1,895
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1515-1579 | Published online: 01 Oct 2019

References

  • Aba, N. F. D., Chong, J. Y., Wang, B., Mattevi, C., & Li, K. (2015). Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance. Journal of Membrane Science, 484, 87–94. doi:10.1016/j.memsci.2015.03.001
  • Abraham, J., Vasu, K. S., Williams, C. D., Gopinadhan, K., Su, Y., Cherian, C. T., … Nair, R. R. (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6), 546–550. doi:10.1038/nnano.2017.21
  • Adeleye, A. S., Conway, J. R., Perez, T., Rutten, P., & Keller, A. A. (2014). Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environmental Science & Technology, 48(21), 12561–12568. doi:10.1021/es5033426
  • Aghigh, A., Alizadeh, V., Wong, H. Y., Islam Md, S., Amin, N., & Zaman, M. (2015). Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365, 389–397. doi:10.1016/j.desal.2015.03.024
  • Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. doi:10.1021/nn101390x
  • Akin, I., Zor, E., Bingol, H., & Ersoz, M. (2014). Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone-based composite membranes. The Journal of Physical Chemistry. B, 118(21), 5707–5716. doi:10.1021/jp5025894
  • Al-Hobaib, A. S., Ghoul, J. E., & Mir, L. E. (2016). Fabrication of polyamide membrane reached by MgTiO3 nanoparticles for ground water purification. Desalination and Water Treatment, 57(19), 8639–8648. doi:10.1080/19443994.2015.1025433
  • Ali, M. E. A., Wang, L., Wang, X., & Feng, X. (2016). Thin film composite membranes embedded with graphene oxide for water desalination. Desalination, 386, 67–76. doi:10.1016/j.desal.2016.02.034
  • Amiri, M. C., & Samiei, M. (2007). Enhancing permeate flux in a RO plant by controlling membrane fouling. Desalination, 207(1–3), 361–369. doi:10.1016/j.desal.2006.08.011
  • Anand, A., Unnikrishnan, B., Mao, J.-Y., Lin, H.-J., & Huang, C.-C. (2018). Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination, 429, 119–133. doi:10.1016/j.desal.2017.12.012
  • Andrade, P. F., de Faria, A. F., Oliveira, S. R., Arruda, M. A. Z., & Gonçalves, MdC. (2015). Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Research, 81, 333–342. doi:10.1016/j.watres.2015.05.006
  • Arena, J. T., McCloskey, B., Freeman, B. D., & McCutcheon, J. R. (2011). Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science, 375(1–2), 55–62. doi:10.1016/j.memsci.2011.01.060
  • Arts, J. H. E., Irfan, M. A., Keene, A. M., Kreiling, R., Lyon, D., Maier, M., … Landsiedel, R. (2016). Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regulatory Toxicology and Pharmacology, 76, 234–261. doi:10.1016/j.yrtph.2015.11.020
  • Avramescu, M. L., Rasmussen, P. E., Chénier, M., & Gardner, H. D. (2017). Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environmental Science and Pollution Research International, 24(2), 1553–1564. doi:10.1007/s11356-016-7932-2
  • Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: Synthesis and applications. Materials Today, 15(3), 86–97. doi:10.1016/S1369-7021(12)70044-5
  • Basinas, I., Jiménez, A. S., Galea, K. S., van Tongeren, M., & Hurley, F. (2018). A systematic review of the routes and forms of exposure to engineered nanomaterials. Annals of Work Exposures and Health, 62(6), 639–662. doi:10.1093/annweh/wxy048
  • Bai, J., Zhong, X., Jiang, S., Huang, Y., & Duan, X. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190–194. doi:10.1038/nnano.2010.8
  • Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907. doi:10.1021/nl0731872
  • Bano, S., Mahmood, A., Kim, S.-J., & Lee, K.-H. (2015). Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. Journal of Materials Chemistry A, 3(5), 2065–2071. doi:10.1039/C4TA03607G
  • Becton, M., Zhang, L., & Wang, X. (2014). Molecular Dynamics Study of Programmable Nanoporous Graphene. Journal of Nanomechanics and Micromechanics, 4(3), B4014002. doi:10.1061/(ASCE)NM.2153-5477.0000094
  • Bell, D. C., Lemme, M. C., Stern, L. A., Williams, J. R., & Marcus, C. M. (2009). Precision cutting and patterning of graphene with helium ions. Nanotechnology, 20(45), 455301. doi:10.1088/0957-4484/20/45/455301
  • Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907–3919. doi:10.1016/j.carbon.2011.05.029
  • Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., & Naud, C. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1198. doi:10.1126/science.1125925
  • Berry, V. (2013). Impermeability of graphene and its applications. Carbon, 62, 1–10. doi:10.1016/j.carbon.2013.05.052
  • Blankenburg, S. M. L., Bieri, M., Fasel, R., Mullen, K., Pignedoli, C. A., & Passerone, D. (2010). Porous graphene as an atmospheric nanofilter. Small, 6(20), 2266–2271. doi:10.1002/smll.201001126
  • Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962). The adsorption behavior of very thin carbon films. Zeitschrift für Anorganische Und Allgemeine Chemie, 316(3–4), 119–127. doi:10.1002/zaac.19623160303
  • Boehm, H. P., Eckel, M., & Scholz, W. (1967). Untersuchungenam Graphitoxid V. Über den Bildungsmechanismus des Graphitoxids. Zeitschrift für Anorganische Und Allgemeine Chemie, 353(5–6), 236–242. doi:10.1002/zaac.19673530503
  • Bunch, J. S., Verbridge, S. S., Alden, J. S., Van Der Zande, A. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2008). Impermeable atomic membranes from Graphene sheets. Nano Letters, 8(8), 2458–2462. doi:10.1021/nl801457b
  • Chae, H.-R., Lee, J., Lee, C.-H., Kim, I.-C., & Park, P.-K. (2015). Graphene oxide-embedded thinfilm composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 483, 128–135. doi:10.1016/j.memsci.2015.02.045
  • Chang, Y., Shen, Y., Kong, D., Ning, J., Xiao, Z., Liang, J., & Zhi, L. (2017). Fabrication of the reduced preoxidized graphene-based nanofiltration membranes with tunable porosity and good performance. RSC Advances, 7(5), 2544–2549. doi:10.1039/C6RA24746F
  • Chen, B., Jiang, H., Liu, X., & Hu, X. (2017). Observation and analysis of water transport through graphene oxide interlamination. The Journal of Physical Chemistry C, 121(2), 1321–1328. doi:10.1021/acs.jpcc.6b09753
  • Chen, L., Shi, G., Shen, J., Peng, B., Zhang, B., Wang, Y., … Fang, H. (2017). Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 550(7676), 380. doi:10.1038/nature24044
  • Chen, X., Liu, G., Zhang, H., & Fan, Y. (2015). Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol. Chinese Journal of Chemical Engineering, 23(7), 1102–1109. doi:10.1016/j.cjche.2015.04.018
  • Chen, X., Qiu, M., Ding, H., Fu, K., & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 8, 5696–5705. doi:10.1039/C5NR08697C
  • Cheng, Y. C., Kaloni, T. P., Zhu, Z. Y., & Schwingenschlögl, U. (2012). Oxidation of graphene in ozone under ultraviolet light. Applied Physics Letters, 101(7), 073110. doi:10.1063/1.4746261
  • Cho, W., & Lee, J.-W. (2011). Graphene: Synthesis and Applications. Hoboken, NJ: Taylor and Francis.
