947
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives

Pages 1451-1514 | Published online: 11 Sep 2019

References

  • Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36(1–3), 22–36. doi:10.1016/j.clay.2006.06.015
  • Ahmed, M. J., & Hameed, B. H. (2018). Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. Ecotoxicology and Environmental Safety, 149, 257–266. doi:10.1016/j.ecoenv.2017.12.012
  • Ait-Akbour, R., Boustingorry, P., Leroux, F., Leising, F., & Taviot-Guého, C. (2015). Adsorption of polyCarboxylate poly(ethylene glycol) (PCP) esters on montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science, 437, 227–234. doi:10.1016/j.jcis.2014.09.027
  • Aleanizy, F. S., Alqahtani, F., Al Gohary, O., El Tahir, E., & Al Shalabi, R. (2015). Determination and characterization of metronidazole–kaolin interaction. Saudi Pharmaceutical Journal, 23(2), 167–176. doi:10.1016/j.jsps.2014.06.006
  • Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183. doi:10.1016/j.jenvman.2012.08.028
  • Alperovitch, N., Shainberg, I., Keren, R., & Singer, M. J. (1985). Effect of clay mineralogy and aluminum and iron oxides on the hydraulic conductivity of clay-sand Mixtures. Clays and Clay Minerals, 33(5), 443–450. doi:10.1346/CCMN.1985.0330511
  • Alvarino, T., Lema, J., Omil, F., & Suárez, S. (2018). Trends in organic micropollutants removal in secondary treatment of sewage. Reviews in Environmental Science and Bio/Technology, 17(3), 447–469. doi:10.1007/s11157-018-9472-3
  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. doi:10.1016/S0045-6535(02)00769-5
  • Antón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., & Eymar, E. (2018). Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160, 162–172. doi:10.1016/j.clay.2017.12.023
  • Ardakani, A., & Yazdani, M. (2014). The relation between particle density and static elastic moduli of lightweight expanded clay aggregates. Applied Clay Science, 9394, 28–34. doi:10.1016/j.clay.2014.02.017
  • Aristilde, L., Lanson, B., & Charlet, L. (2013). Interstratification patterns from the pH-dependent intercalation of a tetracycline antibiotic within montmorillonite layers. Langmuir, 29(14), 4492–4501. doi:10.1021/la400598x
  • Aristilde, L., Lanson, B., Miéhé-Brendlé, J., Marichal, C., & Charlet, L. (2016). Enhanced interlayer trapping of a tetracycline antibiotic within montmorillonite layers in the presence of Ca and Mg. Journal of Colloid and Interface Science, 464, 153–159. doi:10.1016/j.jcis.2015.11.027
  • Arnold, K. E., Brown, A. R., Ankley, G. T., & Sumpter, J. P. (2014). Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130569. doi:10.1098/rstb.2013.0569
  • Aylmore, L. A. G., Sills, I. D., & Quirk, J. P. (1970). Surface area of homoionic illite and montmorillonite clay minerals as measured by the sorption of nitrogen and carbon dioxide. Clays and Clay Minerals, 18, 2, 91–96. doi:10.1346/CCMN.1970.0180204
  • Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211212, 310–317. doi:10.1016/j.cej.2012.09.099
  • Baeyens, B., & Bradbury, M. H. (2004). Cation exchange capacity measurements on illite using the sodium and cesium isotope dilution technique: Effects on the index cation, electrolyte concentration and competition modeling. Clays and Clay Minerals, 52(4), 421–431. doi:10.1346/CCMN.2004.0520403
  • Baker, D. R., Barron, L., & Kasprzyk-Hordern, B. (2014). Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: Chemical analysis and drug use estimates. Science of the Total Environment, 487, 629–641. doi:10.1016/j.scitotenv.2013.11.107
  • Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., & Vicini, S. (2010). Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Applied Clay Science, 48(3), 460–465. doi:10.1016/j.clay.2010.02.007
  • Baskaralingam, P., Pulikesi, M., Ramamurthi, V., & Sivanesan, S. (2006). Equilibrium studies for the adsorption of acid dye onto modified hectorite. Journal of Hazardous Materials, 136(3), 989–992. doi:10.1016/j.jhazmat.2006.01.011
  • Bayram, H., Önal, M., Yılmaz, H., & Sarıkaya, Y. (2010). Thermal analysis of a white calcium bentonite. Journal of Thermal Analysis and Calorimetry, 101(3), 873–879. doi:10.1007/s10973-009-0626-y
  • Behera, S. K., Oh, S. Y., & Park, H. S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1–3), 684–691. doi:10.1016/j.jhazmat.2010.03.056
  • Behera, S. K., Oh, S. Y., & Park, H. S. (2012). Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. International Journal of Environmental Science and Technology, 9(1), 85–94. doi:10.1007/s13762-011-0020-8
  • Bekçi, Z., Seki, Y., & Yurdakoç, M. K. (2006). Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. Journal of Hazardous Materials, 133(1), 233–242. doi:10.1016/j.jhazmat.2005.10.029
  • Benhammou, A., Yaacoubi, A., Nibou, L., & Tanouti, B. (2005). Adsorption of metal ions onto Moroccan stevensite: Kinetic and isotherm studies. Journal of Colloid and Interface Science, 282(2), 320–326. doi:10.1016/j.jcis.2004.08.168
  • Benson, C. H., & Trast, J. M. (1995). Hydraulic conductivity of thirteen compacted clays. Clays and Clay Minerals, 43(6), 669–681. doi:10.1346/CCMN.1995.0430603
  • Bérend, I., Cases, J.-M., François, M., Uriot, J.-P., Michot, L., Masion, A., & Thomas, F. (1995). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li + Na+, K+, Rb + and Cs+-exchanged forms. Clays and Clay Minerals, 43(3), 324–336. doi:10.1346/CCMN.1995.0430307
  • Bergaya, F., & Lagaly, G. (2013). Handbook of clay science (2nd ed.). Amsterdam: Elsevier.
  • Bergaya, F., Lagaly, G., & Vayer, M. (2006). Chapter 12.10: Cation and anion exchange. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in clay science (Vol. 1, pp. 979–1001). Amsterdam: Elsevier. doi:10.1016/S1572-4352(05)01036-6
  • Berhane, T. M., Levy, J., Krekeler, M. P. S., & Danielson, N. D. (2016). Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: Effect of granule size, solution chemistry and temperature. Applied Clay Science, 132133, 518–527. doi:10.1016/j.clay.2016.07.023
  • Berhane, T. M., Levy, J., Krekeler, M. P. S., Danielson, N. D., & Stalcup, A. (2015). Sorption–desorption of carbamazepine by palygorskite–montmorillonite (PM) filter medium. Journal of Hazardous Materials, 282, 183–193. doi:10.1016/j.jhazmat.2014.09.025
  • Björlenius, B., Ripszám, M., Haglund, P., Lindberg, R. H., Tysklind, M., & Fick, J. (2018). Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters – Screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Science of the Total Environment, 633, 1496–1509. doi:10.1016/j.scitotenv.2018.03.276
  • Bonina, F. P., Giannossi, M. L., Medici, L., Puglia, C., Summa, V., & Tateo, F. (2007). Adsorption of salicylic acid on bentonite and kaolin and release experiments. Applied Clay Science, 36(1–3), 77–85. doi:10.1016/j.clay.2006.07.008
  • Borden, D., & Giese, R. F. (2001). Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49(5), 444–445. doi:10.1346/CCMN.2001.0490510
  • Bourg, I. C., Sposito, G., & Bourg, A. C. M. (2007). Modeling the acid–base surface chemistry of montmorillonite. Journal of Colloid and Interface Science, 312(2), 297–310. doi:10.1016/j.jcis.2007.03.062
  • Boynton, S. S., & Daniel, D. E. (1985). Hydraulic conductivity tests on compacted clay. Journal of Geotechnical Engineering, 111(4), 465–478. doi:10.1061/(ASCE)0733-9410(1985)111:4(465)
  • Brodin, T., Fick, J., Jonsson, M., & Klaminder, J. (2013). Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science, 339(6121), 814–815. doi:10.1126/science.1226850
  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. doi:10.1016/j.geoderma.2004.03.005
  • Bruce, G. M., Pleus, R. C., & Snyder, S. A. (2010). Toxicological relevance of pharmaceuticals in drinking water. Environmental Science & Technology, 44(14), 5619–5626. doi:10.1021/es1004895
  • Burns, E. E., Carter, L. J., Kolpin, D. W., Thomas-Oates, J., & Boxall, A. B. A. (2018). Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Research, 137, 72–85. doi:10.1016/j.watres.2018.02.066
  • Calabrese, I., Cavallaro, G., Scialabba, C., Licciardi, M., Merli, M., Sciascia, L., & Turco Liveri, M. L. (2013). Montmorillonite nanodevices for the colon metronidazole delivery. International Journal of Pharmaceutics, 457(1), 224–236. doi:10.1016/j.ijpharm.2013.09.017
  • Calabrese, I., Gelardi, G., Merli, M., Liveri, M. L. T., & Sciascia, L. (2017). Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Applied Clay Science, 135, 567–574. doi:10.1016/j.clay.2016.10.039
  • Camazano, M. S., Sanchez, M. J., Vicente, M. T., & Dominguez-Gil, A. (1980). Adsorption of chlorpheniramine maleate by montmorillonite. International Journal of Pharmaceutics, 6(3–4), 243–251. doi:10.1016/0378-5173(80)90107-6
  • Carlsson, C., Johansson, A. K., Alvan, G., Bergman, K., & Kühler, T. (2006). Are pharmaceuticals potent environmental pollutants?: Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Science of the Total Environment, 364(1–3), 67–87. doi:10.1016/j.scitotenv.2005.06.035
