432–434.
  • Banaee, M., Sureda, A., Mirvagefei, A. R., & Ahmadi, K. (2013). Histopathological alterations induced by diazinon in rainbow Trout (Oncorhynchus mykiss). International Journal of Environmental Research, 7, 735–744. [Mismatch] doi: 10.22059/ijer.2013.653
  • Bano, N., & Musarrat, J. (2003). Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Letters in Applied Microbiology, 36, 349–353. doi: 10.1046/j.1472-765X.2003.01329.x
  • Barcelos, R. P., de Lima Portella, R., Lugokenski, T. H., da Rosa, E. J. F., Amaral, G. P., Garcia, L. F. M., & de Vargas Barbosa, N. B. (2012). Isatin-3-N4-benzilthiosemicarbazone, a non-toxic thiosemicarbazone derivative, protects and reactivates rat and human cholinesterases inhibited by methamidophos in vitro and in silico. Toxicology in vitro, 26(6), 1030–1039. doi: 10.1016/j.tiv.2012.04.008
  • Barja, B. C., & dos Santos Afonso, M. (1998). An ATR − FTIR Study of Glyphosate and Its Fe (III) Complex in Aqueous Solution. Environmental Science & Technology, 32, 3331–3335. doi: 10.1021/es9800380
  • Bartsch, K., & Tebbe, C. C. (1989). Initial steps in the degradation of phosphinothricin (Glufosinate) by soil bacteria. Applied and Environmental Microbiology, 55, 711–716.
  • Benli, A. Ç. K., & Özkul, A. (2010). Acute toxicity and histopathological effects of sublethal fenitrothion on Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, 97(1), 32–35. doi: 10.1016/j.pestbp.2009.12.001
  • Benning, M. M., Shim, H., Raushel, F. M., & Holden, H. M. (2001). High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry, 40, 2712–2722. doi: 10.1021/bi002661e
  • Blann, K. L., Anderson, J. L., Sands, G. R., & Vondracek, B. (2009). Effects of agricultural drainage on aquatic ecosystems: A review. Critical Reviews in Environmental Science and Technology, 39, 909–1001. doi: 10.1080/10643380801977966
  • Borjesson, E., & Torstensson, L. (2000). New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil. Journal of Chromatography A, 886(1–2), 207–216. doi: 10.1016/S0021-9673(00)00514-8
  • Bourquin, A. W. (1977). Degradation of malathion by salt-marsh microorganisms. Applied and Environmental Microbiology, 33, 356–362.
  • Briceno, G., Palma, G., & Durán, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37, 233–271. doi: 10.1080/10643380600987406
  • Briseno-Roa, L., Hill, J., Notman, S., Sellers, D., Smith, A. P., Timperley, C. M., & Griffiths, A. D. (2006). Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents. Journal of Medicinal Chemistry, 49(1), 246–255. doi: 10.11912/jws.1.1.75-84
  • Brunkard, J. O., Runkel, A. M., & Zambryski, P. C. (2015). Chloroplasts extend stromules independently and in response to internal redox signals. Proceedings of the National Academy of Sciences of the United States of America, 112, 10044–10049. doi: 10.1073/pnas.1511570112
  • Bujacz, B., Wieczorek, P., Krzysko-Lupicka, T., Golab, Z., Lejczak, B., & Kavfarski, P. (1995). Organophosphonate utilization by the wild-type strain of Penicillium notatum. Applied and Environmental Microbiology, 61, 2905–2910.
  • Bumpus, J. A., Kakkar, S. N., & Coleman, R. D. (1993). Fungal degradation of organophosphorus insecticides. Applied Biochemistry and Biotechnology, 39, 715–726. doi: 10.4172/2157-7471.1000349
  • Cacciatore, L. C., Nemirovsky, S. I., Guerrero, N. R. V., & Cochón, A. C. (2015). Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquatic Toxicology, 167, 12–19. doi: 10.1016/j.aquatox.2015.07.009
  • Cakmak, I., Yazici, A., Tutus, Y., & Ozturk, L. (2009). Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. European Journal of Agronomy, 31, 114–119. doi: 10.1016/j.eja.2009.07.001
  • Carranza, C. S., Barberis, C. L., Chiacchiera, S. M., & Magnoli, C. E. (2017). Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Revista Argentina de Microbiologia, 49, 384–393. doi: 10.1016/j.ram.2016.11.007.x
  • Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., … Karp, P. D. (2012). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 40(D1), D742–D753. doi: 10.1093/nar/gkr1014
  • Chanika, E., Georgiadou, D., Soueref, E., Karas, P., Karanasios, E., Tsiropoulos, N. G., … Karpouzas, D. G. (2011). Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides. Bioresource Technology, 102, 3184–3192. doi: 10.1016/j.biortech.2010.10.145.
  • Chaudhry, G. R., Ali, A. N., & Wheeler, W. B. (1988). Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Applied and Environmental Microbiology, 54, 288–293.
  • Chen, C. M., Ye, Q. Z., Zhu, Z. M., Wanner, B. L., & Walsh, C. T. (1990). Molecular biology of carbon phosphorus bond cleavage–cloning and sequencing of the phn (psiD) genes involved in alkylphosphonates uptake and C–P lyase activity in Escherichia coli B. Journal of Biological Chemistry, 265, 4461–4471.
  • Cheng, T. C., & DeFrank, J. J. (2000). Hydrolysis of organophosphorus compounds by bacterial prolidases. In B. Zwanenburg, M. Mikolajczyk, & P. Kielbasinski (Eds), Enzymes in action: Green solutions for chemical problems (Vol. 33, pp. 243–262). Dordrecht, The Netherlands: Kluwer Academic Publishers. doi: 10.1007/978-94-010-0924-9_12
  • Cheng, T. C., Harvey, S. P., & Chen, G. L. (1996). Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Applied and Environmental Microbiology, 62, 1636–1641.
  • Cheng, T. C., Liu, L., Wang, B., Wu, J., DeFrank, J. J., Anderson, D. M., … Hamilton, A. B. (1997). Nucleotide sequence of a gene encoding and organophosphorus never agent degrading enzyme from Alteromonas haloplanktis. Journal of Industrial Microbiology and Biotechnology, 18(1), 49–55. doi: 10.1038/sj.jim.2900358
  • Choi, M. K., Kim, K. D., Ahn, K. M., Shin, D. H., Hwang, J. H., Seong, C. N., & Ka, J. O. (2009). Genetic and phenotypic diversity of parathion-degrading bacteria isolated from rice paddy soils. Journal of Microbiology and Biotechnology, 19, 1679–1687. doi: 10.4014/jmb.0905.05057
  • Clegg, B. S., Stephenson, G. R., & Hall, J. C. (1999). Development of an enzyme-linked immunosorbent assay for the detection of glyphosate. Journal of Agricultural and Food Chemistry, 47, 5031–5037. doi: 10.1021/jf990064x
  • Cui, Z. L., Li, S. P., & Fu, G. P. (2001). Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Applied and Environmental Microbiology, 67, 4922–4925. doi: 10.1128/AEM.67.10.4922-4925.2001
  • Cycoń, M., Wójcik, M., & Piotrowska-Seget, Z. (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76, 494–501. doi: 10.1016/j.chemosphere.2009.03.023
  • Daughton, C. G., & Hsieh, D. P. (1977). Parathion utilization by bacterial symbionts in a chemostat. Applied and Environmental Microbiology, 34, 175–184.