  • Choi, W., Choi, J., Bang, J., & Lee, J.-H. (2013). Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Applied Materials &Amp; Interfaces, 5(23), 12510–12519. doi:10.1021/am403790s
  • Choucair, M., Thordarson, P., & Stride, J. A. (2009). Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 4(1), 30–33. doi:10.1038/nnano.2008.365
  • Chung, Y. T., Mahmoudi, E., Mohammad, A. W., Benamor, A., Johnson, D., & Hilal, N. (2017). Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination, 402, 123–132. doi:10.1016/j.desal.2016.09.030
  • Cohen-Tanugi, D., & Grossman, J. (2014). Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. The Journal of Chemical Physics, 141(7), 074704. doi:10.1063/1.4892638
  • Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608. doi:10.1021/nl3012853
  • Cohen-Tanugi, D., & Grossman, J. C. (2015). Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation. Desalination, 366, 59–70. doi:10.1016/j.desal.2014.12.046
  • Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H., & Grossman, J. C. (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy & Environmental Science, 7(3), 1134–1141. doi:10.1039/C3EE43221A
  • Compton, O. C., & Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small (Weinheim an Der Bergstrasse, Germany), 6(6), 711–723. doi:10.1002/smll.200901934
  • Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry. B, 112(5), 1427–1434. doi:10.1021/jp709845u
  • Cruz-Silva, R., Endo, M., & Terrones, M. (2016). Graphene oxide films, fibers, and membranes. Nanotechnology Reviews, 5, 377–391.
  • Daer, S., Kharraz, J., Gi.Wa, A., & Hasan, S. W. (2015). Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 367, 37–48. doi:10.1016/j.desal.2015.03.030
  • Dai, H., Xu, Z., & Yang, X. (2016). Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation. The Journal of Physical Chemistry C, 120(39), 22585–22596. doi:10.1021/acs.jpcc.6b05337
  • Das, R., Ali, M. E., Abd Hamid, S. B., Ramakrishna, S., & Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future inwater desalination. Desalination, 336, 97–109. doi:10.1016/j.desal.2013.12.026
  • Das, R., Abd Hamid, S. B., Ali, M. E., Ismail, A. F., Annuar, M. S. M., & Ramakrishna, S. (2014). Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 354, 160–179. doi:10.1016/j.desal.2014.09.032
  • Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., … Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457–460. doi:10.1038/nature06016
  • Dimiev, A. M., Alemany, L. B., & Tour, J. M. (2013). Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano, 7(1), 576–588. doi:10.1021/nn3047378
  • Do, V. T., Tang, C. Y., Reinhard, M., & Leckie, J. O. (2012). Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environmental Science &Amp; Technology, 46(24), 13184–13192. doi:10.1021/es302867f
  • Dong, C., He, G., Li, H., Zhao, R., Han, Y., & Deng, Y. (2012). Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. Journal of Membrane Science, 387–388, 40–47. doi:10.1016/j.memsci.2011.10.007
  • Dong, L.-X., Huang, X.-C., Wang, Z., Yang, Z., Wang, X.-M., & Tang, C. Y. (2016). A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 166, 230–239. doi:10.1016/j.seppur.2016.04.043
  • Doskocz, N., Załęska-Radziwiłł, M., & Affek, K. (2018). The effect of engineering nanoparticles on plants. In Micropollutants in wastewater, waste and environment (Chap. 8, pp. 105–122), Poland (in Polish): Wydawnictwo Politechniki Częstochowskiej.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. doi:10.1039/b917103g
  • Du, S., Zhang, P., Zhang, R., Lu, Q., Liu, L., Bao, X., & Liu, H. (2016). Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere, 164, 499–507. doi:10.1016/j.chemosphere.2016.08.138
  • Duan, L., Wang, Y., Zhang, Y., & Liu, J. (2015). Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties. Applied Surface Science., 355, 436–445. doi:10.1016/j.apsusc.2015.07.127
  • Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials (Deerfield Beach, Fla.), 22(22), 2392–2415. doi:10.1002/adma.200903689
  • Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science (New York, N.Y.), 333(6043), 712–717. doi:10.1126/science.1200488
  • Emadzadeh, D., Lau, W., Rahbari-Sisakht, M., Ilbeygi, H., Rana, D., Matsuura, T., & Ismail, A. (2015). Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chemical Engineering Journal, 281, 243–251. doi:10.1016/j.cej.2015.06.035
  • Fane, C. T., & Wang, R. (2011). Chap.4. Water quality enngenering. In P. Wilderer (Eds.), Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on Water Science (pp.301–335). Elsevier Science, Amsterdam.