  • Carrasquillo, A. J., Bruland, G. L., MacKay, A. A., & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 42(20), 7634–7642. doi:10.1021/es801277y
  • Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21(3–4), 155–163. doi:10.1016/S0169-1317(01)00085-0
  • Cenens, J., & Schoonheydt, R. A. (1988). Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays and Clay Minerals, 36(3), 214–224. doi:10.1346/CCMN.1988.0360302
  • Chang, P.-H., Jiang, W.-T., Li, Z., Kuo, C.-Y., Jean, J.-S., Chen, W.-R., & Lv, G. (2014). Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2). Journal of Hazardous Materials, 277, 44–52. doi:10.1016/j.jhazmat.2013.12.004
  • Chang, P.-H., Li, Z., Jean, J.-S., Jiang, W.-T., Wang, C.-J., & Lin, K.-H. (2012). Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Applied Clay Science, 6768, 158–163. doi:10.1016/j.clay.2011.11.004
  • Chang, P.-H., Li, Z., Jiang, W.-T., & Jean, J.-S. (2009). Adsorption and intercalation of tetracycline by swelling clay minerals. Applied Clay Science, 46(1), 27–36. doi:10.1016/j.clay.2009.07.002
  • Chang, P.-H., Li, Z., Yu, T.-L., Munkhbayer, S., Kuo, T.-H., Hung, Y.-C., … Lin, K.-H. (2009). Sorptive removal of tetracycline from water by palygorskite. Journal of Hazardous Materials, 165(1–3), 148–155. doi:10.1016/j.jhazmat.2008.09.113
  • Chen, H., Zhao, J., Zhong, A., & Jin, Y. (2011). Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174(1), 143–150. doi:10.1016/j.cej.2011.08.062
  • Chen, H., Zhao, Y., & Wang, A. (2007). Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149(2), 346–354. doi:10.1016/j.jhazmat.2007.03.085
  • Chen, Y., Zhou, A., Liu, B., & Liang, J. (2010). Tramadol hydrochloride/montmorillonite composite: Preparation and controlled drug release. Applied Clay Science, 49(3), 108–112. doi:10.1016/j.clay.2010.04.011
  • Chmielarz, L., Wojciechowska, M., Rutkowska, M., Adamski, A., Węgrzyn, A., Kowalczyk, A., … Matusiewicz, A. (2012). Acid-activated vermiculites as catalysts of the DeNOx process. Catalysis Today, 191(1), 25–31. doi:10.1016/j.cattod.2012.03.042
  • Choi, P. M., Tscharke, B. J., Donner, E., O'Brien, J. W., Grant, S. C., Kaserzon, S. L., … Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry, 105, 453–469. doi:10.1016/j.trac.2018.06.004
  • Christidis, G. E., Scott, P. W., & Dunham, A. C. (1997). Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Applied Clay Science, 12(4), 329–347. doi:10.1016/S0169-1317(97)00017-3
  • Claverie, M., Garcia, J., Prevost, T., Brendlé, J., & Limousy, L. (2019). Inorganic and Hybrid (Organic–Inorganic) Lamellar Materials for Heavy metals and Radionuclides Capture in Energy Wastes Management—A Review. Materials, 12(9), 1399. doi:10.3390/ma12091399
  • Conley, R. F., & Althoff, A. C. (1971). Surface acidity in kaolinites. Journal of Colloid and Interface Science, 37(1), 186–195. doi:10.1016/0021-9797(71)90279-7
  • Coutu, S., Wyrsch, V., Wynn, H. K., Rossi, L., & Barry, D. A. (2013). Temporal dynamics of antibiotics in wastewater treatment plant influent. Science of the Total Environment, 458460, 20–26. doi:10.1016/j.scitotenv.2013.04.017
  • Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213. doi:10.1007/s10311-018-0786-8
  • Cunningham, A. B., Anderson, C. J., & Bouwer, H. (1987). Effects of sediment‐laden flow on channel bed clogging. Journal of Irrigation and Drainage Engineering, 113(1), 106–118. doi:10.1061/(ASCE)0733-9437(1987)113:1(106)
  • Cuthbertson, A. A., Kimura, S. Y., Liberatore, H. K., Summers, R. S., Knappe, D. R. U., Stanford, B. D., … Richardson, S. D. (2019). Does granular activated carbon with chlorination produce safer drinking water? From disinfection byproducts and total organic halogen to calculated toxicity. Environmental Science & Technology. doi:10.1021/acs.est.9b00023
  • Daughton, C. G. (2014). Eco-directed sustainable prescribing: Feasibility for reducing water contamination by drugs. Science of the Total Environment, 493, 392–404. doi:10.1016/j.scitotenv.2014.06.013
  • Dazas, B., Lanson, B., Delville, A., Robert, J.-L., Komarneni, S., Michot, L. J., & Ferrage, E. (2015). Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. The Journal of Physical Chemistry C, 119(8), 4158–4172. doi:10.1021/jp5123322
  • de Andrade, J. R., Oliveira, M. F., da Silva, M. G. C., & Vieira, M. G. A. (2018). Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A review. Industrial & Engineering Chemistry Research, 57(9), 3103–3127. doi:10.1021/acs.iecr.7b05137
  • de Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40. doi:10.1016/j.susmat.2016.06.002
  • de Jongh, C. M., Kooij, P. J. F., de Voogt, P., & ter Laak, T. L. (2012). Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Science of the Total Environment, 427428, 70–77. doi:10.1016/j.scitotenv.2012.04.010
  • De Oliveira, T., Fernandez, E., Fougère, L., Destandau, E., Boussafir, M., Sohmiya, M., … Guégan, R. (2018). Competitive association of antibiotics with a clay mineral and organoclay derivatives as a control of their lifetimes in the environment. ACS Omega, 3(11), 15332–15342. doi:10.1021/acsomega.8b02049
  • de Oliveira, T., & Guégan, R. (2016). Coupled organoclay/micelle action for the adsorption of diclofenac. Environmental Science & Technology, 50(18), 10209–10215. doi:10.1021/acs.est.6b03393
  • De Oliveira, T., Guégan, R., Thiebault, T., Milbeau, C. L., Muller, F., Teixeira, V., … Boussafir, M. (2017). Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. Journal of Hazardous Materials, 323(Part A), 558–566. doi:10.1016/j.jhazmat.2016.05.001
  • de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42(1–2), 8–24. doi:10.1016/j.clay.2008.02.006
  • Delgado, L. F., Charles, P., Glucina, K., & Morlay, C. (2012). The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—A review. Science of the Total Environment, 435436, 509–525. doi:10.1016/j.scitotenv.2012.07.046
  • Dogan, A. U., Dogan, M., Onal, M., Sarikaya, Y., Aburub, A., & Wurster, D. E. (2006). Baseline studies of the clay minerals society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 54(1), 62–66. doi:10.1346/CCMN.2006.0540108
  • Dogan, M., Dogan, A. U., Yesilyurt, F. I., Alaygut, D., Buckner, I., & Wurster, D. E. (2007). Baseline studies of the clay minerals society special clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 55(5), 534–541. doi:10.1346/CCMN.2007.0550508
  • Dordio, A. V., & Carvalho, A. J. P. (2013). Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Hazardous Materials, 252253, 272–292. doi:10.1016/j.jhazmat.2013.03.008
  • Dordio, A. V., Carvalho, A. J. P., Teixeira, D. M., Dias, C. B., & Pinto, A. P. (2010). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource Technology, 101(3), 886–892. doi:10.1016/j.biortech.2009.09.001
  • Dordio, A. V., Estêvão Candeias, A. J., Pinto, A. P., Teixeira da Costa, C., & Palace Carvalho, A. J. (2009). Preliminary media screening for application in the removal of clofibric acid, carbamazepine and ibuprofen by SSF-constructed wetlands. Ecological Engineering, 35(2), 290–302. doi:10.1016/j.ecoleng.2008.02.014
  • Dordio, A. V., Miranda, S., Ramalho, J. P. P., & Carvalho, A. J. P. (2017). Mechanisms of removal of three widespread pharmaceuticals by two clay materials. Journal of Hazardous Materials, 323, 575–583. doi:10.1016/j.jhazmat.2016.05.091
  • Dordio, A. V., Pinto, J., Dias, C. B., Pinto, A. P., Carvalho, A. J. P., & Teixeira, D. M. (2009). Atenolol removal in microcosm constructed wetlands. International Journal of Environmental Analytical Chemistry, 89(8–12), 835–848. doi:10.1080/03067310902962502
  • Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33(17), 3595–3602. doi:10.1016/S0043-1354(99)00082-2
  • Droge, S. T. J., & Goss, K.-U. (2012). Effect of sodium and calcium cations on the ion-exchange affinity of organic cations for soil organic matter. Environmental Science & Technology, 46(11), 5894–5901. doi:10.1021/es204449r
  • Droge, S. T. J., & Goss, K.-U. (2013). Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects. Environmental Science & Technology, 47(24), 14224–14232. doi:10.1021/es403187w
  • Drzal, L. T., Rynd, J. P., & Fort, T. (1983). Effects of calcination on the surface properties of kaolinite. Journal of Colloid and Interface Science, 93(1), 126–139. doi:10.1016/0021-9797(83)90392-2
  • Emmerich, K., Madsen, F. T., & Kahr, G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays and Clay Minerals, 47(5), 591–604. doi:10.1346/CCMN.1999.0470506
  • Esumi, K., Takeda, Y., & Koide, Y. (1998). Competitive adsorption of cationic surfactant and pesticide on laponite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 135(1–3), 59–62. doi:10.1016/S0927-7757(97)00217-3
  • Faust, G. T., & Murata, K. J. (1953). Stevensite, redefined as a member of the montmorillonite group. American Mineralogist, 38(11–12), 973–987.
