455
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Mercury fluxes, budgets, and pools in forest ecosystems of China: A review

ORCID Icon, , , ORCID Icon, , & show all
Pages 1411-1450 | Published online: 12 Sep 2019

References

  • Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., & Obrist, D. (2016). New constraints on terrestrial surface atmosphere fluxes of gaseous elemental mercury using a global database. Environmental Science & Technology, 50(2), 507–524. doi:10.1021/acs.est5b04013
  • Akerblom, S., Meili, M., Bringmark, L., Johansson, K., Kleja, D. B., & Bergkvist, B. (2008). Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests. Water, Air, and Soil Pollution, 189(1–4), 239–252. doi:10.1007/s11270-007-9571-1
  • Allard, B., & Arsenie, I. (1991). Abiotic reduction of mercury by humic substances in aquatic system - An important process for the mercury cycle. Water Air & Soil Pollution, 56(1), 457–464. doi:10.1007/BF00342291
  • Almeida, M. D., Marins, R. V., Paraquetti, H. H. M., Bastos, W. R., & Lacerda, L. D. (2009). Mercury degassing from forested and open field soils in Rondonia, Western Amazon, Brazil. Chemosphere, 77(1), 60–66. doi:10.1016/j.chemosphere.2009.05.018
  • Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. (2013). Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 27(2), 410–421. doi:10.1002/gbc.20040
  • Barghigiani, C., Ristori, T., & Bauleo, R. (1991). Pinus as an atmospheric Hg biomonitor. Environmental Technology, 12(12), 1175–1181. doi:10.1080/09593339109385118
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. doi:10.1080/10643389.2017.1326277
  • Blackwell, B. D., & Driscoll, C. T. (2015a). Deposition of mercury in forests along a montane elevation gradient. Environmental Science & Technology, 49(9), 5363–5370. doi:10.1021/es505928w
  • Blackwell, B. D., & Driscoll, C. T. (2015b). Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition. Environmental Pollution, 202, 126–134. doi:10.1016/j.envpol.2015.02.036
  • Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., & Driscoll, C. T. (2008). Mercury dynamics of a northern hardwood canopy. Atmospheric Environment, 42(29), 6905–6914. doi:10.1016/j.atmosenv.2008.05.043
  • Carpi, A., Fostier, A. H., Orta, O. R., dos Santos, J. C., & Gittings, M. (2014). Gaseous mercury emissions from soil following forest loss and land use changes: Field experiments in the United States and Brazil. Atmospheric Environment, 96, 423–429. doi:10.1016/j.atmosenv.2014.08.004
  • Carpi, A., & Lindberg, S. E. (1998). Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil. Atmospheric Environment, 32(5), 873–882. doi:10.1016/S1352-2310(97)00133-7
  • Choi, H.-D., & Holsen, T. M. (2009). Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation. Environmental Pollution, 157(5), 1673–1678. doi:10.1016/j.envpol.2008.12.014
  • Choi, H.-D., Sharac, T. J., & Holsen, T. M. (2008). Mercury deposition in the Adirondacks: A comparison between precipitation and throughfall. Atmospheric Environment, 42(8), 1818–1827. doi:10.1016/j.atmosenv.2007.11.036
  • Cole, A. S., Steffen, A., Pfaffhuber, K. A., Berg, T., Pilote, M., Poissant, L., … Hung, H. (2013). Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmospheric Chemistry and Physics, 13(3), 1535–1545. doi:10.5194/acp-13-1535-2013
  • Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17(5), 1341–1351. doi:10.1890/06-1697.1
  • Demers, J. D., Yavitt, J. B., Driscoll, C. T., & Montesdeoca, M. R. (2013). Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland-wetland interface: The influence of hydrogeologic setting. Journal of Geophysical Research: Biogeosciences, 118(2), 825–841. doi:10.1002/jgrg.20066
  • Donkelaar, A. V., Martin, R. V., Brauer, M., Kahn, R., Levy, R., & Verduzco, C. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environmental Health Perspectives, 118(6), 847–855. doi:10.1289/ehp.0901623
  • Du, B. (2014). Field measurement of soil mercury emission flux in forest (master’s dissertation). Tsinghua University, Beijing, China.
