1,052
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments

, ORCID Icon, , & ORCID Icon
Pages 135-215 | Published online: 20 Jun 2019

References

  • Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Su, Y., & Keller, A. A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662. doi:10.1016/j.cej.2015.10.105
  • Aguayo, S., Muñoz, M. J., de la Torre, A., Roset, J., de la Peña, E., & Carballo, M. (2004). Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Science of the Total Environment, 328(1–3), 69–81. doi:10.1016/j.scitotenv.2004.02.013
  • Al-Khateeb, L. A., Almotiry, S., & Salam, M. A. (2014). Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical Engineering Journal, 248, 191–199. doi:10.1016/j.cej.2014.03.023
  • Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2016.10.004
  • Astefanei, A., Núñez, O., & Galceran, M. T. (2014). Analysis of C60-fullerene derivatives and pristine fullerenes in environmental samples by ultrahigh performance liquid chromatography–atmospheric pressure photoionization-mass spectrometry. Journal of Chromatography A, 1365, 61–71. doi:10.1016/j.chroma.2014.08.089
  • Attia, T. M. S., Hu, X. L., & Yin, D. Q. (2013). Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere, 93, 2076–2085. doi:10.1016/j.chemosphere.2013.07.046
  • Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G. V., Jolivet, J.-P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. doi:10.1038/nnano.2009.242
  • Australian and New Zealand Biosolids Partnership. (2013). Biosolid production and end use in Australia. Retreived from http://www.biosolids.com.au/bs-australia.php
  • Aznar, R., Sánchez-Brunete, C., Albero, B., Rodríguez, J., & Tadeo, J. (2014). Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields. Environmental Science and Pollution Research, 21(6), 4772–4782. doi:10.1007/s11356-013-2438-7
  • Babaei, A. A., Lima, E. C., Takdastan, A., Alavi, N., Goudarzi, G., Vosoughi, M., … Shirmardi, M. (2016). Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: Operational variables, kinetics, and equilibrium studies. Water Science and Technology, 74(5), 1202–1216. doi:10.2166/wst.2016.301
  • Bao, X., Qiang, Z., Ling, W., & Chang, J.-H. (2013). Sonohydrothermal synthesis of MFe 2 O 4 magnetic nanoparticles for adsorptive removal of tetracyclines from water. Separation and Purification Technology, 117, 104–110. doi:10.1016/j.seppur.2013.03.046
  • Barakat, M. A., Ramadan, M. H., Alghamdi, M. A., Algarny, S. S., Woodcock, H. L., & Kuhn, J. N. (2013). Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites. Journal of Environmental Management, 117, 50–57. doi:10.1016/j.jenvman.2012.12.025
  • Barbosa, M. O., Moreira, N. F., Ribeiro, A. R., Pereira, M. F., & Silva, A. M. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257–279. doi:10.1016/j.watres.2016.02.047
  • Barret, M., Carrère, H., Latrille, E., Wisniewski, C., & Patureau, D. (2010). Micropollutant and sludge characterization for modeling sorption equilibria. Environmental Science & Technology, 44(3), 1100–1106. doi:10.1021/es902575d
  • Barret, M., Patureau, D., Latrille, E., & Carrère, H. (2010). A three-compartment model for micropollutants sorption in sludge: Methodological approach and insights. Water Research, 44(2), 616–624. doi:10.1016/j.watres.2009.08.029
  • Barton, L. E., Auffan, M., Durenkamp, M., McGrath, S., Bottero, J.-Y., & Wiesner, M. R. (2015). Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids. Science of the Total Environment, 511, 535–543. doi:10.1016/j.scitotenv.2014.12.056
  • Barton, L. E., Auffan, M., Olivi, L., Bottero, J.-Y., & Wiesner, M. R. (2015). Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment. Environmental Pollution, 203, 122–129. doi:10.1016/j.envpol.2015.03.035
  • Bäuerlein, P. S., Emke, E., Tromp, P., Hofman, J. A., Carboni, A., Schooneman, F., … van Wezel, A. P. (2017). Is there evidence for man-made nanoparticles in the Dutch environment? Science of the Total Environment, 576, 273–283. doi:10.1016/j.scitotenv.2016.09.206
  • Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. (2002). Carbon nanotubes – The route toward applications. Science, 297(5582), 787–792. doi:10.1126/science.1060928
  • Bello, O., Naidu, R., Rahman, M. M., Liu, Y., & Dong, Z. (2016). Lead concentration in the blood of the general population living near a lead–zinc mine site, Nigeria: Exposure pathways. Science of the Total Environment, 542, 908–914. doi:10.1016/j.scitotenv.2015.10.143
  • Bergman, Å., Heindel, J. J., Jobling, S., Kidd, K. A., Zoeller, R. T., & Jobling, S. K. (2013). State of the science of endocrine disrupting chemicals 2012: An assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme and World Health Organization. Geneva, Switzerland: World Health Organization.
  • Besha, A. T., Bekele, D. N., Naidu, R., & Chadalavada, S. (2018). Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environmental Technology & Innovation, 9, 303–322. doi:10.1016/j.eti.2017.08.004
  • Besha, A. T., Gebreyohannes, A. Y., Tufa, R. A., Bekele, D. N., Curcio, E., & Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering, 5(3), 2395–2414. doi:10.1016/j.jece.2017.04.027
  • Bitragunta, S. P., Palani, S. G., Gopala, A., Sarkar, S. K., & Kandukuri, V. R. (2017). Detection of TiO 2 nanoparticles in municipal sewage treatment plant and their characterization using single particle ICP-MS. Bulletin of Environmental Contamination and Toxicology, 98(5), 595–600. doi:10.1007/s00128-017-2031-8
  • Bohdziewicz, J., & Kamińska, G. (2013). Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 68(6), 1306–1314. doi:10.2166/wst.2013.373
  • Boxall, A., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., … Verslycke, T. (2012). Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives, 120(9), 1221–1229. doi:10.1289/ehp.1104477
  • Brar, S. K., & Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. TrAC Trends in Analytical Chemistry, 30(1), 4–17. doi:10.1016/j.trac.2010.08.008
  • Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge – Evidence and impacts. Waste Management, 30(3), 504–520. doi:10.1016/j.wasman.2009.10.012
  • Bu, Q., Wang, B., Huang, J., Deng, S., & Yu, G. (2013). Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials, 262, 189–211. doi:10.1016/j.jhazmat.2013.08.040
  • Burton, F. L., Tchobanoglous, G., & Metcalf & Eddy. (2003). Wastewater engineering: Treatment, disposal, and reuse. New York, NY: McGraw-Hill.
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71.