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. doi:10.1016/j.aquatox.2005.09.009
  • Fernández, R., Ruiz, A. I., García-Delgado, C., González-Santamaría, D. E., Antón-Herrero, R., … Cuevas, J. (2018). Stevensite-based geofilter for the retention of tetracycline from water. Science of the Total Environment, 645, 146–155. doi:10.1016/j.scitotenv.2018.07.120
  • Ferrage, E., Kirk, C. A., Cressey, G., & Cuadros, J. (2007). Dehydration of Ca-montmorillonite at the crystal scale. Part I: Structure evolution. American Mineralogist, 92(7), 994–1006. doi:10.2138/am.2007.2396
  • Ferrage, E., Lanson, B., Michot, L. J., & Robert, J.-L. (2010). Hydration Properties and Interlayer Organization of Water and Ions in Synthetic Na-Smectite with Tetrahedral Layer Charge. Part 1. Results from X-ray Diffraction Profile Modeling. The Journal of Physical Chemistry C, 114(10), 4515–4526. doi:10.1021/jp909860p
  • Ferrage, E., Lanson, B., Sakharov, B. A., & Drits, V. A. (2005). Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90(8–9), 1358–1374. doi:10.2138/am.2005.1776
  • Figueroa, R. A., Leonard, A., & MacKay, A. A. (2004). Modeling tetracycline antibiotic sorption to clays. Environmental Science & Technology, 38(2), 476–483. doi:10.1021/es0342087
  • Gan, F., Zhou, J., Wang, H., Du, C., & Chen, X. (2009). Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Research, 43(11), 2907–2915. doi:10.1016/j.watres.2009.03.051
  • Ganor, J., Cama, J., & Metz, V. (2003). Surface protonation data of kaolinite—Reevaluation based on dissolution experiments. Journal of Colloid and Interface Science, 264(1), 67–75. doi:10.1016/S0021-9797(03)00298-4
  • Gao, J., & Pedersen, J. A. (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 39(24), 9509–9516. doi:10.1021/es050644c
  • Gao, J., & Pedersen, J. A. (2010). Sorption of sulfonamide antimicrobial agents to humic acid–clay complexes. Journal of Environment Quality, 39(1), 228–235. doi:10.2134/jeq2008.0274
  • Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1656), 20130572. doi:10.1098/rstb.2013.0572
  • Gereli, G., Seki, Y., Murat Kuşoğlu, İ., & Yurdakoç, K. (2006). Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite. Journal of Colloid and Interface Science, 299(1), 155–162. doi:10.1016/j.jcis.2006.02.012
  • Gerrity, D., Trenholm, R. A., & Snyder, S. A. (2011). Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event. Water Research, 45(17), 5399–5411. doi:10.1016/j.watres.2011.07.020
  • Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2014). Antibiotic eluting clay mineral (Laponite®) for wound healing application: An in vitro study. Journal of Materials Science: Materials in Medicine, 25(11), 2513–2526. doi:10.1007/s10856-014-5272-7
  • Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5(37), 29467–29481. doi:10.1039/C4RA16945J
  • Ghadiri, M., Hau, H., Chrzanowski, W., Agus, H., & Rohanizadeh, R. (2013). Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advances, 3(43), 20193–20201. doi:10.1039/c3ra43217c
  • Ghayaza, M. (2012). Réactivité argiles-polluants métalliques: Simulation des barrières argileuses des sites de stockage des déchets (Thesis, Orléans). Consulté à l’adresse http://www.theses.fr/2012ORLE2009
  • Godoy, A. A., & Kummrow, F. (2017). What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Critical Reviews in Environmental Science and Technology, 47(16), 1453–1496. doi:10.1080/10643389.2017.1370991
  • Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., … Doumenq, P. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Research, 111, 297–317. doi:10.1016/j.watres.2017.01.005
  • Guégan, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22(2–3), 132–141. doi:10.1016/j.crci.2018.09.004
  • Guillossou, R., Le Roux, J., Mailler, R., Vulliet, E., Morlay, C., Nauleau, F., … Rocher, V. (2019). Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere, 218, 1050–1060. doi:10.1016/j.chemosphere.2018.11.182
  • Guo, J., Boxall, A., & Selby, K. (2015). Do pharmaceuticals pose a threat to primary producers? Critical Reviews in Environmental Science and Technology, 45(23), 2565–2610. doi:10.1080/10643389.2015.1061873
  • Gupta, V. K., Carrott, P. J. M., Carrott, M. M. L. R., & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment—A review. Critical Reviews in Environmental Science and Technology, 39(10), 783–842. doi:10.1080/10643380801977610
  • Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 36(2), 357–393. doi:10.1016/S0045-6535(97)00354-8
  • Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay–ciprofloxacin composites. Applied Clay Science, 87, 129–135. doi:10.1016/j.clay.2013.10.020
  • Hamilton, A. R., Roberts, M., Hutcheon, G. A., & Gaskell, E. E. (2019). Formulation and antibacterial properties of clay mineral-tetracycline and -doxycycline composites. Applied Clay Science, 179, 105148. doi:10.1016/j.clay.2019.105148
  • Han, H., Rafiq, M. K., Zhou, T., Xu, R., Mašek, O., & Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 369, 780–796. doi:10.1016/j.jhazmat.2019.02.003
  • Hang, P. T., & Brindley, G. W. (1970). Methylene Blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays and Clay Minerals, 18(4), 203–212. doi:10.1346/CCMN.1970.0180404
  • Harker, E. R. (2018). Removal of pharmaceuticals from water using thermally recycled palygorskite-montmorillonite clay (Miami University).