  • Feng, C., Xu, J., Li, M., Tang, Y., & Gao, C. (2014). Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. Journal of Membrane Science, 451, 103–110. doi:10.1016/j.memsci.2013.10.003
  • Fischbein, M. D., & Drndić, M. D. F. A. (2008). Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 93(11), 113107. doi:10.1063/1.2980518
  • Fryczkowska, B. (2018). The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater. Desalination and Water Treatment, 128, 79–88. doi:10.5004/dwt.2018.22599
  • Fryczkowska, B., Sieradzka, M., Sarna, E., Fryczkowski, R., & Janicki, J. (2015). Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 132, 42789.
  • Ganesh, B. M., Isloor, A. M., & Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199–207. doi:10.1016/j.desal.2012.11.037
  • Gao, Y., Hu, M., & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 455, 349–356. doi:10.1016/j.memsci.2014.01.011
  • Geim, A. K. (2009). Graphene: Status and prospects. Science (New York, N.Y.), 324(5934), 1530–1534. doi:10.1126/science.1158877
  • Goh, P. S., & Ismail, A. F. (2015). Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination, 356, 115–128. doi:10.1016/j.desal.2014.10.001
  • Goh, P. S., Ismail, A. F., & Hilal, N. (2016). Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination, 380, 100–104. doi:10.1016/j.desal.2015.06.002
  • Goh, P. S., Ismail, A. F., & Ng, B. C. (2013). Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination, 308, 2–14. doi:10.1016/j.desal.2012.07.040
  • Gohari, R. J., Halakoo, E., Lau, W. J., Kassim, M. A., Matsuura, T., & Ismail, A. F. (2014). Novelpolyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process. RSC Advances, 4, 17587–17596. doi:10.1039/C4RA00032C
  • Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317–2348. doi:10.1016/j.watres.2009.03.010
  • Haddad, B. M. (2013). A case for an ecological–economic research program for desalination. Desalination, 324, 72–78. doi:10.1016/j.desal.2013.06.003
  • Han, R. (2013). Formation and characterization of (melamine–TMC) based thin film composite NF membranes for improved thermal and chlorine resistances. Journal of Membrane Science, 425, 176–181. doi:10.1016/j.memsci.2012.08.017
  • Han, Y., Xu, Z., & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29), 3693–3700. doi:10.1002/adfm.201202601
  • Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., & Iijima, S. (2004). Direct evidence for atomic defects in graphene layers. Nature, 430(7002), 870–873. doi:10.1038/nature02817
  • Hegab, H. M., & Zou, L. (2015). Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 484, 95–106. doi:10.1016/j.memsci.2015.03.011
  • Hinds, B. J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., & Bachas, L. G. (2004). Aligned multiwalled carbon nanotube membranes. Science (New York, N.Y.), 303(5654), 62–65. doi:10.1126/science.1092048
  • Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., … Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science (New York, N.Y.), 312(5776), 1034–1037. doi:10.1126/science.1126298
  • Hu, M., & Mi, B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 47(8), 3715–3723. doi:10.1021/es400571g
  • Hu, M., & Mi, B. (2014). Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. Journal of Membrane Science, 469, 80–87. doi:10.1016/j.memsci.2014.06.036
  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., … Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323. doi:10.1021/nn101097v
  • Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., … Peng, X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 4, 2979. doi:10.1038/ncomms3979
  • Huang, H., Ying, Y., & Peng, X. (2014). Graphene oxide nanosheet: An emerging star material for novel separation membranes. Journal of Materials Chemistry A, 2(34), 13772–13782. doi:10.1039/C4TA02359E
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666–686. doi:10.1039/c1cs15078b
  • Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188–190. doi:10.1038/35102535
  • Hung, W.-S., An, Q.-F., De Guzman, M., Lin, H.-Y., Huang, S.-H., Liu, W.-R., … Lai, J.-Y. (2014). Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 68, 670–677. doi:10.1016/j.carbon.2013.11.048
  • Jadav, G. L., & Singh, P. S. (2009). Synthesis of novel silica-polyamide nanocomposite membranę with enhanced properties. Journal of Membrane Science, 328(1-2), 257–267. doi:10.1016/j.memsci.2008.12.014
  • Jafri, R. I., Rajalakshmi, N., & Ramaprabhu, S. (2010). Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membranę fuel cell. Journal of Materials Chemistry, 34, 7114–7117. doi:10.1039/c0jm00467g
  • Jeong, B.-H., Hoek, E.M., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., … Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. Journal of Membrane Science, 294, 1–7.