  • Cai, Y., Li, C., Wu, D., Wang, W., Tan, F., Wang, X., … Qiao, X. (2017). Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chemical Engineering Journal, 312, 158–166. doi:10.1016/j.cej.2016.11.134
  • Calderón-Preciado, D., Jiménez-Cartagena, C., Matamoros, V., & Bayona, J. (2011). Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Research, 45(1), 221–231. doi:10.1016/j.watres.2010.07.050
  • Carboni, A., Helmus, R., Emke, E., van den Brink, N., Parsons, J. R., Kalbitz, K., & de Voogt, P. (2016). Analysis of fullerenes in soils samples collected in The Netherlands. Environmental Pollution, 219, 47–55. doi:10.1016/j.envpol.2016.09.034
  • Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research International, 22(8), 5711–5741. doi:10.1007/s11356-014-3974-5
  • Chakraborti, D., Rahman, M. M., Murrill, M., Das, R., Siddayya, Patil, S. G., … Das, K. K. (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 262, 1048–1055.
  • Chatterjee, S., Basak, P., Chaklader, M., Das, P., Pereira, J. A., Chaudhuri, S., & Law, S. (2013). Pesticide induced marrow toxicity and effects on marrow cell population and on hematopoietic stroma. Experimental and Toxicologic Pathology, 65(3), 287–295. doi:10.1016/j.etp.2011.09.002
  • Chen, D., Chen, C., Shen, W., Quan, H., Chen, S., Xie, S., … Guo, L. (2017). MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Advanced Powder Technology, 28(7), 1769–1779. doi:10.1016/j.apt.2017.04.018
  • Chen, G., Liu, X., & Su, C. (2012). Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environmental Science & Technology, 46, 7142–7150. doi:10.1021/es204010g
  • Chen, H., Gao, B., & Li, H. (2014). Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. Journal of Environmental Chemical Engineering, 2(1), 310–315. doi:10.1016/j.jece.2013.12.021
  • Chen, H., Gao, B., & Li, H. (2015). Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of Hazardous Materials, 282, 201–207. doi:10.1016/j.jhazmat.2014.03.063
  • Cheng, D., Liu, X., Zhao, S., Cui, B., Bai, J., & Li, Z. (2017). Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. Science of the Total Environment, 578, 649–659. doi:10.1016/j.scitotenv.2016.11.012
  • Chibowski, E., Holysz, L., Terpilowski, K., & Wiacek, A. E. (2007). Influence of ionic surfactants and lecithin on stability of titanium dioxide in aqueous electrolyte solution. Croatica Chemica Acta, 80, 395–403.
  • Cho, E., Khim, J., Chung, S., Seo, D., & Son, Y. (2014). Occurrence of micropollutants in four major rivers in Korea. Science of the Total Environment, 491, 138–147. doi:10.1016/j.scitotenv.2014.03.025
  • Choi, S., Johnston, M., Wang, G.-S., & Huang, C. (2018). A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO 2 and ZnO. Science of the Total Environment, 625, 1321–1329. doi:10.1016/j.scitotenv.2017.12.326
  • Chrysikopoulos, C. V., Sotirelis, N. P., & Kallithrakas-Kontos, N. G. (2017). Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media. Transport in Porous Media, 119(1), 181–204. doi:10.1007/s11242-017-0879-z
  • Cleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters, 142(3), 185–194. doi:10.1016/S0378-4274(03)00068-7
  • Comerton, A. M., Andrews, R. C., & Bagley, D. M. (2009). Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1904), 3923–3939. doi:10.1098/rsta.2009.0111
  • Dale, A. L., Casman, E. A., Lowry, G. V., Lead, J. R., Viparelli, E., & Baalousha, M. (2015). Modeling nanomaterial environmental fate in aquatic systems. Washington, DC: ACS Publications.
  • Danish Ministry of the Environment. (2015). Perfluoroalkylated substances: PFOA, PFOS and PFOSA.
  • Darr, J. A., Zhang, J., Makwana, N. M., & Weng, X. (2017). Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chemical Reviews, 117(17), 11125–11238. doi:10.1021/acs.chemrev.6b00417
  • Das, R., Abd Hamid, S. B., Ali, M. E., Ismail, A. F., Annuar, M. S. M., & Ramakrishna, S. (2014). Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 354, 160–179. doi:10.1016/j.desal.2014.09.032
  • de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46(5), 583–624.
  • Diamond, J. M., Latimer, H. A., Munkittrick, K. R., Thornton, K. W., Bartell, S. M., & Kidd, K. A. (2011). Prioritizing contaminants of emerging concern for ecological screening assessments. Environmental Toxicology and Chemistry, 30(11), 2385–2394. doi:10.1002/etc.667
  • Domingos, R. F., Tufenkji, N., & Wilkinson, K. J. (2009). Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid. Environmental Science & Technology, 43, 1282–1286. doi:10.1021/es8023594
  • Dong, L., Gao, J., Xie, X., & Zhou, Q. (2012). DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere, 89(1), 44–51. doi:10.1016/j.chemosphere.2012.04.010
  • Donovan, A. R., Adams, C. D., Ma, Y., Stephan, C., Eichholz, T., & Shi, H. (2016). Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods. Analytical and Bioanalytical Chemistry, 408(19), 5137–5145. doi:10.1007/s00216-016-9432-0
  • Duan, Y.-P., Meng, X.-Z., Wen, Z.-H., Ke, R.-H., & Chen, L. (2013). Multi-phase partitioning, ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river: The role of colloids. Science of the Total Environment, 447, 267–273. doi:10.1016/j.scitotenv.2013.01.017
  • Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. doi:10.1016/j.emcon.2016.12.004
  • Eggen, T., Asp, T. N., Grave, K., & Hormazabal, V. (2011). Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere, 85(1), 26–33. doi:10.1016/j.chemosphere.2011.06.041
  • Eljarrat, E., & Barceló, D. (2003). Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. TrAC Trends in Analytical Chemistry, 22(10), 655–665. doi:10.1016/S0165-9936(03)01001-X
  • Emke, E., Sanchís, J., Farré, M., Bäuerlein, P., & De Voogt, P. (2015). Determination of several fullerenes in sewage water by LC HR-MS using atmospheric pressure photoionisation. Environmental Science: Nano, 2, 167–176. doi:10.1039/C4EN00133H
  • Erhayem, M., & Sohn, M. (2014). Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Science of the Total Environment, 468, 249–257. doi:10.1016/j.scitotenv.2013.08.038
  • Erzinger, G., Brasilino, F., Pinto, L., & Hader, D. (2014). Environmental Toxicity Caused by Derivatives of Estrogen and Chemical Alternatives for Removal. Pharm Anal Acta, 5, e165.
