859
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy

, , &
Pages 1-30 | Published online: 15 May 2019

References

  • Ali, Z., Pacheco, F., Litwiller, E., Wang, Y., Han, Y., & Pinnau, I. (2018). Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification. Journal of Materials Chemistry A, 6(1), 30–35. doi:10.1039/C7TA07819F
  • Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. doi:10.1016/j.biotechadv.2018.01.011
  • Artzi, L., Morag, E., Barak, Y., Lamed, R., & Bayer, E. A. (2015). Clostridium clariflavum: Key cellulosome players are revealed by proteomic analysis. mBio, 6(3), e00411–15.
  • Aslam, M., Ahmad, R., Yasin, M., Khan, A. L., Shahid, M. K., Hossain, S., … Kumar, G. (2018). Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. Bioresource Technology, 269, 452–464. doi:10.1016/j.biortech.2018.08.050
  • Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. doi:10.1016/j.biortech.2018.07.042
  • Baek, G., Kim, J., Cho, K., Bae, H., & Lee, C. (2015). The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: Their potential for enhanced biomethanation. Applied Microbiology and Biotechnology, 99(23), 10355–10366. doi:10.1007/s00253-015-6900-y
  • Bastidas-Oyanedel, J.-R., Bonk, F., Thomsen, M., & Schmidt, J. (2015). Dark fermentation biorefinery in the present and future (bio)chemical industry. Reviews in Environmental Science and Bio/Technology, 14(3), 473–498. doi:10.1007/s11157-015-9369-3
  • Bastidas-Oyanedel, J.-R., Mohd-Zaki, Z., Zeng, R. J., Bernet, N., Pratt, S., Steyer, J.-P., & Batstone, D. J. (2012). Gas controlled hydrogen fermentation. Bioresource Technology, 110(0), 503–509. doi:10.1016/j.biortech.2012.01.122
  • Bastidas-Oyanedel, J.-R., & Schmidt, J. (2018). Increasing profits in food waste biorefinery—A techno-economic analysis. Energies, 11(6), 1551. doi:10.3390/en11061551
  • Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., … Fuchs, G. (2010). Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 8(6), 447–460. doi:10.1038/nrmicro2365
  • Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., … Kelly, R. M. (2014). Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 38(3), 393–448. doi:10.1111/1574-6976.12044
  • Bonk, F., Bastidas-Oyanedel, J.-R., Yousef, A. F., & Schmidt, J. E. (2017). Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresource Technology, 238, 416–424. doi:10.1016/j.biortech.2017.04.057
  • Böske, J., Wirth, B., Garlipp, F., Mumme, J., & Van den Weghe, H. (2015). Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance. Bioresource Technology, 175(0), 8–16. doi:10.1016/j.biortech.2014.10.041
  • Bu, F., Dong, N., Kumar Khanal, S., Xie, L., & Zhou, Q. (2018). Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways. Bioresource Technology, 266, 364–373. doi:10.1016/j.biortech.2018.03.092
  • Cabrera-Codony, A., Montes-Morán, M. A., Sánchez-Polo, M., Martín, M. J., & Gonzalez-Olmos, R. (2014). Biogas upgrading: Optimal activated carbon properties for siloxane removal. Environmental Science & Technology, 48(12), 7187–7195. doi:10.1021/es501274a
  • Cano, R., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2015). Energy feasibility study of sludge pretreatments: A review. Applied Energy, 149, 176–185. doi:10.1016/j.apenergy.2015.03.132
  • Carrillo-Reyes, J., & Buitrón, G. (2016). Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium. Bioresource Technology, 221, 324–330. doi:10.1016/j.biortech.2016.09.050
  • Chaikasem, S., Abeynayaka, A., & Visvanathan, C. (2014). Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 168(Suppl C), 100–105. doi:10.1016/j.biortech.2014.04.023