  • Du, B., Li, P., Feng, X., Qiu, G., Zhou, J., & Maurice, L. (2016). Mercury exposure in children of the wanshan mercury mining area, Guizhou, China. International Journal of Environmental Research and Public Health, 13(11), 1107. doi:10.3390/ijerph13111107
  • Du, B., Zhou, J., Zhou, L., Fan, X., & Zhou, J. (2019). Mercury distribution in the foliage and soil profiles of a subtropical forest: Process for mercury retention in soils. Journal of Geochemical Exploration, 205, 106337. doi:10.1016/j.gexplo.2019.106337
  • Du, H., Ma, M., Sun, T., An, S., Igarashi, Y., & Wang, D. (2018). Methyl and total mercury in different media and associated fluxes in a watershed forest, Southwest China. International Journal of Environmental Research and Public Health, 15(12), 2618. doi:10.3390/ijerph1512
  • Edwards, G. C., & Howard, D. A. (2013). Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia. Atmospheric Chemistry and Physics, 13(10), 5325–5336. doi:10.5194/acp-13-5325-2013
  • Ericksen, J. A., Gustin, M. S., Xin, M., Weisberg, P. J., & Fernandez, G. C. J. (2006). Air-soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366(2–3), 851–863. doi:10.1016/j.scitotenv.2005.08.019
  • Falandysz, J., & Drewnowska, M. (2015). Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: Accumulation, loss in cooking and dietary intake. Ecotoxicology and Environmental Safety, 115, 49–54. doi:10.1016/j.ecoenv.2015.02.004
  • Falandysz, J., Saba, M., Liu, H.-G., Li, T., Wang, J.-P., Wiejak, A., … Zhang, D. (2016). Mercury in forest mushrooms and topsoil from the Yunnan highlands and the subalpine region of the Minya Konka summit in the Eastern Tibetan Plateau. Environmental Science and Pollution Research, 23(23), 23730–23741. doi:10.1007/s11356-016-7580-6
  • Falandysz, J., Zhang, J., Wang, Y., Krasińska, G., Kojta, A., Saba, M., … Liu, H. (2015). Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake. Science of the Total Environment, 537, 470–478. doi:10.1016/j.scitotenv.2015.07.159
  • Fang, F., Wang, Q., & Yi, J. (2003). Mercury concentration, emission flux in urban land surface and its factors. Ecology and Environment, 12(3), 260–262.
  • Fay, L., & Gustin, M. (2007). Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water, Air, and Soil Pollution, 181(1–4), 373–384. doi:10.1007/s11270-006-9308-6
  • Figueiredo, B. R., De Campos, A. B., Da Silva, R., & Hoffman, N. C. (2018). Mercury sink in Amazon rainforest: Soil geochemical data from the Tapajos National Forest, Brazil. Environmental Earth Sciences, 77(8), 296. doi:10.1007/s12665-018-7471-x
  • Fisher, L. S., & Wolfe, M. H. (2012). Examination of mercury inputs by throughfall and litterfall in the Great Smoky Mountains National Park. Atmospheric Environment, 47, 554–559. doi:10.1016/j.atmosenv.2011.10.017
  • Friedli, H. R., Radke, L. F., Payne, N. J., McRae, D. J., Lynham, T. J., & Blake, T. W. (2007). Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. Journal of Geophysical Research, 112(G1), G01004. doi:10.1029/2005JG000061
  • Fu, X., Feng, X., Sommar, J., & Wang, S. (2012). A review of studies on atmospheric mercury in China. Science of the Total Environment, 421–422, 73–81. doi:10.1016/j.scitotenv.2011.09.089
  • Fu, X., Feng, X., & Wang, S. (2008). Exchange fluxes of Hg between surfaces and atmosphere in the eastern flank of Mount Gongga, Sichuan Province, southwestern China. Journal of Geophysical Research, 113(D20), D20306. doi:10.1029/2008JD009814
  • Fu, X., Feng, X., Zhu, W., Rothenberg, S., Yao, H., & Zhang, H. (2010). Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158(6), 2324–2333. doi:10.1016/j.envpol.2010.01.032
  • Fu, X., Feng, X., Zhu, W., Wang, S., & Lu, J. (2008). Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan Plateau, China. Atmospheric Environment, 42(5), 970–979. doi:10.1016/j.atmosenv.2007.10.018
  • Fu, X., Feng, X., Zhu, W., Zheng, W., Wang, S., & Lu, J. Y. (2008). Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China. Applied Geochemistry, 23(3), 408–418. doi:10.1016/j.apgeochem.2007.12.018
  • Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., … Feng, X. (2016). Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmospheric Chemistry and Physics, 16(18), 11547–11562. doi:10.5194/acp-16-11547-2016
  • Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 10(5), 2425–2437. doi:10.5194/acp-10-2425-2010
  • Fu, X. W., Feng, X., Shang, L. H., Wang, S. F., & Zhang, H. (2012). Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China. Atmospheric Chemistry and Physics, 12(9), 4215–4226. doi:10.5194/acp-12-4215-2012
  • Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C. J., & Feng, X. B. (2015). Observations of atmospheric mercury in China: A critical review. Atmospheric Chemistry and Physics, 15(16), 9455–9476. doi:10.5194/acp-15-9455-2015
  • Gong, P., Wang, X.-P., Xue, Y.-G., Xu, B.-Q., & Yao, T.-D. (2014). Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling. Environmental Pollution, 188, 94–101. doi:10.1016/j.envpol.2014.01.020
  • Graydon, J. A., Louis, V. L. S., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., & Rudd, J. W. M. (2008). Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science & Technology, 42(22), 8345–8351. doi:10.1021/es801056j
  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: A review. Journal of Environment Quality, 32(2), 393–405. doi:10.2134/jeq2003.3930
  • Grigal, D. F., Kolka, R. K., Fleck, J. A., & Nater, E. A. (2000). Mercury budget of an upland-peatland watershed. Biogeochemistry, 50(1), 95–109. doi:10.1023/A:1006322705566
  • Gustin, M. S., Taylor, G. E., & Maxey, R. A. (1997). Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. Journal of Geophysical Research: Atmospheres, 102(D3), 3891–3898. doi:10.1029/96JD02742
  • Han, K. M., Park, R. S., Kim, H. K., Woo, J. H., Kim, J., & Song, C. H. (2013). Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia. Science of the Total Environment, 463, 754–771. doi:10.1016/j.scitotenv.2013.06.003
  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., & Kim, K. H. (1995). Foliar exchange of mercury-vapor - Evidence for a compensation point. Water, Air, & Soil Pollution, 80(1–4), 373–382. doi:10.1007/BF01189687
  • Hartman, J. S., Weisberg, P. J., Pillai, R., Ericksen, J. A., Kuiken, T., & Lindberg, S. E. (2009). Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States. Environmental Science & Technology, 43(13), 4989–4994. doi:10.1021/es900075q
  • He, M., Tian, L., Braaten, H. F. V., Wu, Q., Luo, J., Cai, L.-M., … Lin, Y. (2019). Mercury-organic matter interactions in soils and sediments: Angel or devil? Bulletin of Environmental Contamination and Toxicology, 102(5), 621–627. doi:10.1007/s00128-018-2523-1
  • Hultberg, H., Munthe, J., & Iverfeldt, A. (1995). Cycling of methyl mercury and mercury - Responses in the forest roof catchment to 3 years of decreased atmospheric deposition. Water Air and Soil Pollution, 80(1–4), 415–424. doi:10.1007/bf01189691
  • Iverfeldt, A. (1991). Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water Air & Soil Pollution, 56(1), 553–564. doi:10.1007/BF00342299
  • JECFA. (2010). Joint FAO/WHO Food Standards Programme. Geneva, Switzerland: Committee of the Codex Alimentarius Commission.
  • Johnson, K. B. (2002). Fire and its effects on mercury and methylmercury dynamics for two watersheds in Acadia National Park, Maine (MSc thesis). The University of Maine, Maine.
  • Johnson, K. B., Haines, T. A., Kahl, J. S., Norton, S. A., Amirbahman, A., & Sheehan, K. D. (2007). Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environmental Monitoring and Assessment, 126(1–3), 55–67. doi:10.1007/s10661-006-9331-5
  • Juillerat, J. I., Ross, D. S., & Bank, M. S. (2012). Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA. Environmental Toxicology and Chemistry, 31(8), 1720–1729. doi:10.1002/etc.1896
  • Kalicin, M. H., Driscoll, C. T., Yavitt, J., Newton, R., & Munson, R. (2008). The dynamics of mercury in upland forests of the Adirondack region of New York mercury in Adirondack wetlands, lakes and terrestrial systems (MAWLTS) (pp. 8–1–8-15). New York, NY: New York State Energy Research and Development Authority.