  • He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48(1–2), 67–72. doi:10.1016/j.clay.2009.11.024
  • Heller-Kallai, L. (2013). Chapter 10.2: Thermally modified clay minerals. In F. Bergaya & G. Lagaly (Eds.), Developments in clay science (pp. 411–433). Amsterdam: Elsevier. doi:10.1016/B978-0-08-098258-8.00014-6
  • Hensen, E. J. M., & Smit, B. (2002). Why clays swell. The Journal of Physical Chemistry B, 106(49), 12664–12667. doi:10.1021/jp0264883
  • Hignite, C., & Azarnoff, D. L. (1977). Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicyclic acid in sewage water effluent. Life Sciences, 20(2), 337–341. doi:10.1016/0024-3205(77)90329-0
  • Hospido, A., Carballa, M., Moreira, M., Omil, F., Lema, J. M., & Feijoo, G. (2010). Environmental assessment of anaerobically digested sludge reuse in agriculture: Potential impacts of emerging micropollutants. Water Research, 44(10), 3225–3233. doi:10.1016/j.watres.2010.03.004
  • Hu, Y., Fitzgerald, N. M., Lv, G., Xing, X., Jiang, W.-T., & Li, Z. (2015). Adsorption of atenolol on kaolinite. Advances in Materials Science and Engineering. , 1, 2015 doi:10.1155/2015/897870
  • Hussin, F., Aroua, M. K., & Daud, W. M. A. W. (2011). Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chemical Engineering Journal, 170(1), 90–106. doi:10.1016/j.cej.2011.03.065
  • Ibáñez, M., Gracia-Lor, E., Bijlsma, L., Morales, E., Pastor, L., & Hernández, F. (2013). Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. Journal of Hazardous Materials, 260, 389–398. doi:10.1016/j.jhazmat.2013.05.023
  • Ivanová, L., Mackuľak, T., Grabic, R., Golovko, O., Koba, O., Staňová, A. V., … Bodík, I. (2018). Pharmaceuticals and illicit drugs – A new threat to the application of sewage sludge in agriculture. Science of the Total Environment, 634, 606–615. doi:10.1016/j.scitotenv.2018.04.001
  • Jiang, N., Shang, R., Heijman, S. G. J., & Rietveld, L. C. (2018). High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Research, 144, 145–161. doi:10.1016/j.watres.2018.07.017
  • Jiang, W.-T., Chang, P.-H., Tsai, Y., & Li, Z. (2016). Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Microporous and Mesoporous Materials, 220, 298–307. doi:10.1016/j.micromeso.2015.09.011
  • Jinhua, W., Xiang, Z., Bing, Z., Yafei, Z., Rui, Z., Jindun, L., & Rongfeng, C. (2010). Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination, 259(1–3), 22–28. doi:10.1016/j.desal.2010.04.046
  • Johnston, C. T., & Tombacz, E. (2002). Surface chemistry of soil minerals. In Soil mineralogy with environmental applications, SSSA book series (pp. 37–67). Madison, WI: Soil Science Society of America. doi:10.2136/sssabookser7.c2
  • Jolin, W. C., & Kaminski, M. (2016). Sorbent materials for rapid remediation of wash water during radiological event relief. Chemosphere, 162, 165–171. doi:10.1016/j.chemosphere.2016.07.077
  • Jones, H. E., Hickman, M., Kasprzyk-Hordern, B., Welton, N. J., Baker, D. R., & Ades, A. E. (2014). Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part B: Placing back-calculations in a formal statistical framework. Science of the Total Environment, 487, 642–650. doi:10.1016/j.scitotenv.2014.02.101
  • Jones, O. A., Lester, J. N., & Voulvoulis, N. (2005). Pharmaceuticals: A threat to drinking water? Trends in Biotechnology, 23(4), 163–167. doi:10.1016/j.tibtech.2005.02.001
  • Joshi, G. V., Kevadiya, B. D., & Bajaj, H. C. (2010). Design and evaluation of controlled drug delivery system of buspirone using inorganic layered clay mineral. Microporous and Mesoporous Materials, 132(3), 526–530. doi:10.1016/j.micromeso.2010.04.003
  • Joshi, G. V., Kevadiya, B. D., Patel, H. A., Bajaj, H. C., & Jasra, R. V. (2009). Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. International Journal of Pharmaceutics, 374(1–2), 53–57. doi:10.1016/j.ijpharm.2009.03.004
  • Jozefaciuk, G. (2002). Effect of acid and alkali treatments on surface-charge properties of selected clay minerals. Clays and Clay Minerals, 50(5), 647–656. doi:10.1346/000986002320679378
  • Jozefaciuk, G., & Bowanko, G. (2002). Effect of acid and alkali treatment on surface areas and adsorption energies of selected minerals. Clays and Clay Minerals, 50(6), 771–783. doi:10.1346/000986002762090308
  • Kahle, M., & Stamm, C. (2007). Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 68(7), 1224–1231. doi:10.1016/j.chemosphere.2007.01.061
  • Kahr, G., & Madsen, F. T. (1995). Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9(5), 327–336. doi:10.1016/0169-1317(94)00028-O
  • Kalhori, E. M., Al-Musawi, T. J., Ghahramani, E., Kazemian, H., & Zarrabi, M. (2017). Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters. Chemosphere, 175, 8–20. doi:10.1016/j.chemosphere.2017.02.043
  • Kalhori, E. M., Yetilmezsoy, K., Uygur, N., Zarrabi, M., & Shmeis, R. M. A. (2013). Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Applied Surface Science, 287, 428–442. doi:10.1016/j.apsusc.2013.09.175
  • Katsigiannis, A., Noutsopoulos, C., Mantziaras, J., & Gioldasi, M. (2015). Removal of emerging pollutants through Granular Activated Carbon. Chemical Engineering Journal, 280, 49–57. doi:10.1016/j.cej.2015.05.109
  • Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S., & Ufer, K. (2010). N2-BET specific surface area of bentonites. Journal of Colloid and Interface Science, 349(1), 275–282. doi:10.1016/j.jcis.2010.05.018
  • Keil, R. G., Montluçon, D. B., Prahl, F. G., & Hedges, J. I. (1994). Sorptive preservation of labile organic matter in marine sediments. Nature, 370(6490), 549–552. doi:10.1038/370549a0
  • Kerrigan, J. F., Sandberg, K. D., Engstrom, D. R., LaPara, T. M., & Arnold, W. A. (2018). Sedimentary record of antibiotic accumulation in Minnesota Lakes. Science of the Total Environment, 621, 970–979. doi:10.1016/j.scitotenv.2017.10.130
  • Khazri, H., Ghorbel-Abid, I., Kalfat, R., & Trabelsi-Ayadi, M. (2017). Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: Equilibrium, kinetics, and thermodynamic study. Applied Water Science, 7(6), 3031–3040. doi:10.1007/s13201-016-0414-3
  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417. doi:10.1016/j.envint.2008.07.009
  • Kodešová, R., Grabic, R., Kočárek, M., Klement, A., Golovko, O., Fér, M., … Jakšík, O. (2015). Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Science of the Total Environment, 511, 435–443. doi:10.1016/j.scitotenv.2014.12.088
  • Komadel, P. (2003). Chemically modified smectites. Clay Minerals, 38(1), 127–138. doi:10.1180/0009855033810083
  • Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Applied Clay Science, 131, 84–99. doi:10.1016/j.clay.2016.05.001
  • Komadel, P., & Madejová, J. (2013). Chapter 10.1: Acid activation of clay minerals. In F. Bergaya & G. Lagaly (Eds.), Developments in clay science (pp. 385–409). Amsterdam: Elsevier. doi:10.1016/B978-0-08-098258-8.00013-4
  • Kretzschmar, R., Holthoff, H., & Sticher, H. (1998). Influence of pH and humic acid on coagulation kinetics of kaolinite: A dynamic light scattering study. Journal of Colloid and Interface Science, 202(1), 95–103. doi:10.1006/jcis.1998.5440
  • Krupskaya, V., Novikova, L., Tyupina, E., Belousov, P., Dorzhieva, O., Zakusin, S., Kim, K., Belchinskaya, L. (2019). The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Applied Clay Science, 172, 1–10. doi:10.1016/j.clay.2019.02.001
  • Krupskaya, V. V., Zakusin, S. V., Tyupina, E. A., Dorzhieva, O. V., Zhukhlistov, A. P., Belousov, P. E., & Timofeeva, M. N. (2017). Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals, 7(4), 49. doi:10.3390/min7040049
  • Kulshrestha, P., Giese, R. F., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environmental Science & Technology, 38(15), 4097–4105. doi:10.1021/es034856q
  • Kumar, B. S., Dhakshinamoorthy, A., & Pitchumani, K. (2014). K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catalysis Science & Technology, 4(8), 2378–2396. doi:10.1039/C4CY00112E
  • Kumar, P., Jasra, R. V., & Bhat, T. S. G. (1995). Evolution of porosity and surface-acidity in montmorillonite clay on acid activation. Industrial & Engineering Chemistry Research, 34(4), 1440–1448. doi:10.1021/ie00043a053
  • Kümmerer, K., Dionysiou, D. D., Olsson, O., & Fatta-Kassinos, D. (2018). A path to clean water. Science, 361(6399), 222–224. doi:10.1126/science.aau2405
  • Kyzas, G. Z., Fu, J., Lazaridis, N. K., Bikiaris, D. N., & Matis, K. A. (2015). New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. Journal of Molecular Liquids, 209, 87–93. doi:10.1016/j.molliq.2015.05.025
  • Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34(1–4), 74–87. doi:10.1016/j.clay.2006.01.009
  • Lambert, J. -F. (2018). 7: Organic pollutant adsorption on clay minerals. In R. Schoonheydt, C. T. Johnston, & F. Bergaya (Eds.), Developments in clay science (pp. 195–253). Amsterdam: Elsevier. doi:10.1016/B978-0-08-102432-4.00007-X
  • Lawal, I. A., & Moodley, B. (2015). Synthesis, characterisation and application of imidazolium based ionic liquid modified montmorillonite sorbents for the removal of amaranth dye. RSC Advances, 5(76), 61913–61924. doi:10.1039/C5RA09483F
  • Lawal, I. A., & Moodley, B. (2018). Fixed-bed and batch adsorption of pharmaceuticals from aqueous solutions on ionic liquid-modified montmorillonite. Chemical Engineering & Technology, 41(5), 983–993. doi:10.1002/ceat.201700107
  • Le Forestier, L., Muller, F., Villieras, F., & Pelletier, M. (2010). Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue. Applied Clay Science, 48(1–2), 18–25. doi:10.1016/j.clay.2009.11.038
  • Lee, Y., & von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects. Environmental Science: Water Research & Technology, 2(3), 421–442. doi:10.1039/C6EW00025H
  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. doi:10.1038/nature16069
  • Lemić, J., Tomašević-Čanović, M., Djuričić, M., & Stanić, T. (2005). Surface modification of sepiolite with quaternary amines. Journal of Colloid and Interface Science, 292(1), 11–19. doi:10.1016/j.jcis.2005.05.080
  • Li, G. L., Zhou, C. H., Fiore, S., & Yu, W. H. (2019). Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 177, 91–113. doi:10.1016/j.clay.2019.04.025
  • Li, Z., Chang, P.-H., Jean, J.-S., Jiang, W.-T., & Hong, H. (2011). Mechanism of chlorpheniramine adsorption on Ca-montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1–3), 213–218. doi:10.1016/j.colsurfa.2011.06.013
  • Li, Z., Chang, P.-H., Jiang, W.-T., & Jean, J.-S. (2019). The multi-mechanisms and interlayer configurations of metoprolol uptake on montmorillonite. Chemical Engineering Journal, 360, 325–333. doi:10.1016/j.cej.2018.11.230
  • Li, Z., Chang, P.-H., Jiang, W.-T., Jean, J.-S., Hong, H., & Liao, L. (2011). Removal of diphenhydramine from water by swelling clay minerals. Journal of Colloid and Interface Science, 360(1), 227–232. doi:10.1016/j.jcis.2011.04.030
  • Li, Z., Fitzgerald, N. M., Albert, Z., Schnabl, A., & Jiang, W.-T. (2015). Contrasting mechanisms of metoprolol uptake on kaolinite and talc. Chemical Engineering Journal, 272, 48–57. doi:10.1016/j.cej.2015.03.023
  • Li, Z., Fitzgerald, N. M., Jiang, W.-T., & Lv, G. (2016). Palygorskite for the uptake and removal of pharmaceuticals for wastewater treatment. Process Safety and Environmental Protection, 101, 80–87. doi:10.1016/j.psep.2015.09.008
  • Li, Z., Schulz, L., Ackley, C., & Fenske, N. (2010). Adsorption of tetracycline on kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science, 351(1), 254–260. doi:10.1016/j.jcis.2010.07.034
  • Li, Z., Willms, C. A., & Kniola, K. (2003). Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays and Clay Minerals, 51(4), 445–451. doi:10.1346/CCMN.2003.0510411
  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249–275. doi:10.1016/j.apgeochem.2006.09.010
  • Liu, N., Wang, M., Liu, M., Liu, F., Weng, L., Koopal, L. K., & Tan, W. (2012). Sorption of tetracycline on organo-montmorillonites. Journal of Hazardous Materials, 225226, 28–35. doi:10.1016/j.jhazmat.2012.04.060
  • Liu, S., Wu, P., Yu, L., Li, L., Gong, B., Zhu, N., … Yang, C. (2017). Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics. Applied Clay Science, 137, 160–167. doi:10.1016/j.clay.2016.12.002
  • Liu, Y., Lu, X., Wu, F., & Deng, N. (2011). Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. Reaction Kinetics, Mechanisms and Catalysis, 104(1), 61–73. doi:10.1007/s11144-011-0349-5
  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561–568. doi:10.1016/j.envpol.2008.09.020
  • López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36(1), 51–63. doi:10.1016/j.clay.2006.06.016
  • Lozano-Morales, V., Gardi, I., Nir, S., & Undabeytia, T. (2018). Removal of pharmaceuticals from water by clay-cationic starch sorbents. Journal of Cleaner Production, 190, 703–711. doi:10.1016/j.jclepro.2018.04.174
  • Lv, G., Liu, L., Li, Z., Liao, L., & Liu, M. (2012). Probing the interactions between chlorpheniramine and 2:1 phyllosilicates. Journal of Colloid and Interface Science, 374(1), 218–225. doi:10.1016/j.jcis.2012.01.029
  • Lv, G., Stockwell, C., Niles, J., Minegar, S., Li, Z., & Jiang, W.-T. (2013). Uptake and retention of amitriptyline by kaolinite. Journal of Colloid and Interface Science, 411, 198–203. doi:10.1016/j.jcis.2013.08.026
  • Lv, G., Wu, L., Li, Z., Liao, L., & Liu, M. (2014). Binding sites of chlorpheniramine on 1:1 layered kaolinite from aqueous solution. Journal of Colloid and Interface Science, 424, 16–21. doi:10.1016/j.jcis.2014.03.010
  • Lvov, Y. M., Shchukin, D. G., Möhwald, H., & Price, R. R. (2008). Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2(5), 814–820. doi:10.1021/nn800259q
  • Machado, A. I., Dordio, A. V., Fragoso, R., Leitão, A. E., & Duarte, E. (2017). Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix. Journal of Environmental Management, 203, 422–428. doi:10.1016/j.jenvman.2017.08.002
  • Macht, F., Eusterhues, K., Pronk, G. J., & Totsche, K. U. (2011). Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science, 53(1), 20–26. doi:10.1016/j.clay.2011.04.006
  • Mader, B. T., Uwe-Goss, K., & Eisenreich, S. J. (1997). Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environmental Science & Technology, 31(4), 1079–1086. doi:10.1021/es960606g
  • Madsen, F. T. (1998). Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33(1), 109–129. doi:10.1180/000985598545318
  • Mahamat Ahmat, A., Thiebault, T., & Guégan, R. (2019). Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of gallic acid onto montmorillonite. Applied Clay Science, 180, 105188. doi:10.1016/j.clay.2019.105188
  • Maia, G., Andrade, J. R., Oliveira, M. F., Vieira, M. G. A., & Silva, M. G. C. (2017). Affinity studies between drugs and clays as adsorbent material. Chemical Engineering Transactions, 57, 583–588. doi:10.3303/CET1757098
  • Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Rocher, V. (2016). Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. Journal of Environmental Chemical Engineering, 4(1), 1102–1109. doi:10.1016/j.jece.2016.01.018
  • Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Cartiser, N., Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Research, 72, 315–330. doi:10.1016/j.watres.2014.10.047
  • Majzik, A., & Tombácz, E. (2007). Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Organic Geochemistry, 38(8), 1319–1329. doi:10.1016/j.orggeochem.2007.04.003
  • Martin, C., Pignon, F., Piau, J.-M., Magnin, A., Lindner, P., & Cabane, B. (2002). Dissociation of thixotropic clay gels. Physical Review E, 66(2), 021401. doi:10.1103/PhysRevE.66.021401
  • Martin, M. J. S., Camazano, M. S., Hernández, M. T. V., & Gil, A. D. (1981). Interaction of propranolol hydrochloride with montmorillonite. Journal of Pharmacy and Pharmacology, 33(1), 408–410. doi:10.1111/j.2042-7158.1981.tb13821.x
  • Martínez-Hernández, V., Meffe, R., Herrera López, S., & de Bustamante, I. (2016). The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Science of the Total Environment, 559, 232–241. doi:10.1016/j.scitotenv.2016.03.131
  • Matamoros, V., Arias, C., Brix, H., & Bayona, J. M. (2009). Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Research, 43(1), 55–62. doi:10.1016/j.watres.2008.10.005
  • McLauchlin, A. R., & Thomas, N. L. (2008). Preparation and characterization of organoclays based on an amphoteric surfactant. Journal of Colloid and Interface Science, 321(1), 39–43. doi:10.1016/j.jcis.2008.01.045
  • Meier, L. P., & Kahr, G. (1999). Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47(3), 386–388. doi:10.1346/CCMN.1999.0470315
  • Meunier, A. (2006). Why are clay minerals small? Clay Minerals, 41(2), 551–566. doi:10.1180/0009855064120205
  • Missana, T., Benedicto, A., García-Gutiérrez, M., & Alonso, U. (2014). Modeling cesium retention onto Na-, K- and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochimica et Cosmochimica Acta, 128, 266–277. doi:10.1016/j.gca.2013.10.007
  • Moyo, F., Tandlich, R., Wilhelmi, B. S., & Balaz, S. (2014). Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: A mini-review. International Journal of Environmental Research and Public Health, 11(5), 5020–5048. doi:10.3390/ijerph110505020
  • Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Applied Clay Science, 17(5–6), 207–221. doi:10.1016/S0169-1317(00)00016-8
  • Negrete Herrera, N., Letoffe, J.-M., Putaux, J.-L., David, L., & Bourgeat-Lami, E. (2004). Aqueous dispersions of silane-functionalized Laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir, 20(5), 1564–1571. doi:10.1021/la0349267
  • Negrete Herrera, N., Letoffe, J.-M., Reymond, J.-P., & Bourgeat-Lami, E. (2005). Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. Journal of Materials Chemistry, 15(8), 863–871. doi:10.1039/b415618h
  • Nir, S., Zadaka-Amir, D., Kartaginer, A., & Gonen, Y. (2012). Simulation of adsorption and flow of pollutants in a column filter: Application to micelle–montmorillonite mixtures with sand. Applied Clay Science, 6768, 134–140. doi:10.1016/j.clay.2011.09.017
  • Okaikue-Woodi, F. E. K., Kelch, S. E., Schmidt, M. P., Enid Martinez, C., Youngman, R. E., & Aristilde, L. (2018). Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials. Journal of Colloid and Interface Science, 513, 367–378. doi:10.1016/j.jcis.2017.11.020
  • Önal, M., & Sarıkaya, Y. (2007). Thermal behavior of a bentonite. Journal of Thermal Analysis and Calorimetry, 90(1), 167–172. doi:10.1007/s10973-005-7799-9
  • Özcan, A., & Özcan, A. S. (2005). Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. Journal of Hazardous Materials, 125(1–3), 252–259. doi:10.1016/j.jhazmat.2005.05.039
  • Park, J. K., Choy, Y. B., Oh, J.-M., Kim, J. Y., Hwang, S.-J., & Choy, J.-H. (2008). Controlled release of donepezil intercalated in smectite clays. International Journal of Pharmaceutics, 359(1–2), 198–204. doi:10.1016/j.ijpharm.2008.04.012
  • Park, S.-J., Seo, D.-I., & Lee, J.-R. (2002). Surface modification of montmorillonite on surface acid–base characteristics of clay and thermal stability of epoxy/clay nanocomposites. Journal of Colloid and Interface Science, 251(1), 160–165. doi:10.1006/jcis.2002.8379
  • Park, Y., Ayoko, G. A., & Frost, R. L. (2011). Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. Journal of Colloid and Interface Science, 354(1), 292–305. doi:10.1016/j.jcis.2010.09.068
  • Parolo, M. E., Savini, M. C., Vallés, J. M., Baschini, M. T., & Avena, M. J. (2008). Tetracycline adsorption on montmorillonite: PH and ionic strength effects. Applied Clay Science, 40(1–4), 179–186. doi:10.1016/j.clay.2007.08.003
  • Patel, H. A., Shah, S., Shah, D. O., & Joshi, P. A. (2011). Sustained release of venlafaxine from venlafaxine–montmorillonite–polyvinylpyrrolidone composites. Applied Clay Science, 51(1–2), 126–130. doi:10.1016/j.clay.2010.11.013
  • Pei, Z.-G., Kong, J.-J., Shan, X.-Q., & Wen, B. (2012). Sorption of aromatic hydrocarbons onto montmorillonite as affected by norfloxacin. Journal of Hazardous Materials, 203204, 137–144. doi:10.1016/j.jhazmat.2011.11.087
  • Pei, Z.-G., Shan, X.-Q., Kong, J.-J., Wen, B., & Owens, G. (2010). Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH. Environmental Science & Technology, 44(3), 915–920. doi:10.1021/es902902c
  • Pei, Z.-G., Shan, X.-Q., Zhang, S.-Z., Kong, J.-J., Wen, B., Zhang, J., … Janssens, K. (2011). Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS. Journal of Hazardous Materials, 186(1), 842–848. doi:10.1016/j.jhazmat.2010.11.076
  • Pentrák, M., Madejová, J., & Komadel, P. (2009). Acid and alkali treatment of kaolins. Clay Minerals, 44(4), 511–523. doi:10.1180/claymin.2009.044.4.511
  • Pils, J. R. V., & Laird, D. A. (2007). Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay − humic complexes. Environmental Science & Technology, 41(6), 1928–1933. doi:10.1021/es062316y
  • Polubesova, T., Zadaka, D., Groisman, L., & Nir, S. (2006). Water remediation by micelle–clay system: Case study for tetracycline and sulfonamide antibiotics. Water Research, 40(12), 2369–2374. doi:10.1016/j.watres.2006.04.008
  • Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43(9), 2419–2430. doi:10.1016/j.watres.2009.02.039
  • Quesada, H. B., Baptista, A. T. A., Cusioli, L. F., Seibert, D., de Oliveira Bezerra, C., & Bergamasco, R. (2019). Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, 766–780. doi:10.1016/j.chemosphere.2019.02.009
  • Qurie, M., Khamis, M., Malek, F., Nir, S., Bufo, S. A., Abbadi, J., … Karaman, R. (2014). Stability and removal of naproxen and its metabolite by advanced membrane wastewater treatment plant and Micelle–Clay complex. CLEAN – Soil, Air, Water, 42(5), 594–600. doi:10.1002/clen.201300179
  • Rajabi, H., Ghaemi, N., Madaeni, S. S., Daraei, P., Khadivi, M. A., & Falsafi, M. (2014). Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance. Applied Surface Science, 313, 207–214. doi:10.1016/j.apsusc.2014.05.185
  • Rakić, V., Rajić, N., Daković, A., & Auroux, A. (2013). The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous and Mesoporous Materials, 166, 185–194. doi:10.1016/j.micromeso.2012.04.049
  • Rand, B., & Melton, I. E. (1975). Isoelectric point of the edge surface of kaolinite. Nature, 257(5523), 214. doi:10.1038/257214a0
  • Rashid, M. A., Buckley, D. E., & Robertson, K. R. (1972). Interactions of a marine humic acid with clay minerals and a natural sediment. Geoderma, 8(1), 11–27. doi:10.1016/0016-7061(72)90029-8
  • Rattier, M., Reungoat, J., Keller, J., & Gernjak, W. (2014). Removal of micropollutants during tertiary wastewater treatment by biofiltration: Role of nitrifiers and removal mechanisms. Water Research, 54, 89–99. doi:10.1016/j.watres.2014.01.030
  • Ravichandran, J., & Sivasankar, B. (1997). Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays and Clay Minerals, 45, 6, 854–858. doi:10.1346/CCMN.1997.0450609
  • Rebitski, E. P., Alcântara, A. C. S., Darder, M., Cansian, R. L., Gómez-Hortigüela, L., & Pergher, S. B. C. (2018). Functional carboxymethylcellulose/zein bionanocomposite films based on neomycin supported on sepiolite or montmorillonite clays. ACS Omega, 3(10), 13538–13550. doi:10.1021/acsomega.8b01026
  • Rebitski, E. P., Aranda, P., Darder, M., Carraro, R., & Ruiz-Hitzky, E. (2018). Intercalation of metformin into montmorillonite. Dalton Transactions, 47(9), 3185–3192. doi:10.1039/C7DT04197G
  • Rebitski, E. P., Souza, G. P., Santana, S. A. A., Pergher, S. B. C., & Alcântara, A. C. S. (2019). Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Applied Clay Science, 173, 35–45. doi:10.1016/j.clay.2019.02.024
  • Ribeiro, S. P. S., Estevão, L. R. M., & Nascimento, R. S. V. (2008). Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation. Science and Technology of Advanced Materials, 9(2), 024408. doi:10.1088/1468-6996/9/2/024408
  • Richmond, E. K., Rosi, E. J., Walters, D. M., Fick, J., Hamilton, S. K., Brodin, T., … Grace, M. R. (2018). A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature Communications, 9(1), 4491. doi:10.1038/s41467-018-06822-w
  • Rivagli, E., Pastorello, A., Sturini, M., Maraschi, F., Speltini, A., Zampori, L., … Profumo, A. (2014). Clay minerals for adsorption of veterinary FQs: Behavior and modeling. Journal of Environmental Chemical Engineering, 2(1), 738–744. doi:10.1016/j.jece.2013.11.017
  • Roca Jalil, M. E., Baschini, M., & Sapag, K. (2015). Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 114, 69–76. doi:10.1016/j.clay.2015.05.010
  • Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Petre, A., García-Calvo, E., Gómez, M. J., … Fernández-Alba, A. R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44(2), 578–588. doi:10.1016/j.watres.2009.07.004
  • Rossi, L., Queloz, P., Brovelli, A., Margot, J., & Barry, D. A. (2013). Enhancement of micropollutant degradation at the outlet of small wastewater treatment plants. PLOS ONE, 8(3), e58864. doi:10.1371/journal.pone.0058864
  • Rotenberg, B., Marry, V., Vuilleumier, R., Malikova, N., Simon, C., & Turq, P. (2007). Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics. Geochimica et Cosmochimica Acta, 71(21), 5089–5101. doi:10.1016/j.gca.2007.08.018
  • Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1–2), 27–49. doi:10.1007/s10533-017-0410-1
  • Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20(42), 9306–9321. doi:10.1039/c0jm00432d
  • Saaristo, M., Brodin, T., Balshine, S., Bertram, M. G., Brooks, B. W., Ehlman, S. M., … Arnold, K. E. (2018). Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proceedings of the Royal Society B: Biological Sciences, 285(1885), 20181297. doi:10.1098/rspb.2018.1297
  • Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., & Sanderman, J. (2013). The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma, 209210, 15–21. doi:10.1016/j.geoderma.2013.05.026
  • Sales, A., de Souza, F. R., dos Santos, W. N., Zimer, A. M., & do Couto Rosa Almeida, F. (2010). Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application. Construction and Building Materials, 24(12), 2446–2453. doi:10.1016/j.conbuildmat.2010.06.012
  • Salihi, E. Ç., & Mahramanlıoğlu, M. (2014). Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Applied Clay Science, 101, 381–389. doi:10.1016/j.clay.2014.06.015
  • Santos, S. S. G., Silva, H. R. M., de Souza, A. G., Alves, A. P. M., da Silva Filho, E. C., & Fonseca, M. G. (2015). Acid-leached mixed vermiculites obtained by treatment with nitric acid. Applied Clay Science, 104, 286–294. doi:10.1016/j.clay.2014.12.008
  • Sarikaya, Y., Önal, M., Baran, B., & Alemdaroğlu, T. (2000). The effect of thermal treatment on some of the physicochemical properties of bentonite. Clays and Clay Minerals, 48(5), 557–562. doi:10.1346/CCMN.2000.0480508
  • Schlegel, M. L., Manceau, A., Chateigner, D., & Charlet, L. (1999). Sorption of metal ions on clay minerals: I. Polarized EXAFS evidence for the adsorption of Co on the edges of hectorite particles. Journal of Colloid and Interface Science, 215(1), 140–158. doi:10.1006/jcis.1999.6253
  • Schroth, B. K., & Sposito, G. (1997). Surface Charge Properties of Kaolinite. Clays and Clay Minerals, 45(1), 85–91. doi:10.1346/CCMN.1997.0450110
  • Seema, & Datta, M. (2013). In vitro sustained delivery of atenolol, an antihypertensive drug using naturally occurring clay mineral montmorillonite as a carrier. European Chemical Bulletin, 2(11), 942–951. doi:10.17628/ecb.2013.2.942-951
  • Seki, Y., & Yurdakoç, K. (2006). Adsorption of promethazine hydrochloride with KSF montmorillonite. Adsorption, 12(1), 89–100. doi:10.1007/s10450-006-0141-4
  • Seki, Y., & Yurdakoç, K. (2007). Identification and characterization of Fe-rich smectites in the Çamlıca region of western Turkey. Clay Minerals, 42(2), 153–160. doi:10.1180/claymin.2007.042.2.02
  • Seki, Y., & Yurdakoç, K. (2009). Equilibrium, kinetics and thermodynamic aspects of promethazine hydrochloride sorption by iron rich smectite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 340(1–3), 143–148. doi:10.1016/j.colsurfa.2009.03.020
  • Sellin, P., & Leupin, O. X. (2013). The use of clay as an engineered barrier in radioactive-waste management - a review. Clays and Clay Minerals, 61(6), 477–498. doi:10.1346/CCMN.2013.0610601
  • Shainberg, I., Alperovitch, N. I., & Keren, R. (1987). Charge density and Na-K-Ca exchange on smectites. Clays and Clay Minerals, 35(1), 68–73. doi:10.1346/CCMN.1987.0350109
  • Shainberg, I., & Kemper, W. D. (1966). Hydration status of adsorbed cations. Soil Science Society of America Journal, 30(6), 707–713. doi:10.2136/sssaj1966.03615995003000060017x
  • Shariatmadari, H., Mermut, A. R., & Benke, M. B. (1999). Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite. Clays and Clay Minerals, 47(1), 44–53. doi:10.1346/CCMN.1999.0470105
  • Siemens, J., Huschek, G., Walshe, G., Siebe, C., Kasteel, R., Wulf, S., … Kaupenjohann, M. (2010). Transport of pharmaceuticals in columns of a wastewater-irrigated Mexican clay soil. Journal of Environment Quality, 39(4), 1201–1210. doi:10.2134/jeq2009.0105
  • Silva, A., Martinho, S., Stawiński, W., Węgrzyn, A., Figueiredo, S., Santos, L. H. M. L. M., & Freitas, O. (2018). Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine. Environmental Science and Pollution Research, 25(17), 17066–17076. doi:10.1007/s11356-018-1869-6
  • Sophia, A. C., & Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 150, 1–17. doi:10.1016/j.ecoenv.2017.12.026
  • Sotelo, J. L., Rodríguez, A., Álvarez, S., & García, J. (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chemical Engineering Research and Design, 90(7), 967–974. doi:10.1016/j.cherd.2011.10.012
  • Spettmann, D., Eppmann, S., Flemming, H.-C., & Wingender, J. (2007). Simultaneous visualisation of biofouling, organic and inorganic particle fouling on separation membranes. Water Science and Technology, 55(8–9), 207–210. doi:10.2166/wst.2007.260
  • Stein, K., Ramil, M., Fink, G., Sander, M., & Ternes, T. A. (2008). Analysis and sorption of psychoactive drugs onto sediment. Environmental Science & Technology, 42(17), 6415–6423. doi:10.1021/es702959a
  • Steudel, A., Batenburg, L. F., Fischer, H. R., Weidler, P. G., & Emmerich, K. (2009a). Alteration of non-swelling clay minerals and magadiite by acid activation. Applied Clay Science, 44(1–2), 95–104. doi:10.1016/j.clay.2009.02.001
  • Steudel, A., Batenburg, L. F., Fischer, H. R., Weidler, P. G., & Emmerich, K. (2009b). Alteration of swelling clay minerals by acid activation. Applied Clay Science, 44(1–2), 105–115. doi:10.1016/j.clay.2009.02.002
  • Styszko, K., Nosek, K., Motak, M., & Bester, K. (2015). Preliminary selection of clay minerals for the removal of pharmaceuticals, bisphenol A and triclosan in acidic and neutral aqueous solutions. Comptes Rendus Chimie, 18(10), 1134–1142. doi:10.1016/j.crci.2015.05.015
  • Suraj, G., Iyer, C. S. P., & Lalithambika, M. (1998). Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science, 13(4), 293–306. doi:10.1016/S0169-1317(98)00043-X
  • Swartzen-Allen, S. L., & Matijević, E. (1975). Colloid and surface properties of clay suspensions: II. Electrophoresis and cation adsorption of montmorillonite. Journal of Colloid and Interface Science, 50(1), 143–153. doi:10.1016/0021-9797(75)90261-1
  • Tarı̀, G., Bobos, I., Gomes, C. S. F., & Ferreira, J. M. F. (1999). Modification of surface charge properties during kaolinite to halloysite-7Å transformation. Journal of Colloid and Interface Science, 210(2), 360–366. doi:10.1006/jcis.1998.5917
  • Tawari, S. L., Koch, D. L., & Cohen, C. (2001). Electrical double-layer effects on the brownian diffusivity and aggregation rate of laponite clay particles. Journal of Colloid and Interface Science, 240(1), 54–66. doi:10.1006/jcis.2001.7646
  • Teppen, B. J., & Miller, D. M. (2006). Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70(1), 31–40. doi:10.2136/sssaj2004.0212
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260. doi:10.1016/S0043-1354(98)00099-2
  • Tertre, E., Hubert, F., Bruzac, S., Pacreau, M., Ferrage, E., & Prêt, D. (2013). Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments. Geochimica et Cosmochimica Acta, 112, 1–19. doi:10.1016/j.gca.2013.02.028
  • Theng, B. K. G. (1982). Clay–polymer interactions: Summary and perspectives. Clays and Clay Minerals, , 30, 0 1–10. doi:10.1346/CCMN.1982.0300101
  • Thiebault, T., & Boussafir, M. (2019). Adsorption mechanisms of psychoactive drugs onto montmorillonite. Colloid and Interface Science Communications, 30, 100183. doi:10.1016/j.colcom.2019.100183
  • Thiebault, T., Boussafir, M., Guégan, R., Le Milbeau, C., & Le Forestier, L. (2016). Clayey–sand filter for the removal of pharmaceuticals from wastewater effluent: Percolation experiments. Environmental Science: Water Research & Technology, 2(3), 529–538. doi:10.1039/C6EW00034G
  • Thiebault, T., Boussafir, M., Le Forestier, L., Le Milbeau, C., Monnin, L., & Guégan, R. (2016). Competitive adsorption of a pool of pharmaceuticals onto a raw clay mineral. RSC Advances, 6(69), 65257–65265. doi:10.1039/C6RA10655B
  • Thiebault, T., Boussafir, M., & Le Milbeau, C. (2017). Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: Mass balance, fate and consumption assessment. Journal of Environmental Chemical Engineering, 5(3), 2894–2902. doi:10.1016/j.jece.2017.05.039
  • Thiebault, T., Chassiot, L., Fougère, L., Destandau, E., Simonneau, A., Van Beek, P., … Chapron, E. (2017). Record of pharmaceutical products in river sediments: A powerful tool to assess the environmental impact of urban management? Anthropocene, 18, 47–56. doi:10.1016/j.ancene.2017.05.006
  • Thiebault, T., Fougère, L., Destandau, E., Réty, M., & Jacob, J. (2017). Temporal dynamics of human-excreted pollutants in wastewater treatment plant influents: Toward a better knowledge of mass load fluctuations. Science of the Total Environment, 596597, 246–255. doi:10.1016/j.scitotenv.2017.04.130
  • Thiebault, T., Guégan, R., & Boussafir, M. (2015). Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. Journal of Colloid and Interface Science, 453, 1–8. doi:10.1016/j.jcis.2015.04.029