  • Chen, G. Q., Eschbach, F. I. I., Weeks, M., Gras, S. L., & Kentish, S. E. (2016). Removal of lactic acid from acid whey using electrodialysis. Separation and Purification Technology, 158, 230–237. doi:10.1016/j.seppur.2015.12.016
  • Chen, Y., Jiang, X., Xiao, K., Shen, N., Zeng, R. J., & Zhou, Y. (2017). Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – Investigation on dissolved organic matter transformation and microbial community shift. Water Research, 112, 261–268. doi:10.1016/j.watres.2017.01.067
  • Chen, Y., Shen, N., Wang, T., Zhang, F., & Zeng, R. J. (2017). Ammonium level induces high purity propionate production in mixed culture glucose fermentation. RSC Advances, 7(1), 518–525. doi:10.1039/C6RA25926J
  • Chen, Y., Zhang, F., Wang, T., Shen, N., Yu, Z.-W., & Zeng, R. J. (2016). Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70 °C) mixed culture fermentation. Bioresource Technology, 216, 722–728. doi:10.1016/j.biortech.2016.06.015
  • Cinelli, B. A., Freire, D. M. G., & Kronemberger, F. A. (2019). Membrane distillation and pervaporation for ethanol removal: Are we comparing in the right way? Separation Science and Technology, 54(1), 110–127. doi:10.1080/01496395.2018.1498518
  • Croce, S., Wei, Q., D'Imporzano, G., Dong, R., & Adani, F. (2016). Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnology Advances, 34(8), 1289–1304. doi:10.1016/j.biotechadv.2016.09.004
  • Dai, K., Wen, J.-L., Wang, Y.-L., Wu, Z.-G., Zhao, P.-J., Zhang, H.-H., … Zhang, F. (2019). Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester. Journal of Cleaner Production, 207, 483–489. doi:10.1016/j.jclepro.2018.10.019
  • Dai, K., Wen, J.-L., Zhang, F., Ma, X.-W., Cui, X.-Y., Zhang, Q., … Zeng, R. J. (2017). Electricity production and microbial characterization of thermophilic microbial fuel cells. Bioresource Technology, 243, 512–519. doi:10.1016/j.biortech.2017.06.167
  • Dai, K., Zhang, F., Zhang, Y., & Zeng, R. J. (2018). The chemostat metabolite spectra of alkaline mixed culture fermentation under mesophilic, thermophilic, and extreme-thermophilic conditions. Bioresource Technology, 249, 322–327. doi:10.1016/j.biortech.2017.10.035
  • De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247(Suppl C), 1144–1154. doi:10.1016/j.biortech.2017.09.163
  • de Menezes, F. F., Rencoret, J., Nakanishi, S. C., Nascimento, V. M., Silva, V. F. N., Gutiérrez, A., … de Moraes Rocha, G. J. (2017). Alkaline pretreatment severity leads to different lignin applications in sugar cane biorefineries. ACS Sustainable Chemistry & Engineering, 5(7), 5702–5712. doi:10.1021/acssuschemeng.7b00265
  • Duncan, J., Bokhary, A., Fatehi, P., Kong, F., Lin, H., & Liao, B. (2017). Thermophilic membrane bioreactors: A review. Bioresource Technology, 243(Supplement C), 1180–1193. doi:10.1016/j.biortech.2017.07.059
  • Erucar, I., & Keskin, S. (2016). Computational assessment of MOF membranes for CH4/H2 separations. Journal of Membrane Science, 514, 313–321. doi:10.1016/j.memsci.2016.04.070
  • Fang, C., Thomsen, M. H., Frankaer, C. G., Bastidas-Oyanedel, J.-R., Brudecki, G. P., & Schmidt, J. E. (2017). Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. Bioresource Technology, 245, 540–548. doi:10.1016/j.biortech.2017.08.184
  • Fotidis, I. A., Wang, H., Fiedel, N. R., Luo, G., Karakashev, D. B., & Angelidaki, I. (2014). Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environmental Science & Technology, 48(13), 7669–7676. doi:10.1021/es5017075
  • Fu, Q., Fukushima, N., Maeda, H., Sato, K., & Kobayashi, H. (2015). Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Bioscience, Biotechnology, and Biochemistry, 79(7), 1200–1206.