  • de María, N., Becerril, J. M., García-Plazaola, J. I., Hernández, A., de Felipe, M. R., & Fernández-Pascual, M. (2006). New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. Journal of Agricultural and Food Chemistry, 54, 2621–2628. doi: 10.1021/jf058166c
  • Deepananda, K. A., Gajamange, D., De Silva, W. A. J. P., & Wegiriya, H. C. E. (2011). Acute toxicity of a glyphosate herbicide, Roundup®, to two freshwater crustaceans. Journal of the National Science Foundation of Sri Lanka, 39, 169–173. doi: 10.4038/jnsfsr.v39i2.3178
  • Dhas, S., & Srivastava, M. (2010). An assessment of carbaryl residues on brinjal crop in an agricultural field in Bikaner, Rajasthan, India. Asian Journal of Agricultural Research, 2(1), 15–17.
  • Dick, P. E., & Quinn, J. P. (1995a). Glyphosate-degrading isolates from environmental samples: Occurrence and pathways of degradation. Applied Microbiology and Biotechnology, 43, 545–550. doi: 10.1007/BF00218464
  • Dick, R. E., & Quinn, J. P. (1995b). Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiology Letters, 134, 177–182. doi: 10.1111/j.1574-6968.1995.tb07934.x
  • Ding, W., Reddy, K. N., Zablotowicz, R. M., Bellaloui, N., & Bruns, H. A. (2011). Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate. Chemosphere, 83, 593–598. doi: 10.1016/j.chemosphere.2010.12.008
  • Dotson, S. B., Smith, C. E., Ling, C. S., Barry, G. F., & Kishore, G. M. (1996). Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. Journal of Biological Chemistry, 271, 25754–25761. doi: 10.1074/jbc.271.42.25754
  • Dror, I., Yaron, B., & Berkowitz, B. (2017). Microchemical contaminants as forming agents of anthropogenic soils. Ambio, 46(1), 109–120. doi: 10.1007/s13280-016-0804-7
  • Du, D., Wang, M., Cai, J., & Zhang, A. (2010). Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sensors and Actuators B: Chemical, 146(1), 337–341. doi: 10.1021/ac051559q
  • Eggen, T., Heimstad, E. S., Stuanes, A. O., & Norli, H. R. (2013). Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops. Environmental Science and Pollution Research International, 20, 4520–4531.
  • Eskenazi, B., Kogut, K., Huen, K., Harley, K. G., Bouchard, M., Bradman, A., … Holland, N. (2014). Organophosphate pesticide exposure, PON1, and neurodevelopment in school-age children from the CHAMACOS study. Environmental Research, 134, 149–157. doi: 10.1016/j.envres.2014.07.001
  • Fan, J., Yang, G., Zhao, H., Shi, G., Geng, Y., Hou, T., & Tao, K. (2012). Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. The Journal of General and Applied Microbiology, 58, 263–271. doi: 10.2323/jgam.58.263
  • Filimonova, V., Gonçalves, F., Marques, J. C., De Troch, M., & Goncalves, A. M. (2016). Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecological indicators, 67, 657–672. doi: 10.1016/j.ecolind.2016.03.044
  • Firdous, S., Iqbal, S., & Anwar, S. (2017). Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. doi: 10.1016/S1002-0160(17)60381-3
  • Fu, G. M., Chen, Y., Li, R. Y., Yuan, X. Q., Liu, C. M., Li, B., & Wan, Y. (2017). Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Preparative Biochemistry and Biotechnology, 47, 782–788. doi: 10.1080/10826068.2017.1342260
  • Gab, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., & Blum, M. M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with 1 H–31 P HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396, 1213–1221. doi: 10.1007/s00216-009-3299-2
  • Gahlaut, A., Gothwal, A., Chhillar, A. K., & Hooda, V. (2012). Electrochemical biosensors for determination of organophosphorus compounds. Open Journal of Applied Biosensor, 1(1), 1. doi: 10.4236/ojab.2012.11001
  • Gao, J., Liu, L., Liu, X., Zhou, H., Lu, J., Huang, S., & Wang, Z. (2009). The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water. Bulletin of Environmental Contamination and Toxicology, 82, 223–229. doi: 10.1007/s00128-008-9618-z
  • Gard, J. K., Feng, P. C. C., & Hutton, W. C. (1997). Nuclear magnetic resonance time course studies of glyphosate metabolism by microbial soil isolates. Xenobiotica, 27, 633–644. doi: 10.1080/004982597240235
  • Gauger, W. K., MacDonald, J. M., Adrian, N. R., Matthees, D. P., & Walgenbach, D. D. (1986). Characterization of a streptomycete growing on organophosphate and carbamate insecticides. Archives of Environmental Contamination and Toxicology, 15, 137–141. doi: 10.1007/BF01059962
  • Gautam, R. K., Shakya, S., Shamim, I., & Khajuria, V. (2013). Toxic effect of nuvan (organophosphate) on blood biochemistry of freshwater fish Clarias batrachus.
  • Gianfreda, L., & Rao, M. A. (2008). Interactions between xenobiotics and microbial and enzymatic soil activity. Critical Reviews in Environmental Science and Technology, 38, 269–310. doi: 10.1080/10643380701413526
  • Gomes, M. P., & Juneau, P. (2016). Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Environmental Pollution, 218, 402–409. doi: 10.1016/j.envpol.2016.07.019
  • Gomes, M. P., Manac’h, L., Sarah, G., Hénault-Ethier, L., Labrecque, M., Lucotte, M., & Juneau, P. (2017). Glyphosate-dependent inhibition of photosynthesis in willow. Frontiers in Plant Science, 8, 207. doi: 10.3389/fpls.2017.00207
  • Gomes, M. P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., … & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of experimental botany, 65(17), 4691–4703. doi: 10.1093/jxb/eru269
  • Gong, J., Wang, X., Li, X., & Wang, K. (2012). Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosensors and Bioelectronics, 38(1), 43–49. doi: 10.1016/j.bios.2012.04.040
  • Gonzalez-Martínez, M. A., Brun, E. M., Puchades, R., Maquieira, Á., Ramsey, K., & Rubio, F. (2005). Glyphosate immunosensor. Application for water and soil analysis. Analytical Chemistry, 77, 4219–4227. doi: 10.1021/ac048431d
  • Greaves, A. K., & Letcher, R. J. (2017). A review of organophosphate esters in the environment from biological effects to distribution and fate. Bulletin of Environmental Contamination and Toxicology, 98(1), 2–7. doi: 10.1007/s00128-016-1898-0
  • Grigoryan, H., Schopfer, L. M., Thompson, C. M., Terry, A. V., Masson, P., & Lockridge, O. (2008). Mass spectrometry identifies covalent binding of soman, sarin, chlorpyrifos oxon, diisopropyl fluorophosphate, and FP-biotin to tyrosines on tubulin: A potential mechanism of long term toxicity by organophosphorus agents. Chemico-Biological Interactions, 175(1–3), 180–186. doi: 10.1016/j.cbi.2008.04.013
  • Guha, A., Kumari, B., Bora, T. C., & Roy, M. K. (1997). Possible involvement of plasmid in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiologica, 42, 574–576. doi: 10.1007/BF02815468
  • Gungordu, A. (2013). Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis. Aquatic Toxicology, 140, 220–228. doi: 10.1016/j.aquatox.2013.06.012
  • Gunner, H. B., & Zuckerman, B. M. (1968). Degradation of ‘diazinon’ by synergistic microbial action. Nature (London), 217, 1183–1184. doi: 10.1038/2171183a0
  • Hadi, F., Mousavi, A., Noghabi, K. A., Tabar, H. G., & Salmanian, A. H. (2013). New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. Journal of Environmental Science and Health, Part B, 48, 208–213. doi: 10.1080/03601234.2013.730319
  • Hartmann-Thompson, C., Hu, J., Kaganove, S. N., Keinath, S. E., Keeley, D. L., & Dvornic, P. R. (2004). Hydrogen-bond acidic hyperbranched polymers for surface acoustic wave (SAW) sensors. Chemistry of Materials, 16, 5357–5364. doi: 10.1021/cm040346z
  • Hasan, H. A. H. (1999). Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiologica, 44(1), 77–84. doi: 10.1007/BF02816226
  • He, W., Du, F., Wu, Y., Wang, Y., Liu, X., Liu, H., & Zhao, X. (2006). Quantitative 19F NMR method validation and application to the quantitative analysis of a fluoro-polyphosphates mixture. Journal of Fluorine Chemistry, 127, 809–815. doi: 10.1016/j.jfluchem.2006.02.018
  • Hemalatha, D., Amala, A., Rangasamy, B., Nataraj, B., & Ramesh, M. (2016). Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environmental Toxicology, 31, 1399–1406. doi: 10.1002/tox.22145
  • Henderson, T. J. (2002). Quantitative NMR spectroscopy using coaxial inserts containing a reference standard: Purity determinations for military nerve agents. Analytical Chemistry, 74(1), 191–198. doi: 10.1021/ac010809
  • Hiscock, J. R., Sambrook, M. R., Wells, N. J., & Gale, P. A. (2015). Detection and remediation of organophosphorus compounds by oximate containing organogels. Chemical Science, 6, 5680–5684. doi: 10.1039/C5SC01864A
  • Horne, I., Qiu, X., Russell, R. J., & Oakeshott, J. G. (2003). The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiology Letters, 222(1), 1–8. doi: 10.1016/S0378-1097(03)00211-8
  • Horne, I., Sutherland, T. D., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2002). Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Applied and Environmental Microbiology, 68, 3371–3376. doi: 10.1128/AEM.68.7.3371-3376.2002
  • Horne, I., Sutherland, T. D., Oakeshott, J. G., & Russell, R. J. (2002). Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology (Reading, England)), 148(Pt 9), 2687–2695. doi: 10.1128/AEM.68.7.3371-3376.2002.
