1,582
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach – A critical review

, , , &
Pages 31-71 | Published online: 22 Jun 2019

References

  • Adrees, M., Ali, S., Rizwan, M., Zia-Ur-Rehman, M., Ibrahim, M., Abbas, F., … Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186–197. doi: 10.1016/j.ecoenv.2015.05.011
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., … Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation – A review. Earth Science Reviews, 171, 621–645. doi: 10.1016/j.earscirev.2017.06.005
  • Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 43(24), 9361–9367. doi: 10.1021/es9022738
  • Awad, Y. M., Wang, J., Igalavithana, A. D., Tsang, D. C. W., Kim, K.-H., Lee, S. S., & Ok, Y. S. (2018). Biochar effects on rice paddy: Meta-analysis. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 1–32). Cambridge, MA: Academic Press.
  • Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. D. (2017). The journey of arsenic from soil to grain in rice. Frontiers in Plant Science, 8, 1007. doi: 10.3389/fpls.2017.01007
  • Babu, T., Tubana, B., Datnoff, L., Yzenas, J., & Maiti, K. (2016). Release and sorption pattern of monosilicic acid from silicon fertilizers in different soils of Louisiana: A laboratory incubation study. Communications in Soil Science and Plant Analysis, 47(12), 1559–1577. doi: 10.1080/00103624.2016.1194995
  • Bachate, S., Cavalca, L., & Andreoni, V. (2009). Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. Journal of Applied Microbiology, 107(1), 145–156. doi: 10.1111/j.1365-2672.2009.04188.x
  • Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y. S., & Vithanage, M. (2017). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 39(2), 391–401. doi: 10.1007/s10653-016-9842-0
  • Basu, B., Kundu, M., Hedayatullah, M., Kundu, C., Bandyopadhyay, P., Bhattacharya, K., & Sarkar, S. (2015). Mitigation of arsenic in rice through deficit irrigation in field and use of filtered water in kitchen. International Journal of Environmental Science and Technology, 12(6), 2065–2070. doi: 10.1007/s13762-014-0568-1
  • Batista, B. L., Nigar, M., Mestrot, A., Rocha, B. A., Junior, F. B., Price, A. H., … Feldmann, J. (2014). Identification and quantification of phytochelatins in roots of rice to long-term exposure: Evidence of individual role on arsenic accumulation and translocation. Journal of Experimental Botany, 65, 1467–1479. doi: 10.1093/jxb/eru018
  • Beiyuan, J., Awad, Y. M., Beckers, F., Tsang, D. C. W., Ok, Y. S., & Rinklebe, J. (2017). Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 178, 110–118. doi: 10.1016/j.chemosphere.2017.03.022
  • Bengough, A. G., McKenzie, B., Hallett, P., & Valentine, T. (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62(1), 59–68. doi: 10.1093/jxb/erq350
  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 379(2–3), 109–120. doi: 10.1016/j.scitotenv.2007.02.037
  • Boldrin, P. F., de Figueiredo, M. A., Yang, Y., Luo, H., Giri, S., Hart, J. J., … Li, L. (2016). Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiologia Plantarum, 158(1), 80–91. doi: 10.1111/ppl.12465
  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J.-S., … Guilherme, L. R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35. doi: 10.1016/j.scitotenv.2011.06.024
  • Burgin, A. J., Yang, W. H., Hamilton, S. K., & Silver, W. L. (2011). Beyond carbon and nitrogen: How the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment, 9(1), 44–52. doi: 10.1890/090227
  • Burton, E. D., Johnston, S. G., & Kocar, B. D. (2014). Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environmental Science & Technology, 48(23), 13660–13667. doi: 10.1021/es503963k
  • Carrijo, D. R., Akbar, N., Reis, A. F., Li, C., Gaudin, A. C., Parikh, S. J., … Linquist, B. A. (2018). Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. Field Crops Research, 222, 101–110. doi: 10.1016/j.fcr.2018.02.026
  • Charter, R., Tabatabai, M., & Schafer, J. (1995). Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Communications in Soil Science and Plant Analysis, 26(17–18), 3051–3062. doi: 10.1080/00103629509369508
  • Chatterjee, D., Halder, D., Majumder, S., Biswas, A., Nath, B., Bhattacharya, P., … Hazra, R. (2010). Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Research, 44(19), 5803–5812. doi: 10.1016/j.watres.2010.04.007
  • Chen, P., Li, J., Wang, H.-Y., Zheng, R.-L., & Sun, G.-X. (2017). Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environmental Science and Pollution Research, 24(27), 21739–21749. doi: 10.1007/s11356-017-9816-5