  • Fu, Q., Kuramochi, Y., Fukushima, N., Maeda, H., Sato, K., & Kobayashi, H. (2014). Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environmental Science & Technology, 49(2), 1225–1232.
  • Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., & Esteban-Gutiérrez, M. (2017). Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresource Technology, 244, 1081–1088. doi:10.1016/j.biortech.2017.07.187
  • Ge, H., Jensen, P. D., & Batstone, D. J. (2011). Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Research, 45(4), 1597–1606. doi:10.1016/j.watres.2010.11.042
  • Ha, P. T., Lee, T. K., Rittmann, B. E., Park, J., & Chang, I. S. (2012). Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell. Environmental Science & Technology, 46(5), 3022–3030. doi:10.1021/es203861v
  • Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548. doi:10.1016/j.ijhydene.2013.12.022
  • Hoelzle, R. D., Virdis, B., & Batstone, D. J. (2014). Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnology and Bioengineering, 111(11), 2139–2154. doi:10.1002/bit.25321
  • Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57, 850–866. doi:10.1016/j.rser.2015.12.112
  • Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2017). Membrane fouling control in membrane bioreactors (MBRs) using granular materials. Bioresource Technology, 240, 9–24. doi:10.1016/j.biortech.2017.03.005
  • Jiang, L., Wang, J., Liang, S., Cai, J., Xu, Z., Cen, P., … Li, S. (2011). Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 108(1), 31–40. doi:10.1002/bit.22927
  • Jones, R. J., Massanet-Nicolau, J., Mulder, M. J. J., Premier, G., Dinsdale, R., & Guwy, A. (2017). Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter. Bioresource Technology, 229, 46–52. doi:10.1016/j.biortech.2017.01.015
  • Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F., & Kang, G. S. (2006). Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environmental Science & Technology, 40(20), 6449–6454. doi:10.1021/es0613512
  • Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. doi:10.1016/j.biortech.2015.10.009
  • Kato, S. (2015). Biotechnological aspects of microbial extracellular electron transfer. Microbes and Environments, 30(2), 133–139. doi:10.1264/jsme2.ME15028
  • Khalid, A., Aslam, M., Qyyum, M. A., Faisal, A., Khan, A. L., Ahmed, F., … Yasin, M. (2019). Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renewable and Sustainable Energy Reviews, 105, 427–443. doi:10.1016/j.rser.2019.02.002
  • Khan, M. A., Ngo, H. H., Guo, W., Liu, Y., Nghiem, L. D., Chang, S. W., … Jia, H. (2019). Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor. Bioresource Technology, 271, 100–108. doi:10.1016/j.biortech.2018.09.075
  • Khan, M. A., Ngo, H. H., Guo, W. S., Liu, Y., Nghiem, L. D., Hai, F. I., … Wu, Y. (2016). Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresource Technology, 219, 738–748. doi:10.1016/j.biortech.2016.08.073
  • Khiewwijit, R., Temmink, H., Labanda, A., Rijnaarts, H., & Keesman, K. J. (2015). Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. Bioresource Technology, 197, 295–301. doi:10.1016/j.biortech.2015.08.112
  • Khor, W. C., Andersen, S., Vervaeren, H., & Rabaey, K. (2017). Electricity-assisted production of caproic acid from grass. Biotechnology for Biofuels, 10(1), 180.