  • Hossaini, H., Moussavi, G., & Farrokhi, M. (2014). The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Research, 59, 130–144. doi: 10.1016/j.watres.2014.04.009
  • Hu, Y., Wan, L., Zhang, J., Yang, F., & Cao, J. (2012). Rapid determination of pesticide residues in Chinese materia medica using QuEChERS sample preparation followed by gas chromatography–mass spectrometry. Acta Pharmaceutica Sinica B, 2, 286–293. doi: 10.1016/j.apsb.2012.03.005
  • Hussain, M. I., Kumar, B., & Ahmad, M. (2015). Acute Toxicity, Behavioral response and Biochemical composition of Blood of common carp, Catla catla (Hamilton) to an Organophosphate Insecticide, Dimethoate. International Journal of Current Microbiology and Applied Sciences, 4, 1189–1199.
  • Hussain, M. I., Kumar, B., & Ahmad, M. (2016). Effect of organophosphate insecticide, Dimethoate on physiology of common carp, Catla catla (Hamilton) and Labeo rohita. International Journal of Current Microbiology and Applied Sciences, 5, 322–341. doi: 10.20546/ijcmas.2016.505.034
  • Hussain, S., Siddique, T., Arshad, M., & Saleem, M. (2009). Bioremediation and phytoremediation of pesticides: Recent advances. Critical Reviews in Environmental Science and Technology, 39, 843–907. doi: 10.1080/10643380801910090
  • Imran, H., Altaf, K. M., & Kim, J. G. (2004). Malathion degradation by Pseudomonas using activated sludge treatment system (biostimulator). Biotechnology (Faisalabad), 3, 82–89. doi: 10.3923/biotech.2004.82.89
  • Iyer, R., Iken, B., & Damania, A. (2013). A comparison of organophosphate degradation genes and bioremediation applications. Environmental Microbiology Reports, 5, 787–798. doi: 10.1111/1758-2229.12095
  • Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., & Schaefer, J. (1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Applied and Environmental Microbiology, 54, 2953–2958.
  • Jan, M. R., Shah, J., Muhammad, M., & Ara, B. (2009). Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. Journal of Hazardous Materials, 169(1–3), 742–745. doi: 10.1016/j.jhazmat.2009.04.003
  • Jao, S. C., Huang, L. F., Tao, Y. S., & Li, W. S. (2004). Hydrolysis of organophosphate triesters by Escherichia coli aminopeptidase P. Journal of Molecular Catalysis B: Enzymatic, 27(1), 7–12. doi: 10.1016/j.molcatb.2003.09.002
  • Jariyal, M., Gupta, V. K., Mandal, K., Jindal, V., Banta, G., & Singh, B. (2014). Isolation and characterization of novel phorate-degrading bacterial species from agricultural soil. Environmental Science and Pollution Research, 21(3), 2214–2222. doi: 10.1007/s11356-013-2155-2
  • Jena, S., Acharya, S., & Mohapatra, P. K. (2012). Variation in effects of four OP insecticides on photosynthetic pigment fluorescence of Chlorella vulgaris Beij. Ecotoxicology and Environmental Safety, 80, 111–117. doi: 10.1016/j.ecoenv.2012.02.016
  • Karpouzas, D. G., Fotopoulou, A., Menkissoglu-Spiroudi, U., & Singh, B. K. (2005). Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiology Ecology, 53, 369–378. doi: 10.1016/j.femsec.2005.01.012
  • Karpouzas, D. G., Morgan, J. A. W., & Walker, A. (2000). Isolation and characterization of ethoprophos-degrading bacteria. FEMS Microbiology Ecology, 33, 209–218. doi: 10.1111/j.1574-6941.2000.tb00743.x
  • Kataoka, H., Ryu, S., Sakiyama, N., & Makita, M. (1996). Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 726(1–2), 253–258. doi: 10.1016/0021-9673(95)01071-8
  • Kaur, G., Singh, A., Singh, A., Kaur, N., & Singh, N. (2018). Cobalt complexes of Biginelli derivatives as fluorescent probes for selective estimation and degradation of organophosphates in aqueous medium. Dalton Transactions, 47(16), 5595–5606. doi: 10.1039/C8DT00150B
  • Kawahara, K., Tanaka, A., Yoon, J., & Yokota, A. (2010). Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. The Journal of General and Applied Microbiology, 56, 249–255. doi: 10.2323/jgam.56.249
  • Keprasertsup, C., Upatham, E. S., Sukhapanth, N., & Prempree, P. (2001). Degradation of methyl parathion in an aqueous medium by soil bacteria. ScienceAsia, 27, 261–270.
  • Khare, H. N. (2015). Determination of LC50 of an organophosphate pesticide in a freshwater catfish, Mystus seenghala. International Journal of Applied Engineering Research, 2, 9–12.