  • Chen, X.-P., Zhou, J., Lei, Y., He, C., Liu, X., Chen, Z., & Bao, P. (2014). The fate of arsenic in contaminated paddy soil with gypsum and ferrihydrite amendments. International Journal of Environment and Pollution, 56(1/2/3/4), 48–62. doi: 10.1504/IJEP.2014.067675
  • Chen, X. P., Zhu, Y. G., Hong, M. N., Kappler, A., & Xu, Y. X. (2008). Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environmental Toxicology and Chemistry, 27(4), 881–887. doi: 10.1897/07-368.1
  • Chen, Y., Han, Y.-H., Cao, Y., Zhu, Y.-G., Rathinasabapathi, B., & Ma, L. Q. (2017). Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science, 8, 268doi: 10.3389/fpls.2017.00268
  • Chou, M.-L., Jean, J.-S., Sun, G.-X., Yang, C.-M., Hseu, Z.-Y., Kuo, S.-F., … Yang, Y.-J. (2016). Irrigation practices on rice crop production in arsenic-rich paddy soil. Crop Science, 56(1), 422–431. doi: 10.2135/cropsci2015.04.0233
  • Choudhury, B., Chowdhury, S., & Biswas, A. K. (2011). Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. Journal of Plant Interactions, 6(1), 15–24. doi: 10.1080/17429140903487552
  • Couture, R.-M., Rose, J., Kumar, N., Mitchell, K., Wallschlager, D., & Van Cappellen, P. (2013). Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: A kinetic and spectroscopic investigation. Environmental Science & Technology, 47(11), 5652–5659. doi: 10.1021/es3049724
  • Das, S., Chou, M.-L., Jean, J.-S., Liu, C.-C., & Yang, H.-J. (2016). Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Science of the Total Environment, 542, 642–652. doi: 10.1016/j.scitotenv.2015.10.122
  • Desplanques, V., Cary, L., Mouret, J.-C., Trolard, F., Bourrié, G., Grauby, O., & Meunier, J.-D. (2006). Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration, 88(1–3), 190–193. doi: 10.1016/j.gexplo.2005.08.036
  • Devkota, K., Manschadi, A., Lamers, J., Humphreys, E., Devkota, M., Egamberdiev, O., … Vlek, P. (2013). Growth and yield of rice (Oryza sativa L.) under resource conservation technologies in the irrigated drylands of Central Asia. Field Crops Research, 149, 115–126. doi: 10.1016/j.fcr.2013.04.015
  • Ding, L.-J., Su, J.-Q., Xu, H.-J., Jia, Z.-J., & Zhu, Y.-G. (2015). Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. The ISME Journal, 9(3), 721–734. doi: 10.1038/ismej.2014.159
  • Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., … Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. paddy soil. Environmental Science & Technology, 41(17), 5967–5972. doi: 10.1021/es0702972
  • Dixit, G., Singh, A. P., Kumar, A., Singh, P. K., Kumar, S., Dwivedi, S., … Tripathi, R. D. (2015). Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. Journal of Hazardous Materials, 298, 241–251. doi: 10.1016/j.jhazmat.2015.06.008
  • Dong, D. T., Yamaguchi, N., Makino, T., & Amachi, S. (2014). Effect of soil microorganisms on arsenite oxidation in paddy soils under oxic conditions. Soil Science and Plant Nutrition, 60(3), 377–383. doi: 10.1080/00380768.2014.897924
  • Dong, M. F., Feng, R. W., Wang, R. G., Sun, Y., Ding, Y. Z., Xu, Y. M., … Guo, J. K. (2016). Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues. Plant and Soil, 404(1–2), 75–83. doi: 10.1007/s11104-016-2829-x
  • Duan, G., Kamiya, T., Ishikawa, S., Arao, T., & Fujiwara, T. (2012). Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant and Cell Physiology, 53(1), 154–163. doi: 10.1093/pcp/pcr161
  • Edwardson, C. F., Planer-Friedrich, B., & Hollibaugh, J. T. (2014). Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. FEMS Microbiology Ecology, 90(3), 858–868. doi: 10.1111/1574-6941.12440
  • Ehlert, K., Mikutta, C., & Kretzschmar, R. (2014). Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Environmental Science & Technology, 48(19), 11320–11329. doi: 10.1021/es5031323
  • Essington, M. E. (2015). Soil and water chemistry: An integrative approach. Boca Raton, FL: CRC Press.
  • Farrow, E. M., Wang, J., Burken, J. G., Shi, H., Yan, W., Yang, J., … Deng, B. (2015). Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicology and Environmental Safety, 118, 55–61. doi: 10.1016/j.ecoenv.2015.04.014
  • Fayiga, A. O., & Saha, U. K. (2016). Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma, 284, 132–143. doi: 10.1016/j.geoderma.2016.09.003
  • Fendorf, S., Eick, M. J., Grossl, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. 1. surface structure. Environmental Science & Technology, 31(2), 315–320. doi: 10.1021/es950653t
  • Fixen, P. E., & Johnston, A. M. (2012). World fertilizer nutrient reserves: A view to the future. Journal of the Science of Food and Agriculture, 92(5), 1001–1005. doi: 10.1002/jsfa.4532
  • Fleck, A. T., Mattusch, J., & Schenk, M. K. (2013). Silicon decreases the arsenic level in rice grain by limiting arsenite transport. Journal of Plant Nutrition and Soil Science, 176, 785–794.