  • Kim, M.-S., Na, J.-G., Lee, M.-K., Ryu, H., Chang, Y.-K., Triolo, J. M., … Kim, D.-H. (2016). More value from food waste: Lactic acid and biogas recovery. Water Research, 96, 208–216. doi:10.1016/j.watres.2016.03.064
  • Kleerebezem, R., Joosse, B., Rozendal, R., & Loosdrecht, M. C. M. (2015). Anaerobic digestion without biogas? Reviews in Environmental Science and Bio/Technology, 14(4), 787–801. doi:10.1007/s11157-015-9374-6
  • Kokkoli, A., Zhang, Y., & Angelidaki, I. (2018). Microbial electrochemical separation of CO2 for biogas upgrading. Bioresource Technology, 247, 380–386. doi:10.1016/j.biortech.2017.09.097
  • Komkova, E. N., Stamatialis, D. F., Strathmann, H., & Wessling, M. (2004). Anion-exchange membranes containing diamines: Preparation and stability in alkaline solution. Journal of Membrane Science, 244(1–2), 25–34. doi:10.1016/j.memsci.2004.06.026
  • Kongjan, P., Min, B., & Angelidaki, I. (2009). Biohydrogen production from xylose at extreme thermophilic temperatures (70 °C) by mixed culture fermentation. Water Research, 43(5), 1414–1424. doi:10.1016/j.watres.2008.12.016
  • Krakat, N., Demirel, B., Anjum, R., & Dietz, D. (2017). Methods of ammonia removal in anaerobic digestion: A review. Water Science and Technology, 76(8), 1925–1938.
  • Kumar, G., Bakonyi, P., Kobayashi, T., Xu, K.-Q., Sivagurunathan, P., Kim, S.-H., … Bélafi-Bakó, K. (2016). Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen. Renewable and Sustainable Energy Reviews, 57, 879–891. doi:10.1016/j.rser.2015.12.107
  • Kumar, R., Ghosh, A. K., & Pal, P. (2019). Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Conversion and Management, 181, 593–607. doi:10.1016/j.enconman.2018.12.050
  • Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2015). Continuous ethanol production from sugarcane bagasse hydrolysate at high temperature with cell recycle and in-situ recovery of ethanol. Chemical Engineering Science, 138, 524–530. doi:10.1016/j.ces.2015.08.035
  • Labatut, R. A., Angenent, L. T., & Scott, N. R. (2014). Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability? Water Research, 53, 249–258. doi:10.1016/j.watres.2014.01.035
  • Lewandowicz, G., Białas, W., Marczewski, B., & Szymanowska, D. (2011). Application of membrane distillation for ethanol recovery during fuel ethanol production. Journal of Membrane Science, 375(1–2), 212–219. doi:10.1016/j.memsci.2011.03.045
  • Li, N., He, L., Lu, Y.-Z., Zeng, R. J., & Sheng, G.-P. (2017). Robust performance of a novel anaerobic biofilm membrane bioreactor with mesh filter and carbon fiber (ABMBR) for low to high strength wastewater treatment. Chemical Engineering Journal, 313, 56–64. doi:10.1016/j.cej.2016.12.073
  • Liew, F., Martin, M. E., Tappel, R. C., Heijstra, B. D., Mihalcea, C., & Köpke, M. (2016). Gas fermentation – A flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks. Frontiers in Microbiology, 7, 694.
  • López-Garzón, C. S., & Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 32(5), 873–904. doi:10.1016/j.biotechadv.2014.04.002
  • Lovley, D. R. (2017). Happy together: Microbial communities that hook up to swap electrons. The Isme Journal, 11(2), 327–336. doi:10.1038/ismej.2016.136
  • Luo, G., Jing, Y., Lin, Y., Zhang, S., & An, D. (2018). A novel concept for syngas biomethanation by two-stage process: Focusing on the selective conversion of syngas to acetate. Science of the Total Environment, 645, 1194–1200. doi:10.1016/j.scitotenv.2018.07.263
  • Luo, G., Xie, L., Zhou, Q., & Angelidaki, I. (2011). Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresource Technology, 102(18), 8700–8706. doi:10.1016/j.biortech.2011.02.012
  • Madigan, M., Martinko, J., Bender, K., Buckley, D., & Stahl, D. (2015). Brock biology of microorganisms (14th ed.). Harlow: Pearson Education Limited.