  • Kibong, K., Olga, G. T., David, A. A., & David, G. C. (2011). Destruction and detection of chemical warfare agents. Chemical Reviews, 111, 5345. doi: 10.1021/cr100193y
  • Kielak, E., Sempruch, C., Mioduszewska, H., Klocek, J., & Leszczyński, B. (2011). Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pesticide Biochemistry and Physiology, 99, 237–243. doi: 10.1016/j.pestbp.2011.01.002
  • Kim, C. S., Lad, R. J., & Tripp, C. P. (2001). Interaction of organophosphorous compounds with TiO2 and WO3 surfaces probed by vibrational spectroscopy. Sensors and Actuators B: Chemical, 76(1–3), 442–448. doi: 10.1016/S0925-4005(01)00653-0
  • Kim, H. H., Lim, Y. W., Yang, J. Y., Shin, D. C., Ham, H. S., Choi, B. S., & Lee, J. Y. (2013). Health risk assessment of exposure to chlorpyrifos and dichlorvos in children at childcare facilities. Science of the Total Environment, 444, 441–450. doi: 10.1016/j.scitotenv.2012.11.102
  • Kim, Y. H., Ahn, J. Y., Moon, S. H., & Lee, J. (2005). Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum of. sp. pisi cutinase. Chemosphere, 60, 1349–1355. doi: 10.1016/j.chemosphere.2005.02.023
  • King, A. M., & Aaron, C. K. (2015). Organophosphate and carbamate poisoning. Emergency Medicine Clinics of North America, 33(1), 133–151. doi: 10.1016/j.emc.2014.09.010
  • Konrad, J. G., Chesters, G., & Armstrong, D. E. (1969). Soil Degradation of Malathion, a Phosphorodithioate Insecticide 1. Soil Science Society of America Journal, 33, 259–262. doi: 10.2136/sssaj1969.03615995003300020026x
  • Koskela, H. (2010). Use of NMR techniques for toxic organophosphorus compound profiling. Journal of Chromatography B, 878, 1365–1381. doi: 10.1016/j.jchromb.2009.10.030
  • Koskela, H., Rapinoja, M. L., Kuitunen, M. L., & Vanninen, P. (2007). Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy. Analytical Chemistry, 79, 9098–9106. doi: 10.1021/ac0713196
  • Krenchinski, F. H., Albrecht, L. P., Albrecht, A. J. P., Cesco, V. J. S., Rodrigues, D. M., Portz, R. L., & Zobiole, L. H. S. (2017). Glyphosate affects chlorophyll, photosynthesis and water use of four Intacta RR2 soybean cultivars. Acta Physiologiae Plantarum, 39, 63. 10.1007/s11738-017-2358-0.
  • Krieger-Liszkay, A., Fufezan, C., & Trebst, A. (2008). Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 98(1–3), 551–564. doi: 10.1007/s11120-008-9349-3
  • Kruger, M., Schledorn, P., Schrödl, W., Hoppe, H. W., Lutz, W., & Shehata, A. A. (2014). Detection of glyphosate residues in animals and humans. Journal of Environmental and Analytical Toxicology, 4, 1. doi: 10.4172/2161-0525.1000210
  • Krzysko-Lupicka, T., & Orlik, A. (1997). The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere, 34, 2601–2605. doi: 10.1016/S0045-6535(97)00103-3
  • Kumar, S., Kaushik, G., & Villarreal-Chiu, J. F. (2016). Scenario of organophosphate pollution and toxicity in India: A review. Environmental Science and Pollution Research, 23, 9480–9491. doi: 10.1007/s11356-016-6294-0
  • Kumar, V., Upadhay, N., Wasit, A., Singh, S., & Kaur, P. (2013). Spectroscopic methods for the detection of organophosphate pesticides—A preview. Current World Environment Journal, 8, 313–318. doi: 10.12944/CWE.8.2.19
  • Lakshmaiah, G. (2016). Acute lethal and chronic sublethal toxic stress induced alterations in lactate dehydrogenase activity of phorate intoxicated freshwater fish Cyprinus carpio. International Journal of Fisheries and Aquatic Studies, 4, 685–689.
  • Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I., & Apel, K. (2007). Cross-talk between singlet oxygen-and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 672–677. doi: 10.1073/pnas.0609063103
  • Lee, E. A., Zimmerman, L. R., Bhullar, B. S., & Thurman, E. M. (2002). Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. Analytical Chemistry, 74, 4937–4943. doi: 10.1021/ac020208y
  • Lee, H. U., Shin, H. Y., Lee, J. Y., Song, Y. S., Park, C., & Kim, S. W. (2010). Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. Journal of Agricultural and Food Chemistry, 58, 12096–12100. doi: 10.1021/jf102784t
  • Lerbs, W., Stock, M., & Parthier, B. (1990). Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Archives of Microbiology, 153, 146–150. doi: 10.1007/BF00247812
  • Li, B., Ricordel, I., Schopfer, L. M., Baud, F., Mégarbane, B., Nachon, F., … Lockridge, O. (2010). Detection of adduct on tyrosine 411 of albumin in humans poisoned by dichlorvos. Toxicological Sciences, 116(1), 23–31. doi: 10.1093/toxsci/kfq117
  • Li, B., Schopfer, L. M., Hinrichs, S. H., Masson, P., & Lockridge, O. (2007). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411. Analytical Biochemistry, 361, 263–272. doi: 10.1016/j.ab.2006.11.018
  • Liao, X., Zhang, C., Liu, Y., Luo, Y., Wu, S., Yuan, S., & Zhu, Z. (2016). Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway. Chemosphere, 150, 90–96. doi: 10.1016/j.chemosphere.2016.02.028
  • Lipok, J., Dombrovska, L., Wieczorek, P., & Kafarski, P. (2003). The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. Pesticide in Air, Plant, Soil and Water System, Proceedings of the XII Symposium of Pesticide Chemistry (pp. 575–580).
  • Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Applied and Environmental Microbiology, 57, 1799–1804.
  • Liu, H., Zhang, J. J., Wang, S. J., Zhang, X. E., & Zhou, N. Y. (2005). Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochemical and Biophysical Research Communications, 334, 1107–1114. doi: 10.1016/j.bbrc.2005.07.006
  • Lorenzo, M., & Pico, Y. (2017). Gas Chromatography and Mass Spectroscopy Techniques for the Detection of Chemical Contaminants and Residues in Foods. In Chemical Contaminants and Residues in Food (Second Edition) (15–50).
  • Mallick, K., Bharati, K., Banerji, A., Shakil, N. A., & Sethunathan, N. (1999). Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bulletin of Environmental Contamination and Toxicology, 62(1), 48–54.
  • Matsumura, F., & Boush, G. M. (1966). Malathion degradation by Trichoderma viride and a Pseudomonas species. Science, 153, 127–128. doi: 10.1126/science.153.3741.1278
  • McAuliffe, K. S., Hallas, L. E., & Kulpa, C. F. (1990). Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. Journal of Industrial Microbiology and Biotechnology, 6, 219–221. doi: 10.1007/BF01577700
  • Mdegela, R. H., Mosha, R. D., Sandvik, M., & Skaare, J. U. (2010). Assessment of acetylcholinesterase activity in Clarias gariepinus as a biomarker of organophosphate and carbamate exposure. Ecotoxicology, 19, 855–863. doi: 10.1007/s10646-010-0466-3
  • Menone, M. L., Bortolus, A., Aizpun de Moreno, J. E., Moreno, V. J., Lanfranchi, A. L., Metcalfe, T. L., & Metcalfe, C. D. (2001). Organochlorine pesticides and PCBs in a Southern Atlantic Coastal Lagoon Watershed, Argentina. Archives of Environmental Contamination and Toxicology, 40, 355–362. doi: 10.1007/s002440010183
  • Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent—relevant for ecological risk assessment? Environ Sci Pollut Res. 25, 5298–5317. doi: 10.1007/s11356-017-1080-1
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., & Noctor, G. (2010). Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61, 4197–4220. doi: 10.1093/jxb/erq282
  • Mick, D. L., & Dahm, P. A. (1970). Metabolism of parathion by two species of Rhizobium. Journal of Economic Entomology, 63, 1155–1159. doi: 10.1093/jee/63.4.1155
  • Mishra, A., Khan, J., & Pandey, A. K. (2017). Degradation of methyl parathion by a soil bacterial isolate: A pot study. Journal of Experimental Sciences, 01–07. doi: 10.19071/jes
  • Mishra, I. P., Sabat, G., & Mohanty, B. K. (2015). Phytotoxicity of Profenofos 50% EC (curacron 50 EC) to Vigna radiata, L. seedlings: II. Studies on Biochemical Parameters. International Journal of Applied Sciences and Biotechnology, 3(1), 101–105. doi: 10.3126/ijasbt.v3i1.12063
  • Mishra, V., Srivastava, G., & Prasad, S. M. (2009). Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Horticulturae, 120, 373–378. doi: 10.1016/j.scienta.2008.11.024
  • Misra, D., Bhuyan, S., Adhya, T. K., & Sethunathan, N. (1992). Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion- and p-nitrophenol-treated soil. Soil Biology and Biochemistry, 24, 1035–1042. doi: 10.1016/0038-0717(92)90033
  • Mkandawire, M., Teixeira da Silva, J. A., & Dudel, E. G. (2014). The Lemna bioassay: Contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Critical Reviews in Environmental Science and Technology, 44, 154–197. doi: 10.1080/10643389.2012.710451
  • Mondal, S., Kumar, M., Haque, S., & Kundu, D. (2017). Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings. Environmental health and toxicology, 32. doi: 10.5620/eht.e2017011
  • Moore, J. K., Braymer, H. D., & Larson, A. D. (1983). Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Applied and Environmental Microbiology, 46, 316–320.