  • Geng, C.-N., Zhu, Y.-G., Liu, W.-J., & Smith, S. E. (2005). Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany, 83(4), 321–331. doi: 10.1016/j.aquabot.2005.07.003
  • Ghosh, W., & Dam, B. (2009). Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiology Reviews, 33(6), 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x
  • Hayat, K., Menhas, S., Bundschuh, J., & Chaudhary, H. J. (2017). Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: A critical review. Journal of Cleaner Production, 151, 427–438. doi: 10.1016/j.jclepro.2017.03.084
  • He, L., Fan, S., Müller, K., Wang, H., Che, L., Xu, S., … Bolan, N. S. (2018). Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of the Total Environment, 625, 987–993. doi: 10.1016/j.scitotenv.2018.01.002
  • Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2015). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15(1), 126–138. doi: 10.1007/s11368-014-0967-4
  • Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science & Technology, 50(8), 4178–4185. doi: 10.1021/acs.est.5b05424
  • Honma, T., Ohba, H., Kaneko, A., Nakamura, K., Makino, T., & Katou, H. (2016). Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L. cv. Koshihikari) under different water management practices. Soil Science and Plant Nutrition, 62(4), 349–356. doi: 10.1080/00380768.2016.1196569
  • Hossain, M., Jahiruddin, M., Loeppert, R., Panaullah, G., Islam, M., & Duxbury, J. (2009). The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil, 317(1–2), 167–176. doi: 10.1007/s11104-008-9798-7
  • Hu, P., Huang, J., Ouyang, Y., Wu, L., Song, J., Wang, S., … Huang, Y. (2013). Water management affects arsenic and cadmium accumulation in different rice cultivars. Environmental Geochemistry and Health, 35(6), 767–778. doi: 10.1007/s10653-013-9533-z
  • Hu, P., Li, Z., Yuan, C., Ouyang, Y., Zhou, L., Huang, J., … Wu, L. (2013). Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments, 13(5), 916–924. doi: 10.1007/s11368-013-0658-6
  • Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., & Christie, P. (2015). Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences (China), 27, 225–231. doi: 10.1016/j.jes.2014.05.048
  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216. doi: 10.1016/j.watres.2014.10.009
  • Huq, S. I., Shila, U., & Joardar, J. (2006). Arsenic mitigation strategy for rice, using water regime management. Land Contamination & Reclamation, 14(4), 805–813. doi: 10.2462/09670513.798
  • International Agency for Research on Cancer (IARC). (2004). Some drinking-water disinfectants and contaminants, including arsenic. Lyon, France: IARC.
  • Jayawardhana, Y., Kumarathilaka, P., Mayakaduwa, S., Weerasundara, L., Bandara, T., & Vithanage, M. (2018). Characteristics of municipal solid waste biochar: Its potential to be used in environmental remediation. In S. Ghosh (Ed.), Utilization and management of bioresources (pp. 209–220). Singapore: Springer.
  • Jayawardhana, Y., Mayakaduwa, S. S., Kumarathilaka, P., Gamage, S., & Vithanage, M. (2017). Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environmental Geochemistry and Health, 1–15. doi: 10.1007/s10653-017-9973-y
  • Jia, Y., Bao, P., & Zhu, Y.-G. (2015). Arsenic bioavailability to rice plant in paddy soil: Influence of microbial sulfate reduction. Journal of Soils and Sediments, 15(9), 1960–1967. doi: 10.1007/s11368-015-1133-3
  • Jia, Y., Huang, H., Sun, G.-X., Zhao, F.-J., & Zhu, Y.-G. (2012). Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environmental Science & Technology, 46(15), 8090–8096. doi: 10.1021/es300499a
  • Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar as an electron shuttle between bacteria and Fe (III) minerals. Environmental Science & Technology Letters, 1(8), 339–344. doi: 10.1021/ez5002209
  • Kerl, C. F., Rafferty, C., Clemens, S., & Planer-Friedrich, B. (2018). Monothioarsenate uptake, transformation, and translocation in rice plants. Environmental Science & Technology, 52(16), 9154–9161. doi: 10.1021/acs.est.8b02202
  • Khan, S., Reid, B. J., Li, G., & Zhu, Y.-G. (2014). Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environment International, 68, 154–161. doi: 10.1016/j.envint.2014.03.017
  • Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., … Puschenreiter, M. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation, 17(11), 1005–1037. doi: 10.1080/15226514.2014.1003788
  • Kikuchi, T., Okazaki, M., Kimura, S. D., Motobayashi, T., Baasansuren, J., Hattori, T., & Abe, T. (2008). Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials. Journal of Hazardous Materials, 154(1–3), 294–299. doi: 10.1016/j.jhazmat.2007.10.025
  • Kim, S. C., Hong, Y. K., Oh, S. J., Oh, S. M., Lee, S. P., Kim, D. H., & Yang, J. E. (2017). Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields. Environmental Geochemistry and Health, 39(2), 345–352. doi: 10.1007/s10653-017-9921-x
  • Klüber, H. D., & Conrad, R. (1998). Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiology Ecology, 25(3), 301–318. doi: 10.1016/S0168-6496(98)00011-7
  • Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., … Schloter, M. (2010). Biogeochemistry of paddy soils. Geoderma, 157(1–2), 1–14. doi: 10.1016/j.geoderma.2010.03.009
  • Komárek, M., Vaněk, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review. Environmental Pollution, 172, 9–22. doi: 10.1016/j.envpol.2012.07.045
  • Kumarathilaka, P., Ahmad, M., Herath, I., Mahatantila, K., Athapattu, B. C. L., Rinklebe, J., … Vithanage, M. (2018). Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil. Science of the Total Environment, 625, 547–554. doi: 10.1016/j.scitotenv.2017.12.294
  • Kumarathilaka, P., Mayakaduwa, S., Herath, I., & Vithanage, M. (2015). Biochar: State of the art. In Y. S. Ok, S. M. Uchimiya, S. X. Chang, & N. Bolan (Eds.), Biochar: Production, characterization, and applications (pp. 18–42). Boca Raton, FL: CRC Press.