  • Kojta, A. K., Zhang, J., Wang, Y., Li, T., Saba, M., & Falandysz, J. (2015). Mercury contamination of fungi genus Xerocomus in the Yunnan province in China and the region of Europe. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 50(13), 1342–1350. doi:10.1080/10934529.2015.1059108
  • Kolka, R. K., Nater, E. A., Grigal, D. F., & Verry, E. S. (1999). Atmospheric inputs of mercury and organic carbon into a forested upland bog watershed. Water, Air, and Soil Pollution, 113(1/4), 273–294. doi:10.1023/A:1005020326683
  • Kuiken, T., Gustin, M., Zhang, H., Lindberg, S., & Sedinger, B. (2008). Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from South Carolina to New England. Applied Geochemistry, 23(3), 356–368. doi:10.1016/j.apgeochem.2007.12.007
  • Kuiken, T., Zhang, H., Gustin, M., & Lindberg, S. (2008). Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year. Applied Geochemistry, 23(3), 345–355. doi:10.1016/j.apgeocliem.2007.12.006
  • Kyllonen, K., Hakola, H., Hellen, H., Korhonen, M., & Verta, M. (2012). Atmospheric mercury fluxes in a southern boreal forest and wetland. Water, Air, & Soil Pollution, 223(3), 1171–1182. doi:10.1007/s11270-011-0935-1
  • Lan, X., Talbot, R., Castro, M., Perry, K., & Luke, W. (2012). Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data. Atmospheric Chemistry and Physics, 12(21), 10569.
  • Lang, X. (2014). Mercury in atmospheric precipitation and litterfall in Mt. Ailao and Mt. Damei (master’s dissertation). Guizhou University, Guiyang, China.
  • Larssen, T., de Wit, H. A., Wiker, M., & Halse, K. (2008). Mercury budget of a small forested boreal catchment in southeast Norway. Science of the Total Environment, 404(2–3), 290–296. doi:10.1016/j.scitotenv.2008.03.013
  • Lee, Y. H., Bishop, K. H., & Munthe, J. (2000). Do concepts about catchment cycling of methylmercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, Northern Sweden. The Science of the Total Environment, 260(1–3), 11–20. doi:10.1016/S0048-9697(00)00538-6
  • Liang, P., Wu, S., Zhang, C., Xu, J., Christie, P., Zhang, J., & Cao, Y. (2018). The role of antibiotics in mercury methylation in marine sediments. Journal of Hazardous Materials, 360, 1–5. doi:10.1016/j.jhazmat.2018.07.096
  • Lin, C. J., & Pehkonen, S. O. (1997). Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmospheric Environment, 31(24), 4125–4137. doi:10.1016/S1352-2310(97)00269-0
  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., … Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32.2.0.co;2] [https://doi.org/17408188]
  • Lindberg, S. E. (1996). In global and regional mercury cycles: Sources, fluxes and mass balances (Vol. 21, pp. 359–380). Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S., & Stevens, R. K. (2002). Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environmental Science & Technology, 36(6), 1245–1256. doi:10.1021/es0111941
  • Lindberg, S. E., & Harriss, R. C. (1981). The role of atmospheric deposition in an eastern-United-States deciduous forest. Water, Air, and Soil Pollution, 16(1), 13–31. doi:10.1007/BF01047039
  • Lindberg, S. E., Owens, J. G., & Stratton, W. J. (1994). Application of throughfall methods to estimate dry deposition of mercury. In J. Huckabee & C. Watras (Eds.), Mercury as a global pollutant (pp. 261–272). Lewis Publications.
  • Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32(1), 49–57. doi:10.1021/es970546u
  • Liu, H. (2005). Dynamics of soil properties and the effects factors among secondary successive communities in Mt. Jinyun (doctoral dissertation). Southwest Agricultural University, Chongqing, China.
  • Lovett, G. M., Nolan, S. S., Driscoll, C. T., & Fahey, T. J. (1996). Factors regulating throughfall flux in a new New-Hampshire forested landscape. Canadian Journal of Forest Research, 26(12), 2134–2144. doi:10.1139/x26-242
  • Luo, Y. (2015). Mercury input, output and transport in forest ecosystems in southern China (doctoral dissertation). Tsinghua University, Beijing, China.
  • Luo, Y., Duan, L., Wang, L., Xu, G., Wang, S., & Hao, J. (2014). Mercury concentrations in forest soils and stream waters in northeast and south China. Science of the Total Environment, 496, 714–720. doi:10.1016/j.scitotenv.2014.07.036
  • Luo, Y., Duan, L., Xu, G., & Hao, J. (2015). Inhibition of mercury release from forest soil by high atmospheric deposition of Ca2+ and SO42. Chemosphere, 134, 113–119. doi:10.1016/j.chemosphere.2015.03.081
  • Ma, M. (2015). Mercury inputs, outputs, and sources under the forest canopy in typical subtropical forest ecosystem of southwest China (PhD dissertation). Southwest University, Chongqing, China.