  • Morales, A. E., Mora, E. S., & Pal, U. (2007). Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física, 53, 18–22.
  • Morton, S. C., & Edwards, M. (2005). Reduced phosphorus compounds in the environment. Critical Reviews in Environmental Science and Technology, 35, 333–364. doi: 10.1080/10643380590944978
  • Moss, J. A., Szczepankiewicz, S. H., Park, E., & Hoffmann, M. R. (2005). Adsorption and photodegradation of dimethyl methylphosphonate vapor at TiO2 surfaces. The Journal of Physical Chemistry B, 109, 19779–19785. doi: 10.1021/jp052057j
  • Mostafa, I. Y., Fakhr, I. M. I., Bahig, M. R. E., & El-Zawahry, Y. A. (1972). Metabolism of organophosphorus insecticides. XIII. Degradation of malathion by Rhizobium spp. Archiv für Mikrobiologie, 86, 221–224. doi: 10.1007/BF00425234
  • Muhammad, G. (2017). Practical aspects of treatment of organophosphate and carbamate insecticide poisoning in animals. Matrix Science Pharma (MSP), 1(1), 10–11. doi: 10.26480/msp.01.2017.10.11
  • Mulbry, W. W. (1992). The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: Cloning, sequencing and expression in Escherichia coli. Gene, 121(1), 149–153. doi: 10.1016/0378-1119(92)90174-N
  • Mulbry, W. W., Karns, J. S., Kearney, P. C., Nelson, J. O., & Wild, J. R. (1986). Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Applied and Environmental Microbiology, 51, 926–930.
  • Mulchandani, P., Mulchandani, A., Kaneva, I., & Chen, W. (1999). Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosensors and Bioelectronics, 14(1), 77–85. doi: 10.1021/ac980643l
  • Munnecke, D. M., & Hsieh, D. P. (1974). Microbial decontamination of parathion and p-nitrophenol in aqueous media . Applied Microbiology, 28, 212–217.
  • Nedelkoska, T. V., & Low, G. C. (2004). High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta, 511(1), 145–153. doi: 10.1016/j.aca.2004.01.027
  • Noradoun, C. E., Mekmaysy, C. S., Hutcheson, R. M., & Cheng, I. F. (2005). Detoxification of malathion a chemical warfare agent analog using oxygen activation at room temperature and pressure. Green Chemistry, 7, 426–430. doi: 10.1039/b502860d
  • Obojska, A., Lejczak, B., & Kubrak, M. (1999). Degradation of phosphonates by streptomycete isolates. Applied Microbiology and Biotechnology, 51, 872–876. doi: 10.1007/s002530051476
  • Obojska, A., Ternan, N. G., Lejczak, B., Kafarski, P., & McMullan, G. (2002). Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Applied and Environmental Microbiology, 68, 2081–2084. doi: 10.1128/AEM.68.4.2081-2084.2002
  • O'Brien, R. D. (2016). Toxic phosphorus esters: Chemistry, metabolism, and biological effects. New York, NY: Elsevier.
  • Ohshiro, K., Kakuta, T., Sakai, T., Hirota, H., Hoshino, T., & Uchiyama, T. (1996). Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. Journal of Fermentation and Bioengineering, 82, 299–305. doi: 10.1016/0922-338X(96)88823-4
  • Ou, L. T., & Sharma, A. (1989). Degradation of methyl parathion by a mixed bacterial culture and a Bacillus sp. isolated from different soils. Journal of Agricultural and Food Chemistry, 37, 1514–1518. doi: 10.1021/jf00090a014
  • Palit, M., Pardasani, D., Gupta, A. K., Shakya, P., & Dubey, D. K. (2005). Microsynthesis and electron ionisation mass spectrometric analysis of chemical weapons convention (CWC)-related O, O-dialkyl-N, N-dialkylphosphoramidates. Analytical and Bioanalytical Chemistry, 381, 477–486. doi: 10.1007/s00216-004-2873-x
  • Pandeeti, E. V. P., Chakka, D., Pandey, J. P., & Siddavattam, D. (2011). Indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta is selftransmissible and plays a key role in horizontal mobility of the opd gene. Plasmid, 65, 226–231. doi: 10.1016/j.plasmid.2011.02.003
  • Pandeeti, E. V. P., Longkumer, T., Chakka, D., Muthyala, V. R., Parthasarathy, S., Madugundu, A. K. (2012). Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551. G3: Genes| Genomes|. Genetics, 2, 1541–1554. and., & Siddavattam, D. doi: 10.1534/g3.112.004051.[Mismatch]
  • Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence: A technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. Journal of Fluorescence, 21, 785–791. doi: 10.1007/s10895-010-0771-5
  • Panduranga, M. G., Mahadeva, P. G., & Sudarshana, M. S. (2005). Toxicity of different imbibitions periods of dimethoate on germination, chlorophyll a/b, and dry matter of Glycine max (L) Merrill. Cv. 548 KHSB-2, during early seedlings growth. Journal of Physiological Research, 18, 199–201. doi: 10.1007/s10646-015-1591-9
  • Pardasani, D., Gupta, A. K., Palit, M., Shakya, P., Kanaujia, P. K., Sekhar, K., & Dubey, D. K. (2005). Gas chromatography/mass spectrometric analysis of methyl esters of N, N‐dialkylaminoethane‐2‐sulfonic acids for verification of the Chemical Weapons Convention. Rapid Communications in Mass Spectrometry, 19, 3015–3020. doi: 10.1002/rcm.2165
  • Paris, D. F., Lewis, D. L., & Wolfe, N. L. (1975). Rates of degradation of malathion by bacteria isolated from aquatic system. Environmental Science & Technology, 9, 135–138. doi: 10.1021/es60100a011
  • Parker, G., Higgins, T. P., Hawkes, T., & Robson, R. L. (1999). Rhizobium (Sinorhizobium) meliloti phn genes: Chracterization and identification of their protein products. Journal of Bacteriology, 181, 389–395.
  • Parween, T., Jan, S., & Fatma, T. (2011). Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant, 33, 2321. doi: 10.1007/s11738-011-0772-2
  • Patnaik, P. (2003). A comprehensive guide to the hazardous properties of chemical substances. Hoboken, NJ: John Wiley and Sons.
  • Pehkonen, S. O., & Zhang, Q. (2002). The degradation of organophosphorus pesticides in natural waters: A critical review. Critical Reviews in Environmental Science and Technology, 32(1), 17–72. doi: 10.1080/10643380290813444
  • Penaloza-Vazquez, A., Mena, G. L., Herrera-Estrella, L., & Bailey, A. M. (1995). Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Applied and Environmental Microbiology, 61, 538–543.
  • Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156(1), 61–66. doi: 10.1016/j.envpol.2008.01.015
  • Pinkas, A., Turgeman, G., Tayeb, S., & Yanai, J. (2015). An avian model for ascertaining the mechanisms of organophosphate neuroteratogenicity and its therapy with mesenchymal stem cell transplantation. Neurotoxicology and Teratology, 50, 73–81. doi: 10.1016/j.ntt.2015.06.004
  • Pipke, R., & Amrhein, N. (1988a). Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Applied and Environmental Microbiology, 54, 1293–1296.
  • Pipke, R., & Amrhein, N. (1988b). Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Applied and Environmental Microbiology, 54, 2868–2870.
  • Pipke, R., Amrhein, N., Jacob, G. S., Schaefer, J., & Kishore, G. M. (1987). Metabolism of glyphosate in an Arthrobacter sp. GLP‐1. European Journal of Biochemistry, 165, 267–273. doi: 10.1111/j.1432-1033.1987.tb11437.x
  • Polubesova, T., & Chefetz, B. (2014). DOM-affected transformation of contaminants on mineral surfaces: A review. Critical Reviews in Environmental Science and Technology, 44, 223–254. doi: 10.1080/10643389.2012.710455
  • Racke, K. D., & Coats, R. J. (1987). Enhanced degradation of isofenphos by soil microorganisms. Journal of Agricultural and Food Chemistry, 35(1), 94–99. doi: 10.1021/jf00073a022
  • Rani, N. L., & Lalithakumari, D. (1994). Degradation of methyl parathion by Pseudomonas putida. Canadian Journal of Microbiology, 40, 1000–1006. doi: 10.1139/m94-160
  • Rauk, A., Shishkov, I. F., Vilkov, L. V., Koehler, K. F., & Kostyanovsky, R. G. (1995). Determination of the structure and chiroptical properties of the parent nerve gas O-methyl methylphosphonofluoridate by ab initio calculations, electron diffraction analysis, and NMR spectroscopy. Journal of the American Chemical Society, 117, 7180–7185. doi: 10.1021/ja00132a018
  • Rekha, K., Thakur, M. S., & Karanth, N. G. (2000). Biosensors for the detection of organophosphorous pesticides. Critical Reviews in Biotechnology, 20, 213–235. doi: 10.1080/07388550008984170.
  • Rivadeneira, P. R., Agrelo, M., Otero, S., & Kristoff, G. (2013). Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicology and Environmental Safety, 90, 82–88. doi: 10.1016/j.ecoenv.2012.12.013
  • Rosal, C., Betowski, D., Romano, J., Neukom, J., Wesolowski, D., & Zintek, L. (2009). The development and inter-laboratory verification of LC–MS libraries for organic chemicals of environmental concern. Talanta, 79, 810–817. doi: 10.1016/j.talanta.2009.05.004
  • Rosenberg, A., & Alexander, M. (1979). Microbial cleavage of various organophosphorus Insecticides. Applied and Environmental Microbiology, 37, 886–891.
  • Rubio, F., Veldhuis, L. J., Clegg, B. S., Fleeker, J. R., & Hall, J. C. (2003). Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. Journal of Agricultural and Food Chemistry, 51, 691–696. doi: 10.1021/jf020761g
  • Salbego, J., Pretto, A., Gioda, C. R., de Menezes, C. C., Lazzari, R., Radünz Neto, J., … Loro, V. L. (2010). Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Archives of Environmental Contamination and Toxicology, 58, 740–745. doi: 10.1007/s00244-009-9464-y
  • Scheunert, I. (2018). Transport and transformation of pesticides in soil. In fate and prediction of environmental chemicals in soils, plants, and aquatic systems (pp. 1–22). CRC Press.
  • Schreder, E. D., Uding, N., & La Guardia, M. J. (2016). Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere, 150, 499–504. doi: 10.1016/j.chemosphere.2015.11.084
  • Serdar, C. M., Gibson, D. T., Munnecke, D. M., & Lancaster, J. H. (1982). Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Applied and Environmental Microbiology, 44(1), 246–249.
  • Serder, C. M., Murdock, D. C., & Rhode, M. F. (1989). Parathion hydrolase gene from Pseudomonas diminuta MG: Subcloning, complete nucleotide sequence and expression of mature portion of the enzymes in Escherichia coli. Nature Biotechnology, 7, 1151–1555. doi: 10.1038/nbt1189-1151
  • Serra, A. A., Nuttens, A., Larvor, V., Renault, D., Couée, I., Sulmon, C., & Gouesbet, G. (2013). Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 64, 2753–2766. doi: 10.1093/jxb/ert119
  • Sethunathan, N. (1973). Degradation of parathion in flooded acid soils. Journal of Agricultural and Food Chemistry, 21, 602–604. doi: 10.1021/jf60188a042
  • Shamoushaki, M. M. N., Soltani, M., Kamali, A., Imanpoor, M. R., Sharifpour, I., & Khara, H. (2012). Effects of organophosphate, diazinon on some haematological and biochemical changes in Rutilus frisii kutum (Kamensky, 1901) male brood stocks. Iranian Journal of Fisheries Sciences, 11(1), 105–117.
  • Sharifi, Y., Pourbabaei, A. A., Javadi, A., Abdolmohammad, M. H., Saffari, M., & Morovvati, A. (2015). Biodegradation of glyphosate herbicide by Salinicoccus spp. isolated from Qom Hoze-soltan lake, Iran. Environmental Health Engineering and Management Journal, 2(1), 31–36.
  • Sharma, B. K., & Gupta, N. (1994). Photodegradation of the organophosphorus insecticide ‘phorate’. Toxicological & Environmental Chemistry, 41, 249–254. doi: 10.1080/02772249409357980
  • Sharmila, M., Ramanand, K., & Sethunathan, N. (1989). Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Canadian Journal of Microbiology, 3, 1105–1110. doi: 10.1139/m89-185
  • Shim, H., Hong, S. B., & Raushel, F. M. (1998). Hydrolysis of phosphodiesters through the transformation of the bacterial phosphotriesterase. Journal of Biological Chemistry, 273, 17445–17450. doi: 10.1074/jbc.273.28.17445
  • Shuji, K., Yuji, I., & Atsushi, T. (2008). A Fast and Simple Analysis of Glyphosate in Tea Beverages by Capillary Electrophoresis with on-Line Copper (lI)-glyphosate Complex Formation. Journal of Health Sciences, 54, 602–606.
  • Shushkova, T. V., Ermakova, I. T., Sviridov, A. V., & Leontievsky, A. A. (2012). Biodegradation of glyphosate by soil bacteria: Optimization of cultivation and the method for active biomass storage. Microbiology, 81(1), 44–50. doi: 10.1134/S0026261712010134
  • Siddaramappa, R., Rajaram, K. P., & Sethunathan, N. (1973). Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiology, 26, 846–849.
  • Siddavattam, D., Khajamohiddin, S., Manavathi, B., Pakala, S., & Merrick, M. (2003). Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Applied and Environmental Microbiology, 69, 2533–2539. doi: 10.1128/AEM.69.5.2533-2539.2003
  • Siddiqa, A., Islam, M. J., Rahman, M. S., Uddin, M. N., & Fancy, R. (2016). Assessing toxicity of organophosphorus insecticide on local fish species of Bangladesh. International Journal of Fisheries and Aquatic Studies, 4, 670–676.