  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018a). Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment, 642, 485–496. doi: 10.1016/j.scitotenv.2018.06.030
  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018b). Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors – A review. Water Research, 140, 403–414. doi: 10.1016/j.watres.2018.04.034
  • Kumarathilaka, P., Seneweera, S., Ok, Y. S., Meharg, A., & Bundschuh, J. (2019). Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environment International, 127, 584–591. doi: 10.1016/j.envint.2019.04.004
  • Kumarathilaka, P., & Vithanage, M. (2017). Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. Journal of Chemistry, 2017, 1–10. doi: 10.1155/2017/6180636
  • Kumarathilaka, P., Wijesekara, H., Bolan, N., Kunhikrishnan, A., & Vithanage, M. (2017). Phytoremediation of landfill leachates. In A. Ansari, S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation-management of environmental contaminants (pp. 439–467). Cham, Switzerland: Springer.
  • Kumpiene, J., Bert, V., Dimitriou, I., Eriksson, J., Friesl-Hanl, W., Galazka, R., … Manier, N. (2014). Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Science of the Total Environment, 496, 510–522. doi: 10.1016/j.scitotenv.2014.06.130
  • Kuramata, M., Abe, T., Kawasaki, A., Ebana, K., Shibaya, T., Yano, M., & Ishikawa, S. (2013). Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice, 6(1), 3–10. doi: 10.1186/1939-8433-6-3
  • Lafferty, B. J., Ginder-Vogel, M., & Sparks, D. L. (2010). Arsenite oxidation by a poorly crystalline manganese-oxide 1. stirred-flow experiments. Environmental Science & Technology, 44(22), 8460–8466. doi: 10.1021/es102013p
  • Lakshmanan, V., Shantharaj, D., Li, G., Seyfferth, A. L., Sherrier, D. J., & Bais, H. P. (2015). A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta, 242(4), 1037–1050. doi: 10.1007/s00425-015-2340-2
  • Lee, C.-H., Huang, H.-H., Syu, C.-H., Lin, T.-H., & Lee, D.-Y. (2014). Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application. Journal of Hazardous Materials, 276, 253–261. doi: 10.1016/j.jhazmat.2014.05.046
  • Lee, C.-H., Wang, C.-C., Lin, H.-H., Lee, S. S., Tsang, D. C. W., Jien, S.-H., & Ok, Y. S. (2018). In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Science of the Total Environment, 619–620, 665–671. doi: 10.1016/j.scitotenv.2017.11.023
  • Lee, C.-H., Wu, C.-H., Syu, C.-H., Jiang, P.-Y., Huang, C.-C., & Lee, D.-Y. (2016). Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma, 270, 60–67. doi: 10.1016/j.geoderma.2016.01.003
  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. New York, NY: Routledge.
  • Lessl, J. T., Luo, J., & Ma, L. Q. (2014). Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. Journal of Hazardous Materials, 279, 485–492. doi: 10.1016/j.jhazmat.2014.06.056
  • Li, Y., Yu, S., Strong, J., & Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? Journal of Soils and Sediments, 12(5), 683–693. doi: 10.1007/s11368-012-0507-z
  • Liao, G., Wu, Q., Feng, R., Guo, J., Wang, R., Xu, Y., … Mo, L. (2016). Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies. Journal of Environmental Management, 170, 116–122. doi: 10.1016/j.jenvman.2016.01.008
  • Lin, L., Gao, M., Qiu, W., Wang, D., Huang, Q., & Song, Z. (2017). Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environmental Pollution, 231, 479–486. doi: 10.1016/j.envpol.2017.08.001
  • Liu, S., Lu, Y., Yang, C., Liu, C., Ma, L., & Dang, Z. (2017). Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environmental Science and Pollution Research, 24(30), 23815–23824. doi: 10.1007/s11356-017-9994-1
  • Liu, W.-J., Zhu, Y.-G., & Smith, F. (2005). Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil, 277(1–2), 127–138. doi: 10.1007/s11104-005-6453-4
  • Liu, W., Zhu, Y., Smith, F., & Smith, S. (2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany, 55(403), 1707–1713. doi: 10.1093/jxb/erh205
  • Luong, V. T., Kurz, E. E. C., Hellriegel, U., Luu, T. L., Hoinkis, J., & Bundschuh, J. (2018). Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research, 133, 110–122. doi: 10.1016/j.watres.2018.01.007
  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X.-Y., Su, Y.-H., McGrath, S. P., & Zhao, F.-J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931–9935. doi: 10.1073/pnas.0802361105
  • Ma, R., Shen, J., Wu, J., Tang, Z., Shen, Q., & Zhao, F.-J. (2014). Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environmental Pollution, 194, 217–223. doi: 10.1016/j.envpol.2014.08.004
  • Majumder, A., Bhattacharyya, K., Kole, S., & Ghosh, S. (2013). Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India. Environmental Science and Pollution Research International, 20(8), 5645–5653. doi: 10.1007/s11356-013-1560-x
  • Makino, T., Nakamura, K., Katou, H., Ishikawa, S., Ito, M., Honma, T., … Matsumoto, S. (2016). Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Science and Plant Nutrition, 62(4), 340–348. doi: 10.1080/00380768.2016.1203731
  • Mandal, A., Purakayastha, T., Patra, A., & Sanyal, S. (2012a). Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. influence of phosphatic fertilizers and repeated harvests. International Journal of Phytoremediation, 14(10), 978–995.