  • Ma, M., Du, H., & Wang, D. (2019). A new perspective is required to understand the role of forest ecosystems in global mercury cycle: A review. Bulletin of Environmental Contamination and Toxicology, 102(5), 650–656. doi:10.1007/s00128-019-02569-2
  • Ma, M., Sun, T., Du, H., & Wang, D. (2018). A two-year study on mercury fluxes from the soil under different vegetation cover in a subtropical region, South China. Atmosphere, 9(1), 30. doi:10.3390/atmos9010030
  • Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., & Wei, S. (2016). Mercury dynamics and mass balance in a subtropical forest, southwestern China. Atmospheric Chemistry and Physics, 16(7), 4529–4537. doi:10.5194/acp-16-4529-2016
  • Ma, M., Wang, D., Sun, R., Shen, Y., & Huang, L. (2013). Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmospheric Environment, 64, 116–123. doi:10.1016/j.atmosenv.2012.09.038
  • Ma, M., Wang, D., Sun, T., Zhao, Z., & Du, H. (2015). Forest runoff increase mercury output from subtropical forest catchments: An example from an alpine reservoir in a national nature reserve (southwestern China). Environmental Science and Pollution Research, 22(4), 2745–2756. doi:10.1007/s11356-014-3549-5
  • Magarelli, G., & Fostier, A. H. (2005). Quantification of atmosphere - Soil mercury fluxes by using a dynamic flux chamber: Application at the Negro River basin. Química Nova, 28(6), 968–974. doi:10.1590/s0100-40422005000600007
  • Mo, F., Li, X., He, S., & Xiaoxue, W. (2011). Evaluation of soil and water conservation capacity of different forest types in Dongling Mountain. Acta Ecologica Sinica, 31(17), 5009–5016.
  • Mueller, D., Wip, D., Warneke, T., Holmes, C. D., Dastoor, A., & Notholt, J. (2012). Sources of atmospheric mercury in the tropics: Continuous observations at a coastal site in Suriname. Atmospheric Chemistry and Physics, 12(16), 7391–7397. doi:10.5194/acp-12-7391-2012
  • Munthe, J., Hultberg, H., & Iverfeldt, A. (1995). Mechanisms of deposition of methylmercury and mercury to coniferous forests. Water, Air, & Soil Pollution, 80(1–4), 363–371. doi:10.1007/BF01189686
  • Munthe, J., Pleijel, K., Iverfeldt, A., Kruger, O., & Petersen, G. (1998). Atmospheric deposition of mercury in the Nordic countries at different scenarios of reduced anthropogenic emissions in Europe. Swedish Environmental Research Institute.
  • Nelson, S. J., Johnson, K. B., Kahl, J. S., Haines, T. A., & Fernandez, I. J. (2007). Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment, 126(1–3), 69–80. doi:10.1007/s10661-006-9332-4
  • Niu, Z., Zhang, X., Wang, Z., & Ci, Z. (2011). Mercury in leaf litter in typical suburban and urban broadleaf forests in China. Journal of Environmental Sciences, 23(12), 2042–2048. doi:10.1016/S1001-0742(10)60669-9
  • O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., & Wu, Q. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761. doi:10.1016/j.envint.2019.03.019
  • Obrist, D. (2007). Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry, 85(2), 119–123. doi:10.1007/s10533-007-9108-0
  • Obrist, D. (2012). Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury. Environmental Science & Technology, 46(11), 5921–5930. doi:10.1021/es2045579
  • Obrist, D., Johnson, D. W., & Lindberg, S. E. (2009). Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences, 6(5), 765–777. doi:10.5194/bg-6-765-2009
  • Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., & Bracho, R. (2011). Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environmental Science & Technology, 45(9), 3974–3981. doi:10.1021/es104384m
  • Pannu, R., Siciliano, S. D., & O’Driscoll, N. J. (2014). Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environmental Pollution, 193, 138–146. doi:10.1016/j.envpol.2014.06.023
  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., … Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964. doi:10.5194/acp-10-5951-2010
  • Poissant, L., & Casimir, A. (1998). Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment, 32(5), 883–893. doi:10.1016/S1352-2310(97)00132-5