  • Mahmoud, M., Torres, C. I., & Rittmann, B. E. (2017). Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells. Environmental Science & Technology, 51(22), 13461–13470. doi:10.1021/acs.est.6b05620
  • Mai, D. T., Kunacheva, C., & Stuckey, D. C. (2018). A review of posttreatment technologies for anaerobic effluents for discharge and recycling of wastewater. Critical Reviews in Environmental Science and Technology, 48(2), 167–209. doi:10.1080/10643389.2018.1443667
  • Martin, M. E., Richter, H., Saha, S., & Angenent, L. T. (2016). Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnology and Bioengineering, 113(3), 531–539. doi:10.1002/bit.25827
  • Martins, G., Salvador, A. F., Pereira, L., & Alves, M. M. (2018). Methane production and conductive materials: A critical review. Environmental Science & Technology, 52(18), 10241–10253. doi:10.1021/acs.est.8b01913
  • Meabe, E., Déléris, S., Soroa, S., & Sancho, L. (2013). Performance of anaerobic membrane bioreactor for sewage sludge treatment: Mesophilic and thermophilic processes. Journal of Membrane Science, 446, 26–33. doi:10.1016/j.memsci.2013.06.018
  • Mohr, T., Aliyu, H., Küchlin, R., Polliack, S., Zwick, M., Neumann, A., … de Maayer, P. (2018). CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius. Microbial Cell Factories, 17(1), 108.
  • Molitor, B., Richter, H., Martin, M. E., Jensen, R. O., Juminaga, A., Mihalcea, C., & Angenent, L. T. (2016). Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries. Bioresource Technology, 215, 386–396. doi:10.1016/j.biortech.2016.03.094
  • Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). The environmental biorefinery: State-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chemistry, 20(14), 3159–3179. doi:10.1039/C8GC00572A
  • Narihiro, T., Nobu, M. K., Tamaki, H., Kamagata, Y., Sekiguchi, Y., & Liu, W.-T. (2016). Comparative genomics of syntrophic branched-chain fatty acid degrading bacteria. Microbes and Environments, 31(3), 288–292. doi:10.1264/jsme2.ME16057
  • Nielsen, H. B., Mladenovska, Z., & Ahring, B. K. (2007). Bioaugmentation of a two-stage thermophilic (68 °C/55 °C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnology and Bioengineering, 97(6), 1638–1643. doi:10.1002/bit.21342
  • Outram, V., Lalander, C.-A., Lee, J. G. M., Davies, E. T., & Harvey, A. P. (2017). Applied in situ product recovery in ABE fermentation. Biotechnology Progress, 33(3), 563–579. doi:10.1002/btpr.2446
  • Paltrinieri, L., Huerta, E., Puts, T., van Baak, W., Verver, A. B., Sudhölter, E. J. R., & de Smet, L. C. P. M. (2019). Functionalized anion-exchange membranes facilitate electrodialysis of citrate and phosphate from model dairy wastewater. Environmental Science & Technology, 53(5), 2396–2404. doi:10.1021/acs.est.8b05558
  • Park, J., Attia, N. F., Jung, M., Lee, M. E., Lee, K., Chung, J., & Oh, H. (2018). Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation. Energy, 158, 9–16. doi:10.1016/j.energy.2018.06.010
  • Pawar, S., & Niel, E. J. (2013). Thermophilic biohydrogen production: How far are we? Applied Microbiology and Biotechnology, 97(18), 7999–8009. doi:10.1007/s00253-013-5141-1
  • Pawar, S. S., Nkemka, V. N., Zeidan, A. A., Murto, M., & van Niel, E. W. J. (2013). Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. International Journal of Hydrogen Energy, 38(22), 9121–9130. doi:10.1016/j.ijhydene.2013.05.075
  • Prochaska, K., Antczak, J., Regel-Rosocka, M., & Szczygiełda, M. (2018). Removal of succinic acid from fermentation broth by multistage process (membrane separation and reactive extraction). Separation and Purification Technology, 192(Suppl C), 360–368. doi:10.1016/j.seppur.2017.10.043