  • Mandal, A., Purakayastha, T., Patra, A., & Sanyal, S. (2012b). Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield. International Journal of Phytoremediation, 14(6), 621–628. doi: 10.1080/15226514.2011.619228
  • Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.
  • Marschner, C., & Tilley, T. D. (2017). Current advances in the chemistry of silicon: Not exactly a carbon copy. Dalton Transactions (Cambridge, England : 2003), 46(27), 8699–8700. doi: 10.1039/c7dt90112g
  • Matsumoto, S., Kasuga, J., Makino, T., & Arao, T. (2016). Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environmental and Experimental Botany, 125, 42–51. doi: 10.1016/j.envexpbot.2016.02.002
  • Matsumoto, S., Kasuga, J., Taiki, N., Makino, T., & Arao, T. (2015). Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena, 135, 328–335. doi: 10.1016/j.catena.2015.07.004
  • McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., … Parvez, F. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91. doi: 10.1016/j.scitotenv.2011.08.051
  • Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8–17. doi: 10.1016/j.envexpbot.2015.07.001
  • Mei, X., Ye, Z., & Wong, M. (2009). The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution (Barking, Essex : 1987), 157(8–9), 2550–2557. doi: 10.1016/j.envpol.2009.02.037
  • Meng, X. Y., Qin, J., Wang, L. H., Duan, G. L., Sun, G. X., Wu, H. L., … Zhu, Y. G. (2011). Arsenic biotransformation and volatilization in transgenic rice. The New Phytologist, 191(1), 49–56. doi: 10.1111/j.1469-8137.2011.03743.x
  • Mestrot, A., Merle, J. K., Broglia, A., Feldmann, J., & Krupp, E. M. (2011). Atmospheric stability of arsine and methylarsines. Environmental Science & Technology, 45(9), 4010–4015. doi: 10.1021/es2004649
  • Mew, M. (2016). Phosphate rock costs, prices and resources interaction. Science of the Total Environment, 542(Pt B), 1008–1012. doi: 10.1016/j.scitotenv.2015.08.045
  • Minamikawa, K., Takahashi, M., Makino, T., Tago, K., & Hayatsu, M. (2015). Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environmental Research Letters, 10(8), 084012. doi: 10.1088/1748-9326/10/8/084012
  • Miretzky, P., & Cirelli, A. F. (2010). Remediation of arsenic-contaminated soils by iron amendments: A review. Critical Reviews in Environmental Science and Technology, 40(2), 93–115. doi: 10.1080/10643380802202059
  • Mladenov, N., Zheng, Y., Simone, B., Bilinski, T. M., McKnight, D. M., Nemergut, D., … Ahmed, K. M. (2015). Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility. Environmental Science & Technology, 49(18), 10815–10824. doi: 10.1021/acs.est.5b01962
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202. doi: 10.1016/j.biortech.2014.01.120
  • Molina, M., Aburto, F., Calderón, R., Cazanga, M., & Escudey, M. (2009). Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil and Sediment Contamination, 18(4), 497–511. doi: 10.1080/15320380902962320
  • Moreno-Jiménez, E., Meharg, A. A., Smolders, E., Manzano, R., Becerra, D., Sanchez-Llerena, J., … Lopez-Pinero, A. (2014). Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of the Total Environment, 485, 468–473. doi: 10.1016/j.scitotenv.2014.03.106
  • Neset, T. S. S., & Cordell, D. (2012). Global phosphorus scarcity: Identifying synergies for a sustainable future. Journal of the Science of Food and Agriculture, 92(1), 2–6. doi: 10.1002/jsfa.4650
  • Newbigging, A. M., Paliwoda, R. E., & Le, X. C. (2015). Rice: Reducing arsenic content by controlling water irrigation. Journal of Environmental Sciences, 30, 129–131. doi: 10.1016/j.jes.2015.03.001
  • Norton, G., Duan, G.-L., Lei, M., Zhu, Y. G., Meharg, A., & Price, A. (2012). Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Annals of Applied Biology, 161(1), 46–56. doi: 10.1111/j.1744-7348.2012.00549.x
  • Norton, G. J., Shafaei, M., Travis, A. J., Deacon, C. M., Danku, J., Pond, D., … Zhang, H. (2017). Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 205, 1–13. doi: 10.1016/j.fcr.2017.01.016
  • Petruzzelli, G., Pedron, F., Rosellini, I., & Barbafieri, M. (2015). The bioavailability processes as a key to evaluate phytoremediation efficiency. In A. Ansari, S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 31–43). Cham, Switzerland: Springer.