  • Poissant, L., Pilote, M., Constant, P., Beauvais, C., Zhang, H. H., & Xu, X. H. (2004). Mercury gas exchanges over selected bare soil and flooded sites in the bay St. Francois wetlands (Quebec, Canada). Atmospheric Environment, 38(25), 4205–4214. doi:10.1016/j.atmosenv.2004.03.068
  • Poulain, A. J., Roy, V., & Amyot, M. (2007). Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochimica Et Cosmochimica Acta, 71(10), 2448–2462. doi:10.1016/j.gca.2007.03.003
  • Rea, A. W., Keeler, G. J., & Scherbatskoy, T. (1996). The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: A short-term study. Atmospheric Environment, 30(19), 3257–3263. doi:10.1016/1352-2310(96)00087-8
  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2000). Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environmental Science & Technology, 34(12), 2418–2425. doi:10.1021/es991305k
  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35(20), 3453–3462. doi:10.1016/S1352-2310(01)00133-9
  • Renner, R. (2002). Newly deposited mercury may be more bioavailable. Environmental Science & Technology, 36(11), 226A–227A. doi:10.1021/es0223224
  • Richardson, J. B., & Friedland, A. J. (2015). Mercury in coniferous and deciduous upland forests in northern New England, USA: Implications of climate change. Biogeosciences, 12(22), 6737–6749. doi:10.5194/bg-12-6737-2015
  • Richardson, J. B., Friedland, A. J., Engerbretson, T. R., Kaste, J. M., & Jackson, B. P. (2013). Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States. Environmental Pollution, 182, 127–134. doi:10.1016/j.envpol.2013.07.011
  • Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J., & Faccio, S. D. (2010). Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology, 19(4), 697–709. doi:10.1007/s10646-009-0443-x
  • Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., & Zhang, L. (2012). Litterfall mercury dry deposition in the eastern USA. Environmental Pollution, 161, 284–290. doi:10.1016/j.envpol.2011.06.005
  • Rodenhouse, N. L., Lowe, W. H., Gebauer, R. L. E., McFarland, K. P., & Bank, M. S. (2019). Mercury bioaccumulation in temperate forest food webs associated with headwater streams. Science of the Total Environment, 665, 1125–1134. doi:10.1016/j.scitotenv.2019.02.151
  • Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., … Townsend, A. R. (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8(3), 279–293. doi:10.1029/94GB00993
  • Schroeder, W. H., Munthe, J., & Lindqvist, O. (1989). Cycling of mercury between water, air, and soil compartments of the environment. Water Air and Soil Pollution, 48(3–4), 337–347.
  • Schwesig, D., & Matzner, E. (2000). Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. The Science of the Total Environment, 260(1–3), 213–223. doi:10.1016/S0048-9697(00)00565-9
  • Schwesig, D., & Matzner, E. (2001). Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe. Biogeochemistry, 53(2), 181–200. doi:10.1023/a:1010600600099
  • Selvendiran, P., Driscoll, C. T., Montesdeoca, M. R., & Bushey, J. T. (2008). Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands. Journal of Geophysical Research-Biogeosciences, 113(G2), G00C01. doi:10.1029/2008jg000739
  • Sheehan, K. D., Fernandez, I. J., Kahl, J. S., & Amirbahman, A. (2006). Litterfall mercury in two forested watersheds at Acadia National Park, Maine, USA. Water, Air, and Soil Pollution, 170(1–4), 249–265. doi:10.1007/s11270-006-3034-y
  • St Louis, V. L., Graydon, J. A., Lehnherr, I., Amos, H. M., Sunderland, E. M., & St Pierre, K. A. (2019). Atmospheric concentrations and wet/dry loadings of mercury at the remote experimental lakes area, Northwestern Ontario, Canada. Environmental Science & Technology, 53(14), 8017–8026. doi:10.1021/acs.est.9b01338
  • St Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., & Scott, K. J. (2001). Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science & Technology, 35(15), 3089–3098. doi:10.1021/es001924p
  • Teixeira, D. C., Lacerda, L. D., & Silva-Filho, E. V. (2018). Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environmental Pollution, 242, 1050–1057. doi:10.1016/j.envpol.2018.07.120
  • Tie, X., & Cao, J. (2009). Aerosol pollution in China: Present and future impact on environment. Particuology, 7(6), 426–431. doi:10.1016/j.partic.2009.09.003