  • Thompson, D. W., & Butterworth, J. T. (1992). The nature of laponite and its aqueous dispersions. Journal of Colloid and Interface Science, 151(1), 236–243. doi:10.1016/0021-9797(92)90254-J
  • Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review. Environmental Science & Technology, 35(17), 3397–3406. doi:10.1021/es0003021
  • Tombácz, E., Libor, Z., Illés, E., Majzik, A., & Klumpp, E. (2004). The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3), 257–267. doi:10.1016/j.orggeochem.2003.11.002
  • Tombácz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27(1–2), 75–94. doi:10.1016/j.clay.2004.01.001
  • Tombácz, E., & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, 34(1–4), 105–124. doi:10.1016/j.clay.2006.05.009
  • Tomić, Z. P., Logar, V. P., Babic, B. M., Rogan, J. R., & Makreski, P. (2011). Comparison of structural, textural and thermal characteristics of pure and acid treated bentonites from Aleksinac and Petrovac (Serbia). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 389–395. doi:10.1016/j.saa.2011.07.068
  • Tournassat, C., Bourg, I. C., Steefel, C. I., & Bergaya, F. (2015). Chapter 1: Surface properties of clay minerals. In C. Tournassat, C. I. Steefel, I. C. Bourg, & F. Bergaya (Eds.), Developments in clay science (pp. 5–31). Amsterdam: Elsevier. doi:10.1016/B978-0-08-100027-4.00001-2
  • Tournassat, C., Davis, J. A., Chiaberge, C., Grangeon, S., & Bourg, I. C. (2016). Modeling the acid–base properties of montmorillonite edge surfaces. Environmental Science & Technology, 50(24), 13436–13445. doi:10.1021/acs.est.6b04677
  • Tran, H. N., Nguyen, H. C., Woo, S. H., Nguyen, T. V., Vigneswaran, S., Hosseini-Bandegharaei, A., … Chao, H.-P. (2019). Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: A comprehensive and critical review. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2019.1607442
  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. doi:10.1016/j.watres.2017.04.014
  • Tran, L., Wu, P., Zhu, Y., Liu, S., & Zhu, N. (2015). Comparative study of Hg(II) adsorption by thiol- and hydroxyl-containing bifunctional montmorillonite and vermiculite. Applied Surface Science, 356, 91–101. doi:10.1016/j.apsusc.2015.08.038
  • Traynor, S. M. F., Mortland, M. M., & Pinnavaia, T. J. (1978). Ion exchange and intersalation reactions of hectorite with tris-bipyridyl metal complexes. Clays and Clay Minerals, 26, 5, 318–326. doi:10.1346/CCMN.1978.0260502
  • Tsai, W. T., Chen, H. P., Hsieh, M. F., Sun, H. F., & Lai, C. W. (2003). Regeneration of bleaching clay waste by chemical activation with chloride salts. Journal of Environmental Science and Health, Part A, 38(4), 685–696. doi:10.1081/ESE-120016933
  • Tsai, Y.-L., Chang, P.-H., Gao, Z.-Y., Xu, X.-Y., Chen, Y.-H., Wang, Z.-H., … Jiang, W.-T. (2016). Amitriptyline removal using palygorskite clay. Chemosphere, 155, 292–299. doi:10.1016/j.chemosphere.2016.04.062
  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. doi:10.1016/j.cej.2016.09.029
  • Valencia, G. A., Djabourov, M., Carn, F., & Sobral, P. J. A. (2018). Novel insights on swelling and dehydration of laponite. Colloid and Interface Science Communications, 23, 1–5. doi:10.1016/j.colcom.2018.01.001
  • Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750. doi:10.1016/S1473-3099(14)70780-7
  • Van Olphen, H., & Fripiat, J. J. (1979). Data handbook for clay materials and other non-metallic minerals (1st ed.). Oxford: Pergamon Press.
  • Velde, B. B., & Meunier, A. (2008). The origin of clay minerals in soils and weathered rocks. Berlin: Springer Science & Business Media.
  • Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Science of the Total Environment, 429, 123–155. doi:10.1016/j.scitotenv.2012.04.028
  • Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., Al Aukidy, M., & Zambello, E. (2013). Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed—Analysis of their respective contributions. Science of the Total Environment, 454455, 411–425. doi:10.1016/j.scitotenv.2013.03.044
  • Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48(3), 291–295. doi:10.1016/j.clay.2010.01.007
  • Viseras, C., Cultrone, G., Cerezo, P., Aguzzi, C., Baschini, M. T., Vallés, J., & López-Galindo, A. (2006). Characterisation of northern Patagonian bentonites for pharmaceutical uses. Applied Clay Science, 31(3), 272–281. doi:10.1016/j.clay.2005.11.002
  • Wan, M., Li, Z., Hong, H., & Wu, Q. (2013). Enrofloxacin uptake and retention on different types of clays. Journal of Asian Earth Sciences, 77, 287–294. doi:10.1016/j.jseaes.2013.02.032
  • Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., … Gao, B. (2019). Alginate-based composites for environmental applications: A critical review. Critical Reviews in Environmental Science and Technology, 49(4), 318–356. doi:10.1080/10643389.2018.1547621
  • Wang, C., Ding, Y., Teppen, B. J., Boyd, S. A., Song, C., & Li, H. (2009). Role of interlayer hydration in lincomycin sorption by smectite clays. Environmental Science & Technology, 43(16), 6171–6176. doi:10.1021/es900760m
  • Wang, C.-J., Li, Z., & Jiang, W.-T. (2011). Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Applied Clay Science, 53(4), 723–728. doi:10.1016/j.clay.2011.06.014
  • Wang, Q., Zhang, J., Zheng, Y., & Wang, A. (2014). Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids and Surfaces B: Biointerfaces, 113, 51–58. doi:10.1016/j.colsurfb.2013.08.036
  • Wang, W., Chen, H., & Wang, A. (2007). Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite. Separation and Purification Technology, 55(2), 157–164. doi:10.1016/j.seppur.2006.11.015
  • Wang, Y.-J., Jia, D.-A., Sun, R.-J., Zhu, H.-W., & Zhou, D.-M. (2008). Adsorption and cosorption of tetracycline and Copper(II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 42(9), 3254–3259. doi:10.1021/es702641a
  • Williams, S. J., Gabe, J., & Davis, P. (2008). The sociology of pharmaceuticals: Progress and prospects. Sociology of Health & Illness, 30(6), 813–824. doi:10.1111/j.1467-9566.2008.01123.x
  • Wong, S., Ngadi, N., Inuwa, I. M., & Hassan, O. (2018). Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175, 361–375. doi:10.1016/j.jclepro.2017.12.059
  • Wu, M., Zhao, S., Tang, M., Jing, R., Shao, Y., Liu, X., … Liu, A. (2019). Adsorption of sulfamethoxazole and tetracycline on montmorillonite in single and binary systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 575, 264–270. doi:10.1016/j.colsurfa.2019.05.025
  • Wu, Q., Li, Z., & Hong, H. (2013). Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Applied Clay Science, 74, 66–73. doi:10.1016/j.clay.2012.09.026
  • Yan, W., Hu, S., & Jing, C. (2012). Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid. Journal of Colloid and Interface Science, 372(1), 141–147. doi:10.1016/j.jcis.2012.01.016
  • Yu, W. H., Li, N., Tong, D. S., Zhou, C. H., Lin, C. X. (Cynthia), & Xu, C. Y. (2013). Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Applied Clay Science, 8081, 443–452. doi:10.1016/j.clay.2013.06.003
  • Zhang, W., Ding, Y., Boyd, S. A., Teppen, B. J., & Li, H. (2010). Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere, 81(7), 954–960. doi:10.1016/j.chemosphere.2010.07.053
  • Zhang, Y., Lu, M., Su, Z., Wang, J., Tu, Y., Chen, X., … Jiang, T. (2019). Interfacial reaction between humic acid and Ca-Montmorillonite: Application in the preparation of a novel pellet binder. Applied Clay Science, 180, 105177. doi:10.1016/j.clay.2019.105177
  • Zhao, Y., Geng, J., Wang, X., Gu, X., & Gao, S. (2011). Tetracycline adsorption on kaolinite: PH, metal cations and humic acid effects. Ecotoxicology, 20(5), 1141–1147. doi:10.1007/s10646-011-0665-6
  • Zhao, Y., Gu, X., Gao, S., Geng, J., & Wang, X. (2012). Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma, 183, 12–18. doi:10.1016/j.geoderma.2012.03.004
  • Zheng, Y., Zaoui, A., & Shahrour, I. (2011). A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite. Applied Clay Science, 51(1–2), 177–181. doi:10.1016/j.clay.2010.10.027
  • Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258. doi:10.1016/j.clay.2015.12.024
  • Zietzschmann, F., Altmann, J., Hannemann, C., & Jekel, M. (2015). Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater. Water Research, 83, 52–60. doi:10.1016/j.watres.2015.06.017
  • Zietzschmann, F., Mitchell, R.-L., & Jekel, M. (2015). Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption. Water Research, 84, 153–160. doi:10.1016/j.watres.2015.07.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.