  • Fang, J., Fu, Y., & Shang, C. (2014). The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environmental Science & Technology, 48(3), 1859–1868. doi:10.1021/es4036094
  • Farré, M., Pérez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A., & Barceló, D. (2010). First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. Journal of Hydrology, 383(1–2), 44–51. doi:10.1016/j.jhydrol.2009.08.016
  • Fisher, D. J., Knott, M. H., Turley, B. S., Yonkos, L. T., & Ziegler, G. P. (1998). Acute and Chronic Toxicity of Industrial and Municipal Effluents in Maryland, U.S. Water Environment Research, 70(1), 101–107. doi:10.2175/106143098X126946
  • Fréchette-Viens, L., Hadioui, M., & Wilkinson, K. J. (2019). Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta.
  • French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., & Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology, 43, 1354–1359. doi:10.1021/es802628n
  • Fries, E., Crouzet, C., Michel, C., & Togola, A. (2016). Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions. Science of the Total Environment, 563, 971–976. doi:10.1016/j.scitotenv.2015.12.023
  • Frye, C., Bo, E., Calamandrei, G., Calzà, L., Dessì-Fulgheri, F., Fernández, M., … Panzica, G. C. (2012). Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. Journal of Neuroendocrinology, 24(1), 144–159. doi:10.1111/j.1365-2826.2011.02229.x
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205. doi:10.1016/j.jhazmat.2013.12.062
  • Gao, J., Chen, J., Li, X., Wang, M., Zhang, X., Tan, F., … Liu, J. (2015). Azide-functionalized hollow silica nanospheres for removal of antibiotics. Journal of Colloid and Interface Science, 444, 38–41. doi:10.1016/j.jcis.2014.12.054
  • Gao, L., Shi, Y., Li, W., Niu, H., Liu, J., & Cai, Y. (2012). Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86(6), 665–671. doi:10.1016/j.chemosphere.2011.11.019
  • Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M., & Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 368(1), 540–546. doi:10.1016/j.jcis.2011.11.015
  • García, A., Delgado, L., Torà, J. A., Casals, E., González, E., Puntes, V., … Sánchez, A. (2012). Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. Journal of Hazardous Materials, 199–200, 64–72. doi:10.1016/j.jhazmat.2011.10.057
  • Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology, 48, 2526–2540. doi:10.1021/es4050665
  • Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 45, 1659–1664. doi:10.1021/es103040t
  • Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8, 471–482. doi:10.1007/s11783-014-0654-0
  • Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., & Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 24(21), 12385–12391. doi:10.1021/la802015f
  • Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, G. T., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169–180. doi:10.1016/j.gsd.2017.12.009
  • Goldman, S. M., Quinlan, P. J., Ross, G. W., Marras, C., Meng, C., Bhudhikanok, G. S., … Tanner, C. M. (2012). Solvent exposures and parkinson disease risk in twins. Annals of Neurology, 71(6), 776–784. doi:10.1002/ana.22629
  • Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. doi:10.1016/j.renene.2009.07.027
  • Gómez-Rivera, F., Field, J. A., Brown, D., & Sierra-Alvarez, R. (2012). Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 108, 300–304. doi:10.1016/j.biortech.2011.12.113
  • Gondikas, A. P., Kammer, FVD., Reed, R. B., Wagner, S., Ranville, J. F., & Hofmann, T. (2014). Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the old Danube recreational Lake. Environmental Science & Technology, 48, 5415–5422. doi:10.1021/es405596y
  • Gondikas, A., von der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., … Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano, 5, 313–326. doi:10.1039/C7EN00952F
  • González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., … Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47(6), 2050–2064. doi:10.1016/j.watres.2013.01.020
  • Gothwal, R., & Shashidhar, T. (2015). Antibiotic pollution in the environment: A review. CLEAN - Soil, Air, Water, 43(4), 479–489. doi:10.1002/clen.201300989
  • Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43, 9216–9222. doi:10.1021/es9015553
  • Gouin, T., Mackay, D., Webster, E., & Wania, F. (2000). Screening chemicals for persistence in the environment. Environmental Science & Technology, 34(5), 881–884. doi:10.1021/es991011z
  • Hadioui, M., Merdzan, V., & Wilkinson, K. J. (2015). Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environmental Science & Technology, 49, 6141–6148. doi:10.1021/acs.est.5b00681
  • Hansen, P.-D. (2007). Risk assessment of emerging contaminants in aquatic systems. TrAC Trends in Analytical Chemistry, 26(11), 1095–1099. doi:10.1016/j.trac.2007.10.001
  • Hartmann, G., & Schuster, M. (2013). Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 761, 27–33. doi:10.1016/j.aca.2012.11.050
  • Helbling, D. E., Johnson, D. R., Honti, M., & Fenner, K. (2012). Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. Environmental Science & Technology, 46(19), 10579–10588. doi:10.1021/es3019012
  • Hochella, M. F., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science, 319(5870), 1631–1635. doi:10.1126/science.1141134
  • Hoque, M. E., Khosravi, K., Newman, K., & Metcalfe, C. D. (2012). Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1233, 109–115. doi:10.1016/j.chroma.2012.02.011
  • Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environment Quality, 39(6), 1909–1924. doi:10.2134/jeq2009.0462
  • Howard, A. G. (2010). On the challenge of quantifying man-made nanoparticles in the aquatic environment. Journal of Environmental Monitoring, 12(1), 135–142. doi:10.1039/B913681A
  • Howard, P. H., & Muir, D. C. G. (2010). Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environmental Science & Technology, 44(7), 2277–2285. doi:10.1021/es903383a
  • Hu, X., & Cheng, Z. (2015). Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid. Chinese Journal of Chemical Engineering, 23(9), 1551–1556. doi:10.1016/j.cjche.2015.06.010
  • Hu, X., Zhou, Q., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998. doi:10.1016/j.envpol.2010.05.023
  • Huang, B., Lei, C., Wei, C., & Zeng, G. (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118–138. doi:10.1016/j.envint.2014.06.013
  • Hyung, H., & Kim, J.-H. (2008). Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environmental Science & Technology, 42, 4416–4421. doi:10.1021/es702916h
  • Ihsanullah, Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., … Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 157, 141–161.
  • Jeong, C. H. (2014). Drinking water disinfection by-products: Toxicological impacts and biological mechanisms induced by individual compounds or as complex mixtures (pp. 274). Ann Arbor, MI: University of Illinois at Urbana-Champaign.