  • Jiang, D., Cooper, V. R., & Dai, S. (2009). Porous graphene as the ultimate membrane for gas separation. Nano Letters, 9(12), 4019–4024. doi:10.1021/nl9021946
  • Jiang, Y., Wang, W., Liu, D., Nie, Y., Li, W., Wu, J., … Fortner, J. D. (2015). Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environmental Science & Technology, 49(11), 6846–6854. doi:10.1021/acs.est.5b00904
  • Jirage, K. B., Hulteen, J. C., & Martin, C. R. (1997). Nanotubule-based molecular-filtration membranes. Science, 278(5338), 655–658. doi:10.1126/science.278.5338.655
  • Joshi, R. K., Carbone, P., Wang, F. C., Kravets, V. G., Su, Y., Grigorieva, I. V., … Nair, R. R. (2014). Precise and ultrafast molecular sieving through graphene oxide membranes. Science (New York, N.Y.), 343(6172), 752–754. doi:10.1126/science.1245711
  • Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M., & Yuan, Q. (2007). Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 300(1–2), 165–171. doi:10.1016/j.memsci.2007.05.025
  • Kamali, M., Persson, K. M., Costa, M. E., & Capela, I. (2019). Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: Current status and future outlook. Environment International, 125, 261–276. doi:10.1016/j.envint.2019.01.055
  • Keller, A. A., Garner, K., Miller, R. J., Lenihan, H. S., & Chin, W.-C. (2012). Toxicity of nanozero valent iron to freshwater and marine organisms. PLoS One, 7(8), e43983. doi:10.1371/journal.pone.0043983
  • Khalaj, M., Kamali, M., Khodaparast, Z., & Jahanshahi, A. (2018). Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects. Ecotoxicology and Environmental Safety, 148, 813–824. doi:10.1016/j.ecoenv.2017.11.060
  • Khalid, A., Al-Juhani, A. A., Al-Hamouz, O. C., Laoui, T., Khan, Z., & Atieh, M. A. (2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination, 367, 134–144. doi:10.1016/j.desal.2015.04.001
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710. doi:10.1038/nature07719
  • Kim, M., Safron, N. S., Han, E., Arnold, M. S., & Gopalan, P. (2010). Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Letters, 10(4), 1125–1131. doi:10.1021/nl9032318
  • Kim, S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., … Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1), 95–101. doi:10.1016/j.nano.2006.12.001
  • Kim, S. G., Hyeon, D. H., Chun, J. H., Chun, B.-H., & Kim, S. H. (2013). Novel thin nanocomposite RO membranes for chlorine resistance. Desalination and Water Treatment, 51(31-33), 6338–6345. doi:10.1080/19443994.2013.780994
  • Koch, I., Reimer, K. J., Bakker, M. I., Basta, N. T., Cave, M. R., Denys, S., … Zagury, G. J. (2013). Variability of bioaccessibility results using seventeen different methods on a standard reference material, NIST 2710. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances &Amp; Environmental Engineering, 48(6), 641–655. doi:10.1080/10934529.2013.731817
  • Kochameshki, M. G., Marjani, A., Mahmoudian, M., & Farhadi, K. (2017). Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment. Chemical Engineering Journal, 309, 206–221. doi:10.1016/j.cej.2016.10.008
  • Kochkodan, V., Johnson, D. J., & Hilal, N. (2014). Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science, 206, 116–140. doi:10.1016/j.cis.2013.05.005
  • Koenig, S. P., Wang, L., Pellegrino, J., & Brunch, J. S. (2012). Selective molecular sieving through porous graphene. Nature Nanotechnology, 10, 1038.