  • Planer-Friedrich, B., Hartig, C., Lohmayer, R., Suess, E., McCann, S., & Oremland, R. (2015). Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate. Environmental Science & Technology, 49(11), 6554–6563. doi: 10.1021/acs.est.5b01165
  • Planer-Friedrich, B., Kühnlenz, T., Halder, D., Lohmayer, R., Wilson, N., Rafferty, C., & Clemens, S. (2017). Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana. Environmental Science & Technology, 51(12), 7187–7196. doi: 10.1021/acs.est.6b06028
  • Planer-Friedrich, B., Suess, E., Scheinost, A. C., & WallschläGer, D. (2010). Arsenic speciation in sulfidic waters: Reconciling contradictory spectroscopic and chromatographic evidence. Analytical Chemistry, 82(24), 10228–10235. doi: 10.1021/ac1024717
  • Praveen, A., Mehrotra, S., & Singh, N. (2017). Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots. Chemosphere, 184, 1327–1333. doi: 10.1016/j.chemosphere.2017.06.107
  • Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences, 103(7), 2075–2080. doi: 10.1073/pnas.0506836103
  • Quintela-Sabarís, C., Marchand, L., Kidd, P. S., Friesl-Hanl, W., Puschenreiter, M., Kumpiene, J., … Mench, M. (2017). Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment, 599–600, 1388–1398. doi: 10.1016/j.scitotenv.2017.04.187
  • Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C. W., Zia-Ur-Rehman, M., … Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90–105. doi: 10.1016/j.chemosphere.2017.05.013
  • Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D. C. W., Meers, E., … Ishaque, W. (2016). Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, 46(18), 1498–1528. doi: 10.1080/10643389.2016.1248199
  • Roberts, L. C., Hug, S. J., Dittmar, J., Voegelin, A., Kretzschmar, R., Wehrli, B., … Badruzzaman, A. B. M. (2010). Arsenic release from paddy soils during monsoon flooding. Nature Geoscience, 3(1), 53. doi: 10.1038/ngeo723
  • Sahoo, P. K., & Kim, K. (2013). A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal, 17(1), 107–122. doi: 10.1007/s12303-013-0004-4
  • Sahrawat, K. L. (2015). Redox potential and pH as major drivers of fertility in submerged rice soils: A conceptual framework for management. Communications in Soil Science and Plant Analysis, 46(13), 1597–1606. doi: 10.1080/00103624.2015.1043451
  • Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2013). Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1(4), 981–988. doi: 10.1016/j.jece.2013.08.009
  • Saraswat, S., & Rai, J. (2011). Complexation and detoxification of Zn and Cd in metal accumulating plants. Reviews in Environmental Science and Bio/Technology, 10(4), 327–339. doi: 10.1007/s11157-011-9250-y
  • Seyfferth, A. L., & Fendorf, S. (2012). Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environmental Science & Technology, 46(24), 13176–13183. doi: 10.1021/es3025337
  • Seyfferth, A. L., Morris, A. H., Gill, R., Kearns, K. A., Mann, J. N., Paukett, M., & Leskanic, C. (2016). Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. Journal of Agricultural and Food Chemistry, 64(19), 3760–3766. doi: 10.1021/acs.jafc.6b01201
  • Shelmerdine, P. A., Black, C. R., McGrath, S. P., & Young, S. D. (2009). Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environmental Pollution, 157(5), 1589–1596. doi: 10.1016/j.envpol.2008.12.029
  • Shi, S., Wang, T., Chen, Z., Tang, Z., Wu, Z., Salt, D. E., … Zhao, F. (2016). OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiology, 172(3), 1708–1719.
  • Shrestha, J., Rich, J. J., Ehrenfeld, J. G., & Jaffe, P. R. (2009). Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: Laboratory, field demonstrations, and push-pull rate determination. Soil Science and Plant Nutrition, 174, 156–164. doi: 10.1097/SS.0b013e3181988fbf
  • Shri, M., Dave, R., Diwedi, S., Shukla, D., Kesari, R., Tripathi, R. D., … Chakrabarty, D. (2014). Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Scientific Reports, 4, 5784.
  • Signes-Pastor, A. J., Carey, M., & Meharg, A. A. (2016). Inorganic arsenic in rice-based products for infants and young children. Food Chemistry, 191, 128–134. doi: 10.1016/j.foodchem.2014.11.078
  • Signes-Pastor, A. J., Vioque, J., Navarrete-Muñoz, E. M., Carey, M., Sunyer, J., Casas, M., … Amorós, R. (2017). Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. Environmental Research, 159, 69–75. doi: 10.1016/j.envres.2017.07.046
  • Singh, N., Srivastava, S., Rathaur, S., & Singh, N. (2016). Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. Journal of Environmental Sciences, 48, 112–119. doi: 10.1016/j.jes.2015.12.034
  • Somenahally, A. C., Hollister, E. B., Yan, W., Gentry, T. J., & Loeppert, R. H. (2011). Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science & Technology, 45(19), 8328–8335. doi: 10.1021/es2012403
  • Song, A., Fan, F., Yin, C., Wen, S., Zhang, Y., Fan, X., & Liang, Y. (2017). The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil. Biology and Fertility of Soils, 53(6), 627–638.