  • Jiang, L., Liu, Y., Liu, S., Zeng, G., Hu, X-J., Hu, X., … Wu, Z. (2017). Adsorption of estrogen contaminants by graphene nanomaterials under NOM preloading: Comparison with carbon nanotube, biochar and activated carbon. Environmental Science & Technology, 51(11), 6352–6359.
  • Jin, Z., Wang, X., Sun, Y., Ai, Y., & Wang, X. (2015). Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: A combined experimental and theoretical studies. Environmental Science & Technology, 49, 9168–9175. doi:10.1021/acs.est.5b02022
  • Johnson, D. R., Helbling, D. E., Lee, T. K., Park, J., Fenner, K., Kohler, H.-P. E., & Ackermann, M. (2015). Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. Applied and Environmental Microbiology, 81(2), 666–675. doi:10.1128/AEM.03286-14
  • Kaegi, R., Englert, A., Gondikas, A., Sinnet, B., von der Kammer, F., & Burkhardt, M. (2017). Release of TiO2 – (Nano) particles from construction and demolition landfills. NanoImpact, 8, 73–79. doi:10.1016/j.impact.2017.07.004
  • Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., … Burkhardt, M. (2010). Release of silver nanoparticles from outdoor facades. Environmental Pollution, 158(9), 2900–2905. doi:10.1016/j.envpol.2010.06.009
  • Kägi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., … Burkhardt, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233–239. doi:10.1016/j.envpol.2008.08.004
  • Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., … Tilson, H. A. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S. EPA-sponsored workshop. Environmental Health Perspectives, 104, 715–740. doi:10.2307/3432708
  • Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chemical Reviews, 107(6), 2319–2364. doi:10.1021/cr020441w
  • Khosravi, K., Hoque, M. E., Dimock, B., Hintelmann, H., & Metcalfe, C. D. (2012). A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Analytica Chimica Acta, 713, 86–91. doi:10.1016/j.aca.2011.11.048
  • Kibbey, T. C. G., Paruchuri, R., Sabatini, D. A., & Chen, L. (2007). Adsorption of beta blockers to environmental surfaces. Environmental Science & Technology, 41(15), 5349–5356. doi:10.1021/es070152v
  • Kim, E.-J., Lee, C.-S., Chang, Y.-Y., & Chang, Y.-S. (2013). Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 5, 9628–9634. doi:10.1021/am402615m
  • Kim, K.-R., Owens, G., Kwon, S.-I., So, K.-H., Lee, D.-B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214, 163–174. doi:10.1007/s11270-010-0412-2
  • Kiser, M. A., Ryu, H., Jang, H., Hristovski, K., & Westerhoff, P. (2010). Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Research, 44(14), 4105–4114. doi:10.1016/j.watres.2010.05.036
  • Kiser, M., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J., & Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environmental Science & Technology, 43, 6757–6763. doi:10.1021/es901102n
  • Komesli, O. T., Muz, M., Ak, M. S., Bakırdere, S., & Gokcay, C. F. (2015). Occurrence, fate and removal of endocrine disrupting compounds (EDCs) in Turkish wastewater treatment plants. Chemical Engineering Journal (Lausanne), 277, 202–208. doi:10.1016/j.cej.2015.04.115
  • Kunhikrishnan, A., Shon, H. K., Bolan, N. S., El Saliby, I., & Vigneswaran, S. (2015). Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Critical Reviews in Environmental Science and Technology, 45(4), 277–318. doi:10.1080/10643389.2013.852407
  • Kyzas, G. Z., Deliyanni, E. A., & Matis, K. A. (2014). Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology & Biotechnology, 89(2), 196–205. doi:10.1002/jctb.4220
  • Kyzas, G. Z., Koltsakidou, A., Nanaki, S. G., Bikiaris, D. N., & Lambropoulou, D. A. (2015). Removal of beta-blockers from aqueous media by adsorption onto graphene oxide. Science of the Total Environment, 537, 411–420. doi:10.1016/j.scitotenv.2015.07.144
  • Lan, Y. K., Chen, T. C., Tsai, H. J., Wu, H. C., Lin, J. H., Lin, I., … Chen, C. S. (2016). Adsorption behavior and mechanism of antibiotic sulfamethoxazole on carboxylic-functionalized carbon nanofibers-encapsulated Ni magnetic nanoparticles. Langmuir, 32(37), 9530–9539. doi:10.1021/acs.langmuir.6b02904
  • Lange, F. T., Scheurer, M., & Brauch, H.-J. (2012). Artificial sweeteners—A recently recognized class of emerging environmental contaminants: A review. Analytical and Bioanalytical Chemistry, 403(9), 2503–2518. doi:10.1007/s00216-012-5892-z
  • Lata, S., & Samadder, S. R. (2016). Removal of arsenic from water using nano adsorbents and challenges: A review. Journal of Environmental Management, 166, 387–406. doi:10.1016/j.jenvman.2015.10.039
  • Lee, H., Tevlin, A. G., Mabury, S. A., & Mabury, S. A. (2014). Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: Biodegradation and plant uptake in greenhouse and field experiments. Environmental Science & Technology, 48(1), 340–349. doi:10.1021/es403949z
  • Lee, J., Bartelt-Hunt, S. L., Li, Y., & Gilrein, E. J. (2016). The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Chemosphere, 154, 187–193. doi:10.1016/j.chemosphere.2016.03.059
  • Lee, J., Bartelt-Hunt, S. L., Li, Y., & Morton, M. (2015). Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles. Science of the Total Environment, 511, 195–202. doi:10.1016/j.scitotenv.2014.12.054
  • Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88, 428–448. doi:10.1016/j.watres.2015.09.045
  • Li, H., Zheng, N., Liang, N., Zhang, D., Wu, M., & Pan, B. (2016). Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 154, 258–265. doi:10.1016/j.chemosphere.2016.03.099
  • Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution (Barking, Essex: 1987), 187, 193–201. doi:10.1016/j.envpol.2014.01.015
  • Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2012). Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere, 89(11), 1307–1315. doi:10.1016/j.chemosphere.2012.05.079
  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39(11), 2219–2228. doi:10.1016/j.watres.2005.04.003
  • Liu, G., Wang, D., Wang, J., & Mendoza, C. (2011). Effect of ZnO particles on activated sludge: Role of particle dissolution. Science of the Total Environment, 409(14), 2852–2857. doi:10.1016/j.scitotenv.2011.03.022
  • Liu, J.-L., & Wong, M.-H. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208–224. doi:10.1016/j.envint.2013.06.012
  • Liu, T., Xie, Z., Zhang, Y., Fan, J., & Liu, Q. (2017). Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water. Rsc Advances, 7(61), 38279–38286. doi:10.1039/C7RA06730E
  • Loosli, F., Wang, J., Rothenberg, S., Bizimis, M., Winkler, C., Borovinskaya, O., … Baalousha, M. (2019). Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environmental Science: Nano, 6(3), 763–777.