  • Konatham, D., Yu, J., Ho, T. A., & Striolo, A. (2013). Simulation insights for graphene-based water desalination membranes. Langmuir: The Acs Journal of Surfaces and Colloids, 29(38), 11884–11897. doi:10.1021/la4018695
  • Kuang-Kai, L., Chia-Liang, C., Chia-Ching, C., & Jui, I. C. (2007). Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology, 18, 325102.
  • Lai, G. S., Lau, W. J., Goh, P. S., Ismail, A. F., Yusof, N., & Tan, Y. H. (2016). Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination, 387, 14–24. doi:10.1016/j.desal.2016.03.007
  • Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220(1–3), 1–15. doi:10.1016/j.desal.2007.03.009
  • Lee, H. S., Im, S. J., Kim, J. H., Kim, H. J., Kim, J. P., & Min, B. R. (2008). Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 219(1–3), 48–56. doi:10.1016/j.desal.2007.06.003
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. doi:10.1126/science.1157996
  • Lee, J., Chae, H.-R., Won, Y. J., Lee, K., Lee, C.-H., Lee, H. H., … Lee, J.-M. (2013). Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of Membrane Science, 448, 223–230. doi:10.1016/j.memsci.2013.08.017
  • Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membranę materials for desalination—development to date and future potential. Journal of Membrane Science, 370(1–2), 1–22. doi:10.1016/j.memsci.2010.12.036
  • Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S.-E., Sim, S. H., … Ahn, J.-H. (2010). Wafer-scale synthesis and transfer of graphene films. Nano Letters, 10(2), 490–493. doi:10.1021/nl903272n
  • Lei, H., Yan, T., Wang, H., Shi, L., Zhang, J., & Zhang, D. (2015). Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. Journal of Materials Chemistry A, 3(11), 5934–5941. doi:10.1039/C4TA05713A
  • Lerf, A., Buchsteiner, A., Pieper, J., Schöttl, S., Dekany, I., Szabo, T., & Boehm, H. P. (2006). Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physical Chemistry Solids., 67(5–6), 1106–1110. doi:10.1016/j.jpcs.2006.01.031
  • Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101–105. doi:10.1038/nnano.2007.451
  • Li, H., Shi, W., Zhu, H., Zhang, Y., Du, Q., & Qin, X. (2016). Effects of zinc oxide nanospheres on the separation performance of hollow fiber poly(piperazine-amide) composite nanofiltration membranes. Fibers and Polymers, 17(6), 836–846. doi:10.1007/s12221-016-6219-z
  • Li, J., Liu, X., Lu, J., Wang, Y., Li, G., & Zhao, F. (2016). Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. Journal of Colloid and Interface Science, 484, 107–115. doi:10.1016/j.jcis.2016.08.063
  • Li, Q., Wang, Y., Song, J., Guan, Y., Yu, H., Pan, X., … Zhang, M. (2015). Influence of silica nanospheres on the separation performance of thinfilm composite poly(piperazine-amide) nanofiltration membranes. Applied Surface Science., 324, 757–764. doi:10.1016/j.apsusc.2014.11.031
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., … Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (New York, N.Y.), 324(5932), 1312–1314. doi:10.1126/science.1171245
  • Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297–2302. doi:10.1002/adfm.200801776
  • Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., … Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980. doi:10.1021/nn202451x
  • Liu, F., Abed, M. R. M., & Li, K. (2011). Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. Journal of Membrane Science, 366(1–2), 97–103. doi:10.1016/j.memsci.2010.09.044
  • Liu, L., Ryu, S., Tomasik, M. R., Stolyarova, E., Jung, N., Hybertsen, M. S., … Flynn, G. W. (2008). Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Letters, 8(7), 1965–1970. doi:10.1021/nl0808684