  • Ramió-Pujol, S., Ganigué, R., Bañeras, L., & Colprim, J. (2015). Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresource Technology, 192, 296–303. doi:10.1016/j.biortech.2015.05.077
  • Redwood, M. D., Orozco, R. L., Majewski, A. J., & Macaskie, L. E. (2012). An integrated biohydrogen refinery: Synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresource Technology, 119, 384–392. doi:10.1016/j.biortech.2012.05.040
  • Regueira, A., González-Cabaleiro, R., Ofiţeru, I. D., Rodríguez, J., & Lema, J. M. (2018). Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations. Water Research, 141, 349–356. doi:10.1016/j.watres.2018.05.013
  • Roghair, M., Hoogstad, T., Strik, D. P. B. T. B., Plugge, C. M., Timmers, P. H. A., Weusthuis, R. A., … Buisman, C. J. N. (2018). Controlling ethanol use in chain elongation by CO2 loading rate. Environmental Science & Technology, 52(3), 1496–1505. doi:10.1021/acs.est.7b04904
  • Roghair, M., Liu, Y., Adiatma, J. C., Weusthuis, R. A., Bruins, M. E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2018). Effect of n-caproate concentration on chain elongation and competing processes. ACS Sustainable Chemistry & Engineering, 6(6), 7499–7506. doi:10.1021/acssuschemeng.8b00200
  • Safak Boroglu, M., & Yumru, A. B. (2017). Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology, 173, 269–279. doi:10.1016/j.seppur.2016.09.037
  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. doi:10.1016/j.jpowsour.2017.03.109
  • Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., … Adani, F. (2012). Two-stage vs single-stage thermophilic anaerobic digestion: Comparison of energy production and biodegradation efficiencies. Environmental Science & Technology, 46(15), 8502–8510. doi:10.1021/es301376n
  • Schuchmann, K., & Muller, V. (2014). Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nature Reviews Microbiology, 12(12), 809–821. doi:10.1038/nrmicro3365
  • Schut, G. J., & Adams, M. W. W. (2009). The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production. Journal of Bacteriology, 191(13), 4451–4457. doi:10.1128/JB.01582-08
  • Scoma, A., Varela-Corredor, F., Bertin, L., Gostoli, C., & Bandini, S. (2016). Recovery of VFAs from anaerobic digestion of dephenolized Olive Mill wastewaters by electrodialysis. Separation and Purification Technology, 159(Suppl C), 81–91. doi:10.1016/j.seppur.2015.12.029
  • Sekar, N., Wu, C.-H., Adams, M. W. W., & Ramasamy, R. P. (2017). Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90 °C. Biotechnology and Bioengineering, 114(7), 1419–1427. doi:10.1002/bit.26271
  • Serna-Maza, A., Heaven, S., & Banks, C. J. (2014). Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresource Technology, 152(0), 307–315. doi:10.1016/j.biortech.2013.10.093
  • Shahmansouri, A., Min, J., Jin, L., & Bellona, C. (2015). Feasibility of extracting valuable minerals from desalination concentrate: A comprehensive literature review. Journal of Cleaner Production, 100, 4–16. doi:10.1016/j.jclepro.2015.03.031
  • Shehab, N. A., Ortiz-Medina, J. F., Katuri, K. P., Hari, A. R., Amy, G., Logan, B. E., & Saikaly, P. E. (2017). Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresource Technology, 239, 82–86. doi:10.1016/j.biortech.2017.04.122
  • Shen, N., Dai, K., Xia, X.-Y., Zeng, R. J., & Zhang, F. (2018). Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. Journal of Cleaner Production, 202, 536–542. doi:10.1016/j.jclepro.2018.08.162
  • Shin, C., Chelsea Chen, X., Prausnitz, J. M., & Balsara, N. P. (2017). Effect of block copolymer morphology controlled by casting-solvent quality on pervaporation of butanol/water mixtures. Journal of Membrane Science, 523, 588–595. doi:10.1016/j.memsci.2016.09.054