  • Lowman, A., McDonald, M. A., Wing, S., & Muhammad, N. (2013). Land application of treated sewage sludge: Community health and environmental justice. Environmental Health Perspectives, 121(5), 537. doi:10.1289/ehp.1205470
  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Washington, DC: ACS Publications.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., … Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. doi:10.1016/j.scitotenv.2013.12.065
  • Lv, B., Wang, C., Hou, J., Wang, P., Miao, L., You, G., … Ci, H. (2018). Towards a better understanding on aggregation behavior of CeO2 nanoparticles in different natural waters under flow disturbance. Journal of Hazardous Materials, 343, 235–244. doi:10.1016/j.jhazmat.2017.09.039
  • Ma, H., Williams, P. L., & Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles – A review. Environmental Pollution, 172, 76–85. doi:10.1016/j.envpol.2012.08.011
  • Madanhire, I., & Mbohwa, C. (2016). Lubricant additive impacts on human health and the environment. In Mitigating environmental impact of petroleum lubricants (pp. 17–34). Cham, Switzerland: Springer.
  • Maeng, S. K., Cho, K., Jeong, B., Lee, J., Lee, Y., Lee, C., … Hong, S. W. (2015). Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics. Water Research, 86, 25–34. doi:10.1016/j.watres.2015.05.032
  • Mahmoud, A. M., Ibrahim, F. A., Shaban, S. A., & Youssef, N. A. (2015). Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egyptian Journal of Petroleum, 24(1), 27–35. doi:10.1016/j.ejpe.2015.02.003
  • Mahmoud, W. M., Rastogi, T., & Kümmerer, K. (2017). Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Current Opinion in Green and Sustainable Chemistry, 6, 1–10. doi:10.1016/j.cogsc.2017.04.001
  • Mandyla, S. P., Tsogas, G. Z., Vlessidis, A. G., & Giokas, D. L. (2017). Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. Journal of Hazardous Materials, 323, 67–74. doi:10.1016/j.jhazmat.2016.03.039
  • Margot, J., Rossi, L., Barry, D. A., & Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdisciplinary Reviews: Water, 2(5), 457–487. doi:10.1002/wat2.1090
  • Markus, A., Krystek, P., Tromp, P., Parsons, J., Roex, E., de Voogt, P., & Laane, R. (2018). Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM. Science of the Total Environment, 631, 485–495. doi:10.1016/j.scitotenv.2018.03.007
  • Maszkowska, J., Stolte, S., Kumirska, J., Łukaszewicz, P., Mioduszewska, K., Puckowski, A., … Białk-Bielińska, A. (2014). Beta-blockers in the environment: Part II. Ecotoxicity study. Science of the Total Environment, 493, 1122–1126. doi:10.1016/j.scitotenv.2014.06.039
  • Matthiessen, P., & Sumpter, J. P. (1998). Effects of estrogenic substances in the aquatic environment. In T. Braunbeck, D. E. Hinton, & B. Streit (Eds.), Fish ecotoxicology (pp. 319–335). Basel, Switzerland: Springer.
  • Md Jani, A. M., Losic, D., & Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 58(5), 636–704. doi:10.1016/j.pmatsci.2013.01.002
  • Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303–327. doi:10.1016/j.envint.2013.06.013
  • Migliore, L., Cozzolino, S., & Fiori, M. (2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere, 52(7), 1233–1244. doi:10.1016/S0045-6535(03)00272-8
  • Mineau, P., & Whiteside, M. (2013). Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS One, 8(2), e57457. doi:10.1371/journal.pone.0057457
  • Mitrano, D. M., Lesher, E. K., Bednar, A., Monserud, J., Higgins, C. P., & Ranville, J. F. (2012). Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 31(1), 115–121. doi:10.1002/etc.719
  • Mohapatra, D. P., Cledón, M., Brar, S. K., & Surampalli, R. Y. (2016). Application of wastewater and biosolids in soil: Occurrence and fate of emerging contaminants. Water, Air, and Soil Pollution, 227, 1–14.
  • Moldovan, Z. (2006). Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere, 64(11), 1808–1817. doi:10.1016/j.chemosphere.2006.02.003
  • Monreal, C. M., Sultan, Y., & Schnitzer, M. (2010). Soil organic matter in nano-scale structures of a cultivated Black Chernozem. Geoderma, 159(1–2), 237–242. doi:10.1016/j.geoderma.2010.07.017
  • Monreal, C., & Schnitzer, M. (2008). Soil organic matter in nano-composite and clay fractions, and soluble pools of the rhizosphere. Revista de la Ciencia del Suelo y Nutricï®n Vegetal.
  • Motahari, F., Mozdianfard, M. R., Soofivand, F., & Salavati-Niasari, M. (2014). NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. Rsc Advances, 4(53), 27654–27660. doi:10.1039/c4ra02697g
  • Mudunkotuwa, I. A., & Grassian, V. H. (2010). Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: Surface coverage, surface speciation, and its impact on nanoparticle − nanoparticle interactions. Journal of the American Chemical Society, 132(42), 14986–14994. doi:10.1021/ja106091q
  • Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19(2), 550–558. doi:10.1007/s11356-011-0576-3
  • Musee, N., Thwala, M., & Nota, N. (2011). The antibacterial effects of engineered nanomaterials: Implications for wastewater treatment plants. Journal of Environmental Monitoring, 13(5), 1164–1183. doi:10.1039/c1em10023h
  • Musico, Y. L. F., Santos, C. M., Dalida, M. L. P., & Rodrigues, D. F. (2014). Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustainable Chemistry & Engineering, 2, 1559–1565. doi:10.1021/sc500044p
  • Nam, S.-W., Jo, B.-I., Yoon, Y., & Zoh, K.-D. (2014). Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere, 95, 156–165. doi:10.1016/j.chemosphere.2013.08.055
  • Narotsky, M. G., Klinefelter, G. R., Goldman, J. M., DeAngelo, A. B., Best, D. S., McDonald, A., … George, M. H. (2015). Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay. Environmental Health Perspectives, 123(6), 564–570.
  • Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., von der Kammer, F., & Hofmann, T. (2015). Detection of engineered copper nanoparticles in soil using single particle ICP-MS. International Journal of Environmental Research and Public Health, 12(12), 15756–15768. doi:10.3390/ijerph121215020
  • Nie, M., Yang, Y., Liu, M., Yan, C., Shi, H., Dong, W., & Zhou, J. L. (2014). Environmental estrogens in a drinking water reservoir area in Shanghai: Occurrence, colloidal contribution and risk assessment. Science of the Total Environment, 487, 785–791. doi:10.1016/j.scitotenv.2013.12.010
  • Ntzani, E. E., Chondrogiorgi, M., Ntritsos, G., Evangelou, E., & Tzoulaki, I. (2013). Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publication, 10(10), 497E.