  • Song, W.-Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K.-H., Fujii-Kashino, M., … Ma, J. F. (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 111(44), 15699–15704. doi: 10.1073/pnas.1414968111
  • Spanu, A., Daga, L., Orlandoni, A. M., & Sanna, G. (2012). The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environmental Science & Technology, 46(15), 8333–8340. doi: 10.1021/es300636d
  • Srivastava, M., Ma, L. Q., & Santos, J. A. G. (2006). Three new arsenic hyperaccumulating ferns. Science of the Total Environment, 364(1–3), 24–31. doi: 10.1016/j.scitotenv.2005.11.002
  • Srivastava, S., Akkarakaran, J. J., Sounderajan, S., Shrivastava, M., & Suprasanna, P. (2016). Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma, 270, 33–42. doi: 10.1016/j.geoderma.2015.11.006
  • Suda, A., Baba, K., Akahane, I., & Makino, T. (2016). Use of water-treatment residue containing polysilicate-iron to stabilize arsenic in flooded soils and attenuate arsenic uptake by rice (Oryza sativa L.) plants. Soil Science and Plant Nutrition, 62(2), 111–116. doi: 10.1080/00380768.2015.1137200
  • Sun, W., Sierra-Alvarez, R., Fernandez, N., Sanz, J. L., Amils, R., Legatzki, A., … Field, J. A. (2009). Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiology Ecology, 68(1), 72–85. doi: 10.1111/j.1574-6941.2009.00653.x
  • Syed, M. A., Iftekharuddaula, K., Mian, M. K., Rasul, M. G., Rahmam, G. M., Panaullah, G. M., … Biswas, P. S. (2016). Main effect QTLs associated with arsenic phyto-toxicity tolerance at seedling stage in rice (Oryza sativa L.). Euphytica, 209(3), 805–814. doi: 10.1007/s10681-016-1683-5
  • Tang, Z., Chen, Y., Chen, F., Ji, Y., & Zhao, F.-J. (2017). OsPTR7 (OsNPF8. 1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant and Cell Physiology, 58(5), 904–913. doi: 10.1093/pcp/pcx029
  • Tiwari, M., Sharma, D., Dwivedi, S., Singh, M., Tripathi, R. D., & Trivedi, P. K. (2014). Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP 1, in arsenic transport and tolerance. Plant, Cell & Environment, 37(1), 140–152. doi: 10.1111/pce.12138
  • Touceda-González, M., Prieto-Fernández, Á., Renella, G., Giagnoni, L., Sessitsch, A., Brader, G., … Kidd, P. S. (2017). Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO). Environmental Pollution, 231, 237–251. doi: 10.1016/j.envpol.2017.07.097
  • Tournassat, C., Charlet, L., Bosbach, D., & Manceau, A. (2002). Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environmental Science & Technology, 36(3), 493–500.
  • Tripathi, P., Tripathi, R. D., Singh, R. P., Dwivedi, S., Chakrabarty, D., Trivedi, P. K., & Adhikari, B. (2013). Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environmental Science and Pollution Research, 20(2), 884–896. doi: 10.1007/s11356-012-1205-5
  • Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., & Berta, G. (2006). Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 65(1), 74–81. doi: 10.1016/j.chemosphere.2006.02.048
  • Ultra, V. U., Nakayama, A., Tanaka, S., Kang, Y., Sakurai, K., & Iwasaki, K. (2009). Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments. Soil Science and Plant Nutrition, 55(1), 160–169. doi: 10.1111/j.1747-0765.2008.00341.x
  • Usman, A. R. A., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., & Ok, Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87(8), 872–878. doi: 10.1016/j.chemosphere.2012.01.028
  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., … Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230. doi: 10.1016/j.carbon.2016.11.032
  • Wang, J., Zhao, F.-J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130(3), 1552–1561. doi: 10.1104/pp.008185
  • Wang, N., Xue, X.-M., Juhasz, A. L., Chang, Z.-Z., & Li, H.-B. (2017). Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution, 220, 514–522. doi: 10.1016/j.envpol.2016.09.095
  • Wang, P., Zhang, W., Mao, C., Xu, G., & Zhao, F.-J. (2016). The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of Experimental Botany, 67(21), 6051–6059. doi: 10.1093/jxb/erw362
  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10), 752–764. doi: 10.1038/nrmicro1490
  • Wei, C. Y., Sun, X., Wang, C., & Wang, W. Y. (2006). Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environmental Pollution, 141(3), 488–493. doi: 10.1016/j.envpol.2005.08.060
  • Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., … Meharg, A. A. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 41(19), 6854–6859. doi: 10.1021/es070627i
  • World Health Organization (WHO). (2004). Guidelines for drinking-water quality. Geneva, Switzerland: World Health Organization.