  • Shrestha, N., Chilkoor, G., Vemuri, B., Rathinam, N., Sani, R. K., & Gadhamshetty, V. (2018). Extremophiles for microbial-electrochemistry applications: A critical review. Bioresource Technology, 255, 318–330. doi:10.1016/j.biortech.2018.01.151
  • Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568–577. doi:10.1038/nrmicro2166
  • Stephen, A. J., Archer, S. A., Orozco, R. L., & Macaskie, L. E. (2017). Advances and bottlenecks in microbial hydrogen production. Microbial Biotechnology, 10(5), 1120–1127. doi:10.1111/1751-7915.12790
  • Sun, W., Jia, W., Xia, C., Zhang, W., & Ren, Z. (2017). Study of in situ ethanol recovery via vapor permeation from fermentation. Journal of Membrane Science, 530, 192–200. doi:10.1016/j.memsci.2017.02.034
  • Tapia-Venegas, E., Ramirez-Morales, J. E., Silva-Illanes, F., Toledo-Alarcón, J., Paillet, F., Escudie, R., … Ruiz-Filippi, G. (2015). Biohydrogen production by dark fermentation: Scaling-up and technologies integration for a sustainable system. Reviews in Environmental Science and Bio/Technology, 14(4), 761–785. doi:10.1007/s11157-015-9383-5
  • Tomei, M. C., Braguglia, C. M., Cento, G., & Mininni, G. (2009). Modeling of anaerobic digestion of sludge. Critical Reviews in Environmental Science and Technology, 39(12), 1003–1051. doi:10.1080/10643380801977818
  • Venkiteshwaran, K., Milferstedt, K., Hamelin, J., & Zitomer, D. H. (2016). Anaerobic digester bioaugmentation influences quasi steady state performance and microbial community. Water Research, 104, 128–136. doi:10.1016/j.watres.2016.08.012
  • Wan, J., Jing, Y., Zhang, S., Angelidaki, I., & Luo, G. (2016). Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. Water Research, 102, 524–532. doi:10.1016/j.watres.2016.07.002
  • Wang, D., Ai, P., Yu, L., Tan, Z., & Zhang, Y. (2015). Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosystems Engineering, 132, 47–55. doi:10.1016/j.biosystemseng.2015.02.007
  • Wang, D., Liu, Y., Ngo, H. H., Zhang, C., Yang, Q., Peng, L., … Ni, B.-J. (2017). Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresource Technology, 238, 343–351. doi:10.1016/j.biortech.2017.04.054
  • Wang, H., Zhang, Y., & Angelidaki, I. (2016). Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions. Water Research, 105, 314–319. doi:10.1016/j.watres.2016.09.006
  • Wang, Q., Tan, G.-Y. A., Azari, M., Huang, X., Denecke, M., Men, Y., … Lee, P.-H. (2018). Insights into the roles of anammox bacteria in post-treatment of anaerobically-treated sewage. Critical Reviews in Environmental Science and Technology, 48(6), 655–684. doi:10.1080/10643389.2018.1474679
  • Wang, X., Wang, Y., Zhang, X., Feng, H., & Xu, T. (2013). In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: Continuous operation. Bioresource Technology, 147, 442–448. doi:10.1016/j.biortech.2013.08.045
  • Wang, Y.-Q., Yu, S.-J., Zhang, F., Xia, X.-Y., & Zeng, R. J. (2017). Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Applied Microbiology and Biotechnology, 101(6), 2619–2627. doi:10.1007/s00253-017-8124-9
  • Wang, Y.-Q., Zhang, F., Zhang, W., Dai, K., Wang, H.-J., Li, X., & Zeng, R. J. (2018). Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25 °C. Bioresource Technology, 249, 659–665. doi:10.1016/j.biortech.2017.10.054
  • Ward, A. J., Arola, K., Thompson Brewster, E., Mehta, C. M., & Batstone, D. J. (2018). Nutrient recovery from wastewater through pilot scale electrodialysis. Water Research, 135, 57–65. doi:10.1016/j.watres.2018.02.021
  • Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., … Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209–237. doi:10.1016/j.progpolymsci.2018.01.004