  • Onesios, K. M., Jim, T. Y., & Bouwer, E. J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation, 20(4), 441–466. doi:10.1007/s10532-008-9237-8
  • Pan, B., Lin, D., Mashayekhi, H., & Xing, B. (2008). Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environmental Science & Technology, 42, 5480–5485.
  • Pan, B., Zhang, D., Li, H., Wu, M., Wang, Z., & Xing, B. (2013). Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid. Environmental Science & Technology, 47, 7722–7728. doi:10.1021/es4008933
  • Park, C. M., Chu, K. H., Her, N., Jang, M., Baalousha, M., Heo, J., & Yoon, Y. (2017). Occurrence and removal of engineered nanoparticles in drinking water treatment and wastewater treatment processes. Separation & Purification Reviews, 46, 255–272. doi:10.1080/15422119.2016.1260588
  • Park, J., Yamashita, N., Wu, G., & Tanaka, H. (2017). Removal of pharmaceuticals and personal care products by ammonia oxidizing bacteria acclimated in a membrane bioreactor: Contributions of cometabolism and endogenous respiration. Science of the Total Environment, 605, 18–25. doi:10.1016/j.scitotenv.2017.06.155
  • Peng, H-B., Zhang, D., Li, H., Wang, C., & Pan, B. (2014). Organic contaminants and carbon nanoparticles: Sorption mechanisms and impact parameters. Journal of Zhejiang University SCIENCE A, 15(8), 606–617. doi:10.1631/jzus.A1400112
  • Peters, R. J., van Bemmel, G., Milani, N. B., den Hertog, G. C., Undas, A. K., van der Lee, M., & Bouwmeester, H. (2018). Detection of nanoparticles in Dutch surface waters. Science of the Total Environment, 621, 210–218. doi:10.1016/j.scitotenv.2017.11.238
  • Peterson, J. W., Petrasky, L. J., Seymour, M. D., & Bergmans, R. S. (2016). Laboratory investigation of antibiotic interactions with Fe2O3 nanoparticles in water. Journal of Environmental Engineering, 142(5), 04016015. doi:10.1061/(ASCE)EE.1943-7870.0001090
  • Peterson, J. W., Petrasky, L. J., Seymour, M. D., Burkhart, R. S., & Schuiling, A. B. (2012). Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water. Chemosphere, 87(8), 911–917. doi:10.1016/j.chemosphere.2012.01.044
  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. doi:10.1016/j.watres.2014.08.053
  • Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28. doi:10.1016/j.watres.2016.10.035
  • Phenrat, T., & Lowry, G. V. (2019a). Nanoscale zerovalent iron particles for environmental restoration. Cham, Switzerland: Springer.
  • Phenrat, T., & Lowry, G. V. (2019b). Electromagnetic induction of nanoscale zerovalent iron for enhanced thermal dissolution/desorption and dechlorination of chlorinated volatile organic compounds. In T. Phenrat, & G. V. Lowry (Eds.), Nanoscale zerovalent iron particles for environmental restoration (pp. 415–434). Cham, Switzerland: Springer.
  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164. doi:10.1016/j.jconhyd.2010.09.002
  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085. doi:10.1021/es900171v
  • Phenrat, T., Lowry, G. V., & Babakhani, P. (2019). Colloidal and surface science and engineering for bare and polymer-modified NZVI applications: Dispersion stability, mobility in porous media, and contaminant specificity. In T. Phenrat, & G. V. Lowry (Eds.), Nanoscale zerovalent iron particles for environmental restoration (pp. 201–233). Cham, Switzerland: Springer.
  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10(5), 795–814. doi:10.1007/s11051-007-9315-6
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290. doi:10.1021/es061349a
  • Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly (aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 25(8), 7157–7169. doi:10.1007/s11356-015-5092-4
  • Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010). Estimating attachment of nano-and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44, 4531–4538. doi:10.1021/es903959c
  • Philippe, A., Campos, D. A., Guigner, J.-M., Buchmann, C., Diehl, D., & Schaumann, G. E. (2018). Characterization of the Natural Colloidal TiO2 Background in Soil. Separations, 5(4), 50. doi:10.3390/separations5040050
  • Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14, 1109.
  • Plumlee, G. S., Durant, J. T., Morman, S. A., Neri, A., Wolf, R. E., Dooyema, C. A., … Meeker, G. P. (2013). Linking geological and health sciences to assess childhood lead poisoning from artisanal gold mining in Nigeria. Environmental Health Perspectives, 121(6), 744–750. doi:10.1289/ehp.1206051
  • Polesel, F., Farkas, J., Kjos, M., Hansen, S. F., & Gy, B. (2017). Occurrence, characterisation and fate of (nano) particulate Ti and Ag in two Norwegian wastewater treatment plants. SETAC Europe 27th Annual Meeting.
  • Qi, W., Müller, B., Pernet-Coudrier, B., Singer, H., Liu, H., Qu, J., & Berg, M. (2014). Organic micropollutants in the Yangtze River: Seasonal occurrence and annual loads. Science of the Total Environment, 472, 789–799. doi:10.1016/j.scitotenv.2013.11.019
  • Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946. doi:10.1016/j.watres.2012.09.058
  • Rakshit, S., Sarkar, D., Elzinga, E. J., Punamiya, P., & Datta, R. (2013). Mechanisms of ciprofloxacin removal by nano-sized magnetite. Journal of Hazardous Materials, 246, 221–226. doi:10.1016/j.jhazmat.2012.12.032
  • Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2015). Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 22(12), 8890–8901. doi:10.1007/s11356-014-3403-9
  • Ren, M., Horn, H., & Frimmel, F. H. (2017). Aggregation behavior of TiO2 nanoparticles in municipal effluent: Influence of ionic strengthen and organic compounds. Water Research, 123, 678–686. doi:10.1016/j.watres.2017.07.021
  • Reungoat, J., Macova, M., Escher, B. I., Carswell, S., Mueller, J. F., & Keller, J. (2010). Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Research, 44(2), 625–637. doi:10.1016/j.watres.2009.09.048
  • Richardson, S. D., & Ternes, T. A. (2011). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 83(12), 4614–4648. doi:10.1021/ac200915r
  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. doi:10.1016/j.scitotenv.2013.01.032
  • Rodan, B. D., Pennington, D. W., Eckley, N., & Boethling, R. S. (1999). Screening for persistent organic pollutants: Techniques to provide a scientific basis for POPs criteria in international negotiations. Environmental Science & Technology, 33(20), 3482–3488. doi:10.1021/es980060t
  • Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., & Johnson, C. A. (2013). Groundwater arsenic contamination throughout China. Science, 341, 866–868. doi:10.1126/science.1237484
  • Rogers, N. J., Franklin, N. M., Apte, S. C., Batley, G. E., Angel, B. M., Lead, J. R., & Baalousha, M. (2010). Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environmental Chemistry, 7(1), 50–60. doi:10.1071/EN09123
  • Roy, M. M., Dutta, A., Corscadden, K., Havard, P., & Dickie, L. (2011). Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Management, 31(11), 2228–2235. doi:10.1016/j.wasman.2011.06.008
  • Saeedi, A., Omidi, M., Khoshnoud, M. J., & Mohammadi-Bardbori, A. (2015). Exposure to methyl tert-butyl methyl ether (MTBE) is associated with mitochondrial dysfunction in rat. Xenobiotica, 47(5), 423–430.