  • Singh, A. K., Flounders, A. W., Volponi, J. V., Ashley, C. S., Wally, K., & Schoeniger, J. S. (1999). Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosensors and Bioelectronics, 14, 703–713. doi: 10.1016/S0956-5663(99)00044-5
  • Singh, A. K., & Seth, P. K. (1989). Degradation of malathion by microorganisms isolated from industrial effluents. Bulletin of Environmental Contamination and Toxicology, 43(1), 28–35. doi: 10.1007/BF01702234
  • Singh, B. K., Walker, A., Morgan, J. A. W., & Wright, D. J. (2004). Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Applied and Environmental Microbiology, 70, 4855–4863.
  • Singh, B. K., Walker, A., Morgan, J. A., & Wright, D. J. (2003). Role of soil pH in the development of enhanced biodegradation fenamiphos. Applied and Environmental Microbiology, 69, 7035–7043. doi: 10.1128/AEM.69.12.7035-7043.2003
  • Singh, P., & Prasad, S. M. (2018). Antioxidant enzyme responses to the oxidative stress due to chlorpyrifos, dimethoate and dieldrin stress in palak (Spinacia oleracea L.) and their toxicity alleviation by soil amendments in tropical croplands. Science of the Total Environment, 630, 839–848. doi: 10.1016/j.scitotenv.2018.02.203
  • Singh, R. N. (2013). Acute toxicity of an organophosphate, dimethoate to an air breathing fish, Colisa fasciatus (Bl. and Schn.). Indian Journal of Scientific Research, 4(1), 97.
  • Singh, R. N., Pandey, R. K., Singh, N. N., & Das, V. K. (2009). Acute toxicity and behavioral responses of common carp Cyprinus carpio (Linn.) to an organophosphate (Dimethoate). World Journal of Zoology, 4, 70–75.
  • Sinha, S., Yadav, G., Kaushik, B. R., Dounde, S., & Janghel, D. (2018). Histopatological Impact of Malathion on the testicular cells of freshwater crabs Barytelhusa cunicularis (WESTWOOD, 1836). World Journal of Pharmacy and Pharmaceutical Sciences, 7, 997–1007. doi: 10.20959/wjpps20183-10783
  • Sivagami, K., Krishna, R. R., & Swaminathan, T. (2011). Studies on photocatalytic degradation of monocrotophos in an annular slurry reactor using factorial design of experiments. Journal of Sustainable Water in the Built Environment, 1(1), 75–84. doi: 10.11912/jws.1.1.75-84
  • Somara, S., & Siddavattam, D. (1995). Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochemistry and Molecular Biology International, 36, 627–631. doi: 10.1016/j.pestbp.2005.03.007.
  • Somara, S., Manavathi, B., Tebbe, C. C., & Siddavatam, D. (2002). Over-expression of parathion hydrolase of Flavobacterium balustinum in E. coli: Purification and characterization of His-tagged parathion hydrolase. Indian Journal of Biochemistry & Biophysics, 39, 82–86. doi: 10.1016/j.pestbp.2006.02.007
  • Southam, A. D., Lange, A., Hines, A., Hill, E. M., Katsu, Y., Iguchi, T., … Viant, M. R. (2011). Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): Implications for biomonitoring. Environmental Science & Technology, 45, 3759–3767. doi: 10.1021/es103814d
  • Soyingbe, A. A., Ogunyanwo, O. O., Hammed, T. B., & Adesope, A. O. (2012). Effects of sublethal concentrations of diazinon on total protein in tilapia fish (Oreochromis niloticus). IOSR Journal of Environmental Science, Toxicology and Food Technology, 1, 22–25. doi: 10.9790/2402-0112225
  • Srivastav, A. K., Srivastava, S., Srivastav, S. K., & Suzuki, N. (2017). Acute toxicity of an organophosphate insecticide chlorpyrifos to an anuran, Rana cyanophlyctis. Iranian Journal of Toxicology, 11
  • Stackhouse, S. C. (1980). Determination, isolation and characterization of SD9129-metabolizing microorganisms isolated from freshly collected and pretreated sandy loam soil. Shell Report RIR-22-013-80.
  • Stauber, J. L., Chariton, A., & Apte, S. (2016). Global change. In Marine Ecotoxicology (pp. 273–313). Academic Press. doi: 10.1016/B978-0-12-803371-5.00010-2
  • Stevens, M. M., Reinke, R. F., Coombes, N. E., Helliwell, S., & Mo, J. (2008). Influence of imidacloprid seed treatments on rice germination and early seedling growth. Pest Management Science, 64, 215–222. doi: 10.1002/ps.1499
  • Subburaj, A., Jawahar, P., Jayakumar, N., Srinivasan, A., & Ahilan, B. (2018). Histopathological investigations in liver and kidney of the fish, Oreochromis mossambicus (Tilapia) exposed to acute Malathion (EC 50%) toxicity. Journal of Experimental Zoology India, 21(1), 77–81.
  • Subhas, S., & Singh, D. K. (2003). Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11. Canadian Journal of Microbiology, 49, 101–109. doi: 10.1139/w03-013
  • Subramanian, G., Sekar, S., & Sampoornam, S. (1994). Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. International Biodeterioration & Biodegradation, 33, 129–143. doi: 10.1016/0964-8305(94)90032-9
  • Sun, L., Xu, W., Peng, T., Chen, H., Ren, L., Tan, H., … Fu, Z. (2016). Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Neurotoxicology and Teratology, 55, 16–22. doi: 10.1016/j.ntt.2016.03.003
  • Sun, N., Hu, B. X., & Mo, W. M. (2007). Single sweep oscillopolarographic technique for the determination of glyphosate after derivatization with sodium nitrite. PESTICIDES-SHENYANG, 46, 609.
  • Sunmonu, T. O., & Oloyede, O. B. (2012). Monocrotophos–induced enzymatic changes as toxicity bio-markers in Wistar Rat liver. Agriculture and Biology Journal of North America, 2151 7525. doi: 10.5251/abjna.2012.3.7.302.305
  • Sviridov, A. V., Shushkova, T. V., Zelenkova, N. F., Vinokurova, N. G., Morgunov, I. G., Ermakova, I. T., & Leontievsky, A. A. (2012). Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Applied Microbiology and Biotechnology, 93, 787–796. doi: 10.1007/s00253-011-3485-y
  • Tchelet, R., Levanon, D., Mingelgrin, U., & Henis, Y. (1993). Parathion degradation by a Pseudomonas sp. and a Xanthomonas sp. and by their crude enzyme extracts as affected by some cations. Soil Biology and Biochemistry, 25, 1665–1671. doi: 10.1016/0038-0717(93)90168-B
  • Tebbe, C. C., & Reber, H. H. (1988). Transformation of the herbicide [14C]-glufosinate in soils. J. Agric. Food Chem. 3, 267–271. doi: 10.1021/jf00085a061
  • Tehara, S. K., & Keasling, J. D. (2003). Gene cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Applied and Environmental Microbiology, 69(1), 504–508. doi: 10.1128/AEM.69.1.504-508.2003
  • Theriot, C. M., & Grunden, A. M. (2011). Hydrolysis of organophosphorus compounds by microbial enzymes. Applied Microbiology and Biotechnology, 89(1), 35–43. doi: 10.1007/s00253-010-2807-9
  • Timperley, C. M., Casey, K. E., Notman, S., Sellers, D. J., Williams, N. E., Williams, N. H., & Williams, G. R. (2006). Synthesis and anticholinesterase activity of some new fluorogenic analogues of organophosphorus nerve agents. Journal of Fluorine Chemistry, 127, 1554–1563. doi: 10.1016/j.jfluchem.2006.07.017
  • Vagi, M. C., Petsas, A. S., Pavlaki, M. D., Smaragdaki, N. M., & Kostopoulou, M. N. (2018). Toxic Effects of the Organophosphorus Insecticide Fenthion on Growth and Chlorophyll Production Activity of Unicellular Marine Microalgae Tetraselmis suecica: Comparison between Observed and Predicted Endpoint Toxicity Data. doi: 10.5772/intechopen.72321
  • Valente, N. I., Tarelho, S., Castro, A. L., Silvestre, A., & Teixeira, H. M. (2015). Analysis of organophosphorus pesticides in whole blood by GC-MS-μECD with forensic purposes. Journal of Forensic and Legal Medicine, 33, 28–34. doi: 10.1016/j.jflm.2015.03.006
  • Vass, I., & Aro, E. M. (2008). Photoinhibition of photosynthetic electron transport. Primary Processes of Photosynthesis: Basic Principles and Apparatus, 1, 393–425.