  • Visha, A., Gandhi, N., Bhavsar, S. P., & Arhonditsis, G. B. (2018). Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective. Environmental Pollution, 243, 777–789. doi:10.1016/j.envpol.2018.07.070
  • Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Han, S., & Xu, H. (2009). Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research, 109(3), 201–206. doi:10.1016/j.envres.2008.12.001
  • Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Li, P., … Xu, H. (2009). Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research, 109(6), 721–727. doi:10.1016/j.envres.2009.05.006
  • Wang, D., He, L., Shi, X., Wei, S., & Feng, X. (2006). Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere, 64(11), 1845–1854. doi:10.1016/j.chemosphere.2006.01.054
  • Wang, L., Wang, S., Zhang, L., Wang, Y., Zhang, Y., Nielsen, C., … Hao, J. (2014). Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 190, 166–175. doi:10.1016/j.envpol.2014.03.011
  • Wang, S., Xing, D., Wei, Z., & Jia, Y. (2013). Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China. Geoderma, 206, 123–132. doi:10.1016/j.geoderma.2013.04.026
  • Wang, X., Bao, Z., Lin, C.-J., Yuan, W., & Feng, X. (2016). Assessment of global mercury deposition through litterfall. Environmental Science & Technology, 50(16), 8548–8557. doi:10.1021/acs.est.5b06351
  • Wang, X., Lin, C.-J., Lu, Z., Zhang, H., Zhang, Y., & Feng, X. (2016). Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems. Journal of Geophysical Research: Biogeosciences, 121(8), 2096–2109. doi:10.1002/2016JG003446
  • Wang, X., Lin, C.-J., Yuan, W., Sommar, J., Zhu, W., & Feng, X. (2016). Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 16(17), 11125–11143. doi:10.5194/acp-16-11125-2016
  • Wang, Y. (2012). Study on eco-hydrological process to Land use/forest cover change of small typical watersheds in Beijing mountain area (doctoral dissertation). Beijing: Beijing Forestry University.
  • Wang, Y., Peng, Y., Wang, D., & Zhang, C. (2014). Wet deposition fluxes of total mercury and methylmercury in core urban areas, Chongqing, China. Atmospheric Environment, 92, 87–96. doi:10.1016/j.atmosenv.2014.03.059
  • Wang, Z., Zhang, X., Xiao, J., Zhijia, C., & Yu, P. (2009). Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environmental Pollution, 157(3), 801–808. doi:10.1016/j.envpol.2008.11.018
  • Wright, L. P., Zhang, L., & Marsik, F. J. (2016). Overview of mercury dry deposition, litterfall, and throughfall studies. Atmospheric Chemistry and Physics, 16(21), 13399–13416. doi:10.5194/acp-16-13399-2016
  • Xiao, Z., Sommar, J., Lindqvist, O., & Giouleka, E. (1998). Atmospheric mercury deposition to grass in southern Sweden. Science of the Total Environment, 213(1–3), 85–94. doi:10.1016/S0048-9697(98)00080-1
  • Xiao, Z. F., Munthe, J., Schroeder, W. H., & Lindqvist, O. (1991). Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus B, 43(3), 267–279. doi:10.1034/j.1600-0889.1990.t01-1-00009.x-i1
  • Xin, M., & Gustin, M. S. (2007). Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Applied Geochemistry, 22(7), 1451–1466. doi:10.1016/j.apgeochem.2007.02.006
  • Xue, T., Wang, R.-Q., Zhang, M.-M., & Dai, J.-L. (2013). Adsorption and desorption of mercury(II) in three forest soils in Shandong Province, China. Pedosphere, 23(2), 265–272. doi:10.1016/S1002-0160(13)60015-6
  • Yang, Y., Chen, H., & Wang, D. (2009). Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 156(1–4), 479–489. doi:10.1007/s10661-008-0499-8
  • Yin, Y. J., Allen, H. E., Huang, C. P., Sparks, D. L., & Sanders, P. F. (1997). Kinetics of mercury(II) adsorption and desorption on soil. Environmental Science & Technology, 31(2), 496–503. doi:10.1021/es9603214
  • Yu, B., Wang, X., Lin, C.‐J., Fu, X., Zhang, H., Shang, L., & Feng, X. (2015). Characteristics and potential sources of atmospheric mercury at a subtropical near‐coastal site in East China. Journal of Geophysical Research: Atmospheres, 120(16), 8563–8574. doi:10.1002/2015JD023425