  • Sanchís, J., Bosch-Orea, C., Farré, M., & Barceló, D. (2015). Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area. Analytical and Bioanalytical Chemistry, 407(15), 4261–4275. doi:10.1007/s00216-014-8273-y
  • Schilling, K., Bradford, B., Castelli, D., Dufour, E., Nash, J. F., Pape, W., … Schellauf, F. (2010). Human safety review of “nano” titanium dioxide and zinc oxide. Photochemical & Photobiological Sciences, 9, 495–509. doi:10.1039/b9pp00180h
  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science (New York, N.Y.), 313(5790), 1072–1077. doi:10.1126/science.1127291
  • Sepulvado, J. G., Blaine, A. C., Hundal, L. S., & Higgins, C. P. (2011). Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environmental Science & Technology, 45(19), 8106–8112. doi:10.1021/es103903d
  • Sharma, B. M., Bharat, G. K., Tayal, S., Larssen, T., Bečanová, J., Karásková, P., … Nizzetto, L. (2016). Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution, 208, 704–713. doi:10.1016/j.envpol.2015.10.050
  • Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423. doi:10.1039/C5CS00236B
  • Shi, W., Li, S., Chen, B., Wang, C., & Sun, W. (2017). Effects of Fe2O3 and ZnO nanoparticles on 17β-estradiol adsorption to carbon nanotubes. Chemical Engineering Journal, 326, 1134–1144.
  • Simonin, M., Colman, B. P., Tang, W., Judy, J. D., Anderson, S. M., Bergemann, C. M., … Bernhardt, E. S. (2018). Plant and microbial responses to repeated Cu(OH)2 nanopesticide exposures under different fertilization levels in an agro-ecosystem. Frontiers in Microbiology, 9, 1769.
  • Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G., & Ahalawat, S. (2014). Sol-gel processing of silica nanoparticles and their applications. Advances in Colloid and Interface Science, 214, 17–37. doi:10.1016/j.cis.2014.10.007
  • Singh, R. P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste Management (New York, N.Y.), 28(2), 347–358. doi:10.1016/j.wasman.2006.12.010
  • Solovitch, N., Labille, JRM., Rose, JRM., Chaurand, P., Borschneck, D., Wiesner, M. R., & Bottero, J.-Y. (2010). Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environmental Science & Technology, 44, 4897–4902. doi:10.1021/es1000819
  • Sotirelis, N. P., & Chrysikopoulos, C. V. (2015). Interaction between graphene oxide nanoparticles and quartz sand. Environmental Science & Technology, 49, 13413–13421. doi:10.1021/acs.est.5b03496
  • Sotirelis, N. P., & Chrysikopoulos, C. V. (2017). Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Science of the Total Environment, 579, 736–744. doi:10.1016/j.scitotenv.2016.11.034
  • Srirattana, S., Piaowan, K., Lowry, G. V., & Phenrat, T. (2017). Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Chemosphere, 183, 323–331. doi:10.1016/j.chemosphere.2017.05.114
  • Srivastava, V., Gusain, D., & Sharma, Y. C. (2015). Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 54, 6209–6233. doi:10.1021/acs.iecr.5b01610
  • Stalter, D., O’Malley, E., von Gunten, U., & Escher, B. I. (2016). Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Research, 91, 19–30.
  • Stankus, D. P., Lohse, S. E., Hutchison, J. E., & Nason, J. A. (2010). Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environmental Science & Technology, 45, 3238–3244. doi:10.1021/es102603p
  • StatNano. (2019a). Retrieved from http://statnano.com/report/s102
  • StatNano. (2019b). Retrieved from http://statnano.com/report/s103
  • Stolte, S., Steudte, S., Areitioaurtena, O., Pagano, F., Thöming, J., Stepnowski, P., & Igartua, A. (2012). Ionic liquids as lubricants or lubrication additives: An ecotoxicity and biodegradability assessment. Chemosphere, 89(9), 1135–1141. doi:10.1016/j.chemosphere.2012.05.102
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., … Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. doi:10.1038/nature13793
  • Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1), 14–24. doi:10.1016/j.emcon.2015.07.001
  • Suriyanon, N., Punyapalakul, P., & Ngamcharussrivichai, C. (2013). Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chemical Engineering Journal, 214, 208–218. doi:10.1016/j.cej.2012.10.052
  • Syngouna, V. I., Chrysikopoulos, C. V., Kokkinos, P., Tselepi, M. A., & Vantarakis, A. (2017). Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media: Effect of flow velocity. Science of the Total Environment, 598, 160–167. doi:10.1016/j.scitotenv.2017.04.082
  • Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Tuc Dinh, Q., Clément, M., & Chevreuil, M. (2008). Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science of the Total Environment, 393(1), 84–95. doi:10.1016/j.scitotenv.2007.12.009
  • Teja, A. S., & Koh, P.-Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1–2), 22–45. doi:10.1016/j.pcrysgrow.2008.08.003
  • Ternes, T. A., & Hirsch, R. (2000). Occurrence and behavior of x-ray contrast media in sewage facilities and the aquatic environment. Environmental Science & Technology, 34(13), 2741–2748. doi:10.1021/es991118m
  • Thio, B. J. R., Zhou, D., & Keller, A. A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. Journal of Hazardous Materials, 189(1–2), 556–563. doi:10.1016/j.jhazmat.2011.02.072
  • Tijani, J. O., Fatoba, O. O., Babajide, O. O., & Petrik, L. F. (2016). Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environmental Chemistry Letters, 14, 27–49. doi:10.1007/s10311-015-0537-z
  • Tilton, F., Benson, W. H., & Schlenk, D. (2002). Evaluation of estrogenic activity from a municipal wastewater treatment plant with predominantly domestic input. Aquatic Toxicology, 61(3–4), 211–224. doi:10.1016/S0166-445X(02)00058-9
  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. doi:10.1016/j.biortech.2016.11.042
  • Tran, B. C., Teil, M. J., Blanchard, M., Alliot, F., & Chevreuil, M. (2015). BPA and phthalate fate in a sewage network and an elementary river of France. Influence of hydroclimatic conditions. Chemosphere, 119, 43–51. doi:10.1016/j.chemosphere.2014.04.036