  • Wu, C., Li, H., Ye, Z., Wu, F., & Wong, M. H. (2013). Effects of As levels on radial oxygen loss and As speciation in rice. Environmental Science and Pollution Research International, 20(12), 8334–8341. doi: 10.1007/s11356-013-2083-1
  • Wu, C., Zou, Q., Xue, S., Mo, J., Pan, W., Lou, L., & Wong, M. H. (2015). Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL). Chemosphere, 138, 447–453. doi: 10.1016/j.chemosphere.2015.06.081
  • Xu, J., Shi, S., Wang, L., Tang, Z., Lv, T., Zhu, X., … Wu, Z. (2017). OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. The New Phytologist, 215(3), 1090–1101. doi: 10.1111/nph.14572
  • Xu, X., Chen, C., Wang, P., Kretzschmar, R., & Zhao, F.-J. (2017). Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution (Barking, Essex : 1987), 231(Pt 1), 37–47. doi: 10.1016/j.envpol.2017.07.084
  • Xu, X., McGrath, S., Meharg, A., & Zhao, F. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 42(15), 5574–5579. doi: 10.1021/es800324u
  • Ye, J., Rensing, C., Rosen, B. P., & Zhu, Y.-G. (2012). Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 17(3), 155–162. doi: 10.1016/j.tplants.2011.12.003
  • Ye, W.-L., Khan, M. A., McGrath, S. P., & Zhao, F.-J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159(12), 3739–3743. doi: 10.1016/j.envpol.2011.07.024
  • Yin, D., Wang, X., Peng, B., Tan, C., & Ma, L. Q. (2017). Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere, 186, 928–937. doi: 10.1016/j.chemosphere.2017.07.126
  • Yu, H.-Y., Wang, X., Li, F., Li, B., Liu, C., Wang, Q., & Lei, J. (2017). Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environmental Pollution, 224, 136–147. doi: 10.1016/j.envpol.2017.01.072
  • Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341–349. doi: 10.1016/j.chemosphere.2016.10.069
  • Yun, S.-W., Park, C.-G., Jeon, J.-H., Darnault, C. J., Baveye, P. C., & Yu, C. (2016). Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents. Geoderma, 270, 10–20. doi: 10.1016/j.geoderma.2015.11.036
  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91. doi: 10.1016/j.envpol.2010.09.019
  • Zeng, H., Fisher, B., & Giammar, D. E. (2008). Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environmental Science & Technology, 42(1), 147–152.
  • Zhang, J., Zhao, Q.-Z., Duan, G.-L., & Huang, Y.-C. (2011). Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environmental and Experimental Botany, 72(1), 34–40. doi: 10.1016/j.envexpbot.2010.05.007
  • Zhang, J., Zhao, S., Xu, Y., Zhou, W., Huang, K., Tang, Z., & Zhao, F.-J. (2017). Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils. Environmental Science & Technology, 51(8), 4377–4386. doi: 10.1021/acs.est.6b06255
  • Zhang, J., Zhou, W., Liu, B., He, J., Shen, Q., & Zhao, F.-J. (2015). Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environmental Science & Technology, 49(10), 5956–5964. doi: 10.1021/es506097c
  • Zhang, J., Zhu, Y. G., Zeng, D. L., Cheng, W. D., Qian, Q., & Duan, G. L. (2008). Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). The New Phytologist, 177, 350–356.
  • Zhang, S.-Y., Zhao, F.-J., Sun, G.-X., Su, J.-Q., Yang, X.-R., Li, H., & Zhu, Y.-G. (2015). Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology, 49(7), 4138–4146. doi: 10.1021/acs.est.5b00028
  • Zhang, W., Cai, Y., Downum, K. R., & Ma, L. Q. (2004). Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern). Journal of Chromatography A, 1043(2), 249–254. doi: 10.1016/j.chroma.2004.05.090
  • Zhao, F., Ma, J., Meharg, A., & McGrath, S. (2009). Arsenic uptake and metabolism in plants. The New Phytologist, 181(4), 777–794. doi: 10.1111/j.1469-8137.2008.02716.x
  • Zhao, F. J., Ago, Y., Mitani, N., Li, R. Y., Su, Y. H., Yamaji, N., … Ma, J. F. (2010). The role of the rice aquaporin Lsi1 in arsenite efflux from roots. The New Phytologist, 186(2), 392–399. doi: 10.1111/j.1469-8137.2010.03192.x
  • Zheng, R.-L., Cai, C., Liang, J.-H., Huang, Q., Chen, Z., Huang, Y.-Z., … Sun, G.-X. (2012). The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere, 89(7), 856–862. doi: 10.1016/j.chemosphere.2012.05.008
  • Zhou, J., Deng, K., Cheng, Y., Zhong, Z., Tian, L., Tang, X., … Qi, Y. (2017). CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science, 8, 1598.
  • Zhuang, L., Xu, J., Tang, J., & Zhou, S. (2015). Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil. Journal of Geophysical Research: Biogeosciences, 120(5), 876–886. doi: 10.1002/2014JG002893

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.