  • Zhang, H., Fu, X., Lin, C.-J., Shang, L., Zhang, Y., Feng, X., & Lin, C. (2016). Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 16(20), 13131–13148. doi:10.5194/acp-16-13131-2016
  • Zhang, H., Lindberg, S. E., Barnett, M. O., Vette, A. F., & Gustin, M. S. (2002). Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1: Simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model. Atmospheric Environment, 36(5), 835–846. doi:10.1016/S1352-2310(01)00501-5
  • Zhang, H., Lindberg, S. E., Marsik, F. J., & Keeler, G. J. (2001). Mercury air/surface exchange kinetics of background soils of the Tahquamenon River watershed in the Michigan Upper Peninsula. Water Air and Soil Pollution, 126(1/2), 151–169. doi:10.1023/a:1005227802306
  • Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., … Liu, X. (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49(5), 3185. doi:10.1021/es504840m
  • Zhang, L., Wang, S. X., Wang, L., & Hao, J. M. (2013). Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: Implications of mercury emission sources. Atmospheric Chemistry and Physics, 13(20), 10505–10516. doi:10.5194/acp-13-10505-2013
  • Zhang, W., Zhang, X., Tian, Y., Zhu, Y., Tong, Y., Li, Y., & Wang, X. (2018). Risk assessment of total mercury and methylmercury in aquatic products from offshore farms in China. Journal of Hazardous Materials, 354, 198–205. doi:10.1016/j.jhazmat.2018.04.039
  • Zhou, J. (2013). Atmospheric mercury deposition disciplines and its influencing factors in background area of Mt. Ailao in Yunnan (master’s dissertation). Guizhou University, Guiyang, China.
  • Zhou, J. (2016). Soil-atmosphere mercury fluxes and mercury pools in typical forest of China (PhD dissertation). University of Chinese Academy of Sciences, Beijing, China.
  • Zhou, J., Feng, X., Liu, H., Zhang, H., Fu, X., Bao, Z., … Zhang, Y., (2013). Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China. Atmospheric Environment, 81, 364–372. doi:10.1016/j.atmosenv.2013.09.010
  • Zhou, J., Lang, X., Du, B., Zhang, H., Liu, H., Zhang, Y., & Shang, L. (2016). Litterfall and nutrient return in moist evergreen broad-leaved primary forest and mixed subtropical secondary deciduous broad-leaved forest in China. European Journal of Forest Research, 135(1), 77–86. doi:10.1007/s10342-015-0918-7
  • Zhou, J., Liu, H., Du, B., Shang, L., Yang, J., & Wang, Y. (2015). Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environmental Science and Pollution Research, 22(8), 6144–6154. doi:10.1007/s11356-014-3823-6
  • Zhou, J., Wang, Z., Sun, T., Zhang, H., & Zhang, X. (2016). Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires. Environmental Pollution, 212, 188–196. doi:10.1016/j.envpol.2016.01.003
  • Zhou, J., Wang, Z., & Zhang, X. (2018). Deposition and fate of mercury in litterfall, litter, and soil in coniferous and broad-leaved forests. Journal of Geophysical Research: Biogeosciences, 123(8), 2590–2603. doi:10.1029/2018JG004415
  • Zhou, J., Wang, Z., Zhang, X., & Chen, J. (2015). Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China. Environmental Pollution, 202, 187–195. doi:10.1016/j.envpol.2015.03.021
  • Zhou, J., Wang, Z., Zhang, X., Driscoll, C., & Lin, C.-J. (2019). Soil emissions, soil air dynamics and model simulation of gaseous mercury in subtropical forest. Atmospheric Chemistry and Physics Discussions, 1–31. doi:10.5194/acp-2019-161
  • Zhou, J., Wang, Z., Zhang, X., & Gao, Y. (2017). Mercury concentrations and pools in four adjacent coniferous and deciduous upland forests in Beijing, China. Journal of Geophysical Research: Biogeosciences, 122(5), 1260–1274. doi:10.1002/2017JG003776
  • Zhou, J., Wang, Z., Zhang, X., & Sun, T. (2017). Investigation of factors affecting mercury emission from subtropical forest soil: A field controlled study in southwestern China. Journal of Geochemical Exploration, 176, 128–135. doi:10.1016/j.gexplo.2015.10.007
  • Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., & Feng, X. (2016). Global observations and modeling of atmosphere-surface exchange of elemental mercury: A critical review. Atmospheric Chemistry and Physics, 16(7), 4451–4480. doi:10.5194/acp-16-4451-2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.