  • Weimer, P. J., Nerdahl, M., & Brandl, D. J. (2015). Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresource Technology, 175, 97–101. doi:10.1016/j.biortech.2014.10.054
  • Woldemariam, D., Kullab, A., Khan, E. U., & Martin, A. (2018). Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study. Renewable Energy, 128, 484–494. doi:10.1016/j.renene.2017.06.009
  • Woodward, J., Orr, M., Cordray, K., & Greenbaum, E. (2000). Biotechnology – Enzymatic production of biohydrogen. Nature, 405(6790), 1014–1015. doi:10.1038/35016633
  • Xia, A., Cheng, J., & Murphy, J. D. (2016). Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnology Advances, 34(5), 451–472. doi:10.1016/j.biotechadv.2015.12.009
  • Xu, J., Hao, J., Guzman, J. J. L., Spirito, C. M., Harroff, L. A., & Angenent, L. T. (2018). Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: No external e-donor. Joule, 2(2), 280–295. doi:10.1016/j.joule.2017.11.008
  • Xue, C., Liu, F., Xu, M., Zhao, J., Chen, L., Ren, J., … Yang, S.-T. (2016). A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnology and Bioengineering, 113(1), 120–129. doi:10.1002/bit.25666
  • Yang, G., & Wang, J. (2017). Fermentative hydrogen production from sewage sludge. Critical Reviews in Environmental Science and Technology, 47(14), 1219–1281. doi:10.1080/10643389.2017.1348107
  • Young, J., Chung, D., Bomble, Y., Himmel, M., & Westpheling, J. (2014). Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnology for Biofuels, 7(1), 142.
  • Yun, Y.-M., Sung, S., Kang, S., Kim, M.-S., & Kim, D.-H. (2017). Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading. Energy, 135, 294–302. doi:10.1016/j.energy.2017.06.133
  • Zhang, F., Chen, Y., Dai, K., Shen, N., & Zeng, R. J. (2015). The glucose metabolic distribution in thermophilic (55 °C) mixed culture fermentation: A chemostat study. International Journal of Hydrogen Energy, 40(2), 919–926. doi:10.1016/j.ijhydene.2014.11.098
  • Zhang, F., Zhang, Y., Chen, Y., Dai, K., van Loosdrecht, M. C. M., & Zeng, R. J. (2015). Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation. Applied Energy, 148, 326–333. doi:10.1016/j.apenergy.2015.03.104
  • Zhang, P., Chen, Y., & Zhou, Q. (2009). Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research, 43(15), 3735–3742. doi:10.1016/j.watres.2009.05.036
  • Zhang, S., Chang, J., Lin, C., Pan, Y., Cui, K., Zhang, X., … Huang, X. (2017). Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon. Bioresource Technology, 245(Part A), 132–137. doi:10.1016/j.biortech.2017.08.111
  • Zhang, S., Chang, J., Liu, W., Pan, Y., Cui, K., Chen, X., … Huang, X. (2018). A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system. Science of the Total Environment, 642, 322–326. doi:10.1016/j.scitotenv.2018.06.043
  • Zhang, W., Dai, K., Xia, X.-Y., Wang, H.-J., Chen, Y., Lu, Y.-Z., … Zeng, R. J. (2018). Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation. Bioresource Technology, 264, 17–23. doi:10.1016/j.biortech.2018.05.049
  • Zhang, Y., Zhang, F., Chen, M., Chu, P.-N., Ding, J., & Zeng, R. J. (2013). Hydrogen supersaturation in extreme-thermophilic (70 °C) mixed culture fermentation. Applied Energy, 109, 213–219. doi:10.1016/j.apenergy.2013.04.019
  • Zhao, J., Wang, D., Li, X., Yang, Q., Chen, H., Zhong, Y., & Zeng, G. (2015). Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Research, 78, 111–120. doi:10.1016/j.watres.2015.04.012
  • Zhao, Z., Li, Y., Quan, X., & Zhang, Y. (2017). Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Research, 115, 266–277. doi:10.1016/j.watres.2017.02.067

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.