  • Vazquez-Boucard, C., Alvarez-Ruiz, P., Escobedo-Fregoso, C., Anguiano-Vega, G., de Jesus Duran-Avelar, M., Pinto, V. S., & Escobedo-Bonilla, C. M. (2010). Detection of white spot syndrome virus (WSSV) in the Pacific oyster Crassostrea gigas. Journal of Invertebrate Pathology, 104, 245–247. doi: 10.1016/j.jip.2010.04.004
  • Verma, V. K., & Saxena, A. (2013). Investigations on the acute toxicity and behavioural alterations induced by the organophosphate pesticide, chlorpyrifos on Puntius chola (Hamilton-Buchanan). Indian Journal of Fisheries, 60, 141–145.
  • Vivancos, P. D., Driscoll, S. P., Bulman, C. A., Ying, L., Emami, K., Treumann, A., … Foyer, C. H. (2011). Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiology, 157(1), 256–268. doi: 10.1104/pp.111.181024
  • Vyas, N. K., Nickitenko, A., Rastogi, V. K., Shah, S. S., & Quiocho, F. A. (2010). Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochemistry, 49, 547–559. doi: 10.1021/bi9011989
  • Wackett, L. P., Shames, S. L., Venditti, C. P., & Walsh, C. T. (1987). Bacterial carbon-phosphorus lyase: Products, rates, and regulation of phosphonic and phosphinic acid metabolism. Journal of Bacteriology, 169, 710–717. doi: 10.1128/jb.169.2.710-717.1987
  • Walker, W. W., & Stojanovic, B. J. (1974). Malathion degradation by an Arthrobacter species. Journal of Environment Quality, 3(1), 4–10. doi: 10.2134/jeq1974.00472425000300010002x
  • Wang, A., Cockburn, M., Ly, T. T., Bronstein, J. M., & Ritz, B. (2014). The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occupational and Environmental Medicine, 71, 275–281. doi: 10.1136/oemed-2013-101394
  • Wang, R., Tang, J., Xie, Z., Mi, W., Chen, Y., Wolschke, H., … Ebinghaus, R. (2015). Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China. Environmental Pollution, 198, 172–178. doi: 10.1016/j.envpol.2014.12.037
  • Watson, F. L., Schmidt, H., Turman, Z. K., Hole, N., Garcia, H., Gregg, J., … Fradinger, E. A. (2014). Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis. Environmental Toxicology and Chemistry, 33, 1337–1345. doi: 10.1002/etc.2559
  • Wei, L., Shifu, C., Wei, Z., & Sujuan, Z. (2009). Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. Journal of Hazardous Materials, 164(1), 154–160. doi: 10.1016/j.jhazmat.2008.07.140
  • Wijesinghe, M. R., Bandara, M. G. D. K., Ratnasooriya, W. D., & Lakraj, G. P. (2011). Chlorpyrifos-induced toxicity in Duttaphrynus melanostictus (Schneider 1799) larvae. Archives of environmental contamination and toxicology, 60(4), 690–696. doi: 10.1007/s00244-010-9577-3
  • Yadav, I. C., Devi, N. L., Zhong, G., Li, J., Zhang, G., & Covaci, A. (2017). Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environmental Pollution, 229, 668–678. doi: 10.1016/j.envpol.2017.06.089
  • Yali, B., Ruifu, Z., Jian, H., & Shunpeng, L. (2002). Study on Pseudomonas sp.WBC-3 capable of complete degradation of methyl parathion. Weishengwu Xuebao, 42, 490–497.
  • Yang, C., Liu, N., Guo, X., & Qiao, C. (2006). Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiology Letters, 265(1), 118–125. doi: 10.1111/j.1574-6968.2006.00478.x
  • Yang, L., Zhao, Y. H., Zhang, B. X., Yang, C. H., & Zhang, X. (2005). Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiology Letters, 251(1), 67–73. doi: 10.1016/j.femsle.2005.07.031
  • Yanniccari, M., Tambussi, E., Istilart, C., & Castro, A. M. (2012). Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity. Plant Physiology and Biochemistry, 57, 210–217. doi: 10.1016/j.plaphy.2012.05.027
  • Yasuno, M., Hirakoso, S., Sasa, M., & Uchida, M. (1965). Inactivation of some organophosphorus insecticides by bacteria in polluted water. The Japanese Journal of Experimental Medicine, 35, 546–563.
  • Yuan, X., Lacorte, S., Cristale, J., Dantas, R. F., Sans, C., Esplugas, S., & Qiang, Z. (2015). Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Separation and Purification Technology, 156, 1028–1034. doi: 10.1016/j.seppur.2015.09.052
  • Zboinska, E., Lejczak, B., & Kafarski, P. (1992). Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Applied and Environmental Microbiology, 58, 2993–2999.
  • Zhang, R., Cui, Z. L., Jiang, J., He, J., Gu, X., & Li, S. P. (2005). Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Canadian Journal of Microbiology, 51, 337–343. doi: 10.1139/w05-010
  • Zhang, R., Cui, Z. L., Zhang, X., Jiang, J., Gu, J. D., & Li, S. P. (2006). Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation, 17, 465–472. doi: 10.1007/s10532-005-9018-6
  • Zhang, Y., An, J., Ye, W., Yang, G., Qian, Z.-G., Chen, H.-F., … Feng, Y. (2012). Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Applied and Environmental Microbiology, 78, 6647–6655. doi: 10.1128/AEM.01122-12
  • Zheng, J., Zhang, H., Qu, J., Zhu, Q., & Chen, X. (2013). Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal Methods, 5, 917–924. doi: 10.1039/C2AY26391B
  • Zhongli, C., Ruifu, Z., Jian, H., & Shunpeng, L. (2002). Isolation and characterization of a p-nitrophenol degradation Pseudomonas sp. strain p3 and construction of a genetically engineered bacterium. Weishengwu Xuebao, 42, 19–26. doi: 10.1128/AEM.01794-15
  • Zobiole, L. H. S., de Oliveira, R. S., Huber, D. M., Constantin, J., de Castro, C., de Oliveira, F. A., & de Oliveira, A. (2010). Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans. Plant and Soil, 328(1–2), 57–69. doi: 10.1007/s11104-009-0081-3
  • Zobiole, L. H. S., Kremer, R. J., de Oliveira, R. S., Jr., & Constantin, J. (2012). Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate‐resistant soybean. Journal of Plant Nutrition and Soil Science, 175, 319–330. doi: 10.1002/jpln.201000434
  • Zobiole, L. H. S., Kremer, R. J., Oliveira, R. S., & Constantin, J. (2011). Glyphosate affects micro‐organisms in rhizospheres of glyphosate‐resistant soybeans. Journal of Applied Microbiology, 110(1), 118–127. doi: 10.1111/j.1365-2672.2010.04864.x
  • Zuckerman, B. M., Deubert, K., Mackiewicz, M., & Gunner, H. (1970). Studies on the biodegradation of parathion. Plant and Soil, 33(1–3), 273–281. doi: 10.1007/BF01378220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.