  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48. doi:10.1016/S1748-0132(06)70048-2
  • US EPA. (2014). Emerging contaminants and federal facility contaminants of concern. Retreived from http://www.epa.gov/fedfac/emerging-contaminants-and-federal-facility-contaminants-concern
  • Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R., Jr., Lee, D.-H., Shioda, T., … Myers, J. P. (2012). Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocrine Reviews, 33(3), 378–455. doi:10.1210/er.2011-1050
  • Vazquez-Roig, P., Andreu, V., Blasco, C., & Picó, Y. (2012). Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego–Oliva Marshlands (Valencia, eastern Spain). Science of the Total Environment, 440, 24–32. doi:10.1016/j.scitotenv.2012.08.036
  • Verlicchi, P., & Zambello, E. (2015). Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil—A critical review. Science of the Total Environment, 538, 750–767. doi:10.1016/j.scitotenv.2015.08.108
  • Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment – A review. Science of the Total Environment, 429, 123–155. doi:10.1016/j.scitotenv.2012.04.028
  • Villanueva, C. M., Cordier, S., Font-Ribera, L., Salas, L. A., & Levallois, P. (2015). Overview of disinfection by-products and associated health effects. Current Environmental Health Reports, 2(1), 107–115. doi:10.1007/s40572-014-0032-x
  • Von der Kammer, F., Ferguson, P. L., Holden, P. A., Masion, A., Rogers, K. R., Klaine, S. J., … Unrine, J. M. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environmental Toxicology and Chemistry, 31(1), 32–49. doi:10.1002/etc.723
  • Wang, D., & Chen, Y. (2016). Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Critical Reviews in Biotechnology, 36(5), 816–828. doi:10.3109/07388551.2015.1049509
  • Wang, F., Sun, W., Pan, W., & Xu, N. (2015). Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chemical Engineering Journal, 274, 17–29. doi:10.1016/j.cej.2015.03.113
  • Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313–327. doi:10.1016/j.nano.2014.09.014
  • Wegmann, F., Cavin, L., MacLeod, M., Scheringer, M., & Hungerbühler, K. (2009). The OECD software tool for screening chemicals for persistence and long-range transport potential. Environmental Modelling & Software, 24, 228–237. doi:10.1016/j.envsoft.2008.06.014
  • Wei, G.-L., Li, D.-Q., Zhuo, M.-N., Liao, Y.-S., Xie, Z.-Y., Guo, T.-L., … Liang, Z.-Q. (2015). Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environmental Pollution, 196, 29–46. doi:10.1016/j.envpol.2014.09.012
  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46, 2242–2250. doi:10.1021/es204168d
  • Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. Journal of Environmental Monitoring, 13(5), 1195–1203. doi:10.1039/c1em10017c
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., … Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10. doi:10.1016/j.scitotenv.2012.02.023
  • Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir: The ACS Journal of Surfaces and Colloids, 25(6), 3571–3576. doi:10.1021/la803701b
  • Yang, Q., Chen, G., Zhang, J., & Li, H. (2015). Adsorption of sulfamethazine by multi-walled carbon nanotubes: Effects of aqueous solution chemistry. Rsc Advances, 5(32), 25541–25549. doi:10.1039/C4RA15056B
  • Yang, Q., Li, X., Chen, G., Zhang, J., & Xing, B. (2016). Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: Mechanistic study. Rsc Advances, 6(18), 15184–15191. doi:10.1039/C5RA26913J
  • Yang, Y., Wang, Y., Westerhoff, P., Hristovski, K., Jin, V. L., Johnson, M.-V. V., & Arnold, J. G. (2014). Metal and nanoparticle occurrence in biosolid-amended soils. Science of the Total Environment, 485, 441–449. doi:10.1016/j.scitotenv.2014.03.122
  • Yu, Y., Liu, Y., & Wu, L. (2013). Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environmental Science and Pollution Research, 20(6), 4261–4267. doi:10.1007/s11356-012-1442-7
  • Zakaria, S., Fröhlich, E., Fauler, G., Gries, A., Weiß, S., & Scharf, S. (2018). First determination of fullerenes in the Austrian market and environment: Quantitative analysis and assessment. Environmental Science and Pollution Research, 25(1), 562–571. doi:10.1007/s11356-017-0213-x
  • Zhang, D., Pan, B., Zhang, H., Ning, P., & Xing, B. (2010). Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology, 44(10), 3806–3811. doi:10.1021/es903851q
  • Zhang, W., Li, Y., Su, Y., Mao, K., & Wang, Q. (2012). Effect of water composition on TiO 2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. Journal of Hazardous Materials, 215, 252–258. doi:10.1016/j.jhazmat.2012.02.060
  • Zhang, W-X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5(3/4), 323–332. doi:10.1023/A:1025520116015
  • Zhang, Y., Leu, Y.-R., Aitken, R. J., & Riediker, M. (2015). Inventory of engineered nanoparticle-containing consumer products available in the singapore retail market and likelihood of release into the aquatic environment. International Journal of Environmental Research and Public Health, 12(8), 8717–8743. doi:10.3390/ijerph120808717
  • Zhang, Y., Mu, Y., Liu, J., & Mellouki, A. (2012). Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. Journal of Environmental Sciences, 24(1), 124–130. doi:10.1016/S1001-0742(11)60735-3
  • Zhang, Y., Yan, L., Xu, W., Guo, X., Cui, L., Gao, L., … Du, B. (2014). Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. Journal of Molecular Liquids, 191, 177–182. doi:10.1016/j.molliq.2013.12.015
  • Zhou, X-h., Huang, B-C., Zhou, T., Liu, Y-C., & Shi, H-C. (2015). Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 119, 568–576. doi:10.1016/j.chemosphere.2014.07.037
  • Zhu, H., Jiang, R., Xiao, L., Chang, Y., Guan, Y., Li, X., & Zeng, G. (2009). Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 169(1–3), 933–940. doi:10.1016/j.jhazmat.2009.04.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.