  • Liu, L.-F., Cai, Z.-B., Shen, J.-N., Wu, L.-X., Hoek, E. M., & Gao, C.-J. (2014). Fabrication and characterization of a novel poly (amide-urethane@ imide) TFC reverse osmosis membrane with chlorine-tolerant property. Journal of Membrane Science, 469, 397–409. doi:10.1016/j.memsci.2014.06.029
  • Liu, X., Demir, N. K., Wu, Z., & Li, K. (2015). Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 137(22), 6999–7002. doi:10.1021/jacs.5b02276
  • Liu, X., Qi, S., Li, Y., Yang, L., Cao, B., & Tang, C. Y. (2013). Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Research, 47(9), 3081–3092. doi:10.1016/j.watres.2013.03.018
  • Loh, K. P., Bao, Q., Eda, G. E., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2(12), 1015–1024. doi:10.1038/nchem.907
  • Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., … Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131(10), 3611–3620. doi:10.1021/ja807449u
  • Lu, X., Dou, H., & Zhang, X. (2016). Mesoporous carbon nanospheres inserting into Graphene sheets for flexible supercapacitor film electrode. Materials Letters., 178, 304–307. doi:10.1016/j.matlet.2016.05.029
  • Lv, Y., Yang, H.-C., Liang, H.-Q., Wan, L.-S., & Xu, Z.-K. (2016). Novel nanofiltration membranę with ultrathin zirconia film as selective layer. Journal of Membrane Science, 500, 265–271. doi:10.1016/j.memsci.2015.11.046
  • Ma, S., & Lin, D. (2013). The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: Adsorption and internalization. Environ. Sci. Processes Impacts, 15(1), 145–160. doi:10.1039/C2EM30637A
  • Ma, W., Soroush, A., Van Anh Luong, T., & Rahaman, S. (2017). Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance. Journal of Colloid and Interface Science, 501, 330–340. doi:10.1016/j.jcis.2017.04.069
  • Ma, X.-H., Yang, Z., Yao, Z.-K., Xu, Z.-L., & Tang, C. Y. (2017). A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 525, 269–276. doi:10.1016/j.memsci.2016.11.015
  • Maheswari, P., Prasannadevi, D., & Mohan, D. (2013). Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes. High Performance Polymers, 25(2), 174–187. doi:10.1177/0954008312459865
  • Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225. doi:10.1016/j.desal.2014.10.022
  • Mahmoudi, E., Ng, L. Y., Ba-Abbad, M. M., & Mohammad, A. W. (2015). Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chemical Engineering Journal, 277, 1–10. doi:10.1016/j.cej.2015.04.107
  • Majumder, M., Chopra, N., Andrews, R., & Hinds, B. J. (2005). Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 438(7064), 44. doi:10.1038/43844a
  • Manawi, Y., Kochkodan, V., Ali Hussein, M., Khaleel, M. A., Khraisheh, M., & Hilal, N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, 69–88. doi:10.1016/j.desal.2016.02.015
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. doi:10.1021/nn1006368
  • March, H., Saurí, D., & Rico-Amorós, A. M. (2014). The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain. Journal of Hydrology, 519, 2642–2651.
  • Marinho, B., Ghislandi, M., Tkalya, E., Koning, C. E., & de With, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology, 221, 351–358. doi:10.1016/j.powtec.2012.01.024
  • Matin, A., Khan, Z., Zaidi, S. M. J., & Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination, 281, 1–16. doi:10.1016/j.desal.2011.06.063
  • Mehdizadeh, S., Sadjad, S., Ahmadi, S. J., & Outokesh, M. (2014). Removal of heavy metals from aqueous solution using platinum nanopartcles/zeolite-4A. Journal of Environmental Health Science & Engineering, 12(1), 7.
  • McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., … Prud'homme, R. K. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 19(18), 4396–4404. doi:10.1021/cm0630800
  • McGovern, R. K., & Lienhard, V. J. H. (2014). On the potential of forward osmosis to energetically outperform reverse osmosis desalination. Journal of Membrane Science, 469, 245–250. doi:10.1016/j.memsci.2014.05.061
  • Mi, B. (2014). Materials science. Graphene oxide membranes for ionic and molecular sieving. Science (New York, N.Y.), 343(6172), 740–742. doi:10.1126/science.1250247
  • Misdan, N., Lau, W. J., & Ismail, A. F. (2012). Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane – current development, challenges and future prospects. Desalination, 287, 228–237. doi:10.1016/j.desal.2011.11.001
  • Mollahosseini, A., & Rahimpour, A. (2014). Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. Journal of Industrial and Engineering Chemistry, 20(4), 1261–1268. doi:10.1016/j.jiec.2013.07.002
  • Montgomery, M. A., & Elimelech, M. (2007). Water and sanitation in developing countries: Including health in the equation. Environmental Science & Technology, 41(1), 17–24. doi:10.1021/es072435t
  • Mudunkotuwa, I. A., Rupasinghe, T., Wu, C.-M., & Grassian, V. H. (2012). Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid. Langmuir: The ACS Journal of Surfaces and Colloids, 28(1), 396–403. doi:10.1021/la203542x
  • Muller, E. A. (2013). Purification of water through nanoporous carbon membranes: A molecular simulation viewpoint. Current Opinion in Chemical Engineering, 2, 223–228.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., … Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science (New York, N.Y.), 306(5696), 666–669. doi:10.1126/science.1102896
  • Mueller, N. C., van der Bruggen, B., Keuter, V., Luis, P., Melin, T., Pronk, W., … Nowack, B. (2012). Nanofiltration and nanostructured membranes—should they be considered nanotechnology or not? Journal of Hazardous Materials, 211–212, 275–280. doi:10.1016/j.jhazmat.2011.10.096
  • Nair, A. K., Isloor, A. M., Kumar, R., & Ismail, A. F. (2013). Antifouling and performance enhancement of poly-sulfone ultrafiltration membranes using CaCO3 nanoparticles. Desalination, 322, 69–75. doi:10.1016/j.desal.2013.04.031
  • Nair, R., Wu, H., Jayaram, P., Grigorieva, I., & Geim, A. (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science (New York, N.Y.), 335(6067), 442–444. doi:10.1126/science.1211694
  • Nicolaï, A., Sumpter, B. G., & Meunier, V. (2014). Tunable water desalination across Graphene oxide framework membranes. Physical Chemistry Chemical Physics: Pccp, 16(18), 8646–8654. doi:10.1039/c4cp01051e
  • Ouyang, G., Hussain, A., Li, J., & Li, D. (2015). Remarkable permeability enhancement of polyethersulfone (PES) ultrafiltration membrane by blending cobalt oxide/Graphene oxide nanocomposites. RSC Advances, 5(86), 70448–70460. doi:10.1039/C5RA11349K
  • Pandey, R. P., Shukla, G., Manohar, M., & Shahi, V. K. (2017). Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Advances in Colloid and Interface Science, 240, 15–30. doi:10.1016/j.cis.2016.12.003
  • Parfit, M., & Graves, W. (1993). Water: The power, promise, and turmoil of North America's fresh water. National Geographic Society, 4, 6–13.
  • Park, M. J., Phuntsho, S., He, T., Nisola, G. M., Tijing, L. D., Li, X.-M., … Shon, H. K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. Journal of Membrane Science, 493, 496–507. doi:10.1016/j.memsci.2015.06.053
  • Perreault, F., Tousley, M. E., & Elimelech, M. (2014). Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 1(1), 71–76. doi:10.1021/ez4001356
  • Perreault, F., Fonseca de Faria, A., & Elimelech, M. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861–5896. doi:10.1039/c5cs00021a
  • Pezeshk, N., Rana, D., Narbaitz, R. M., & Matsuura, T. (2012). Novel modified PVDF ultrafiltration flat-sheet membranes. Journal of Membrane Science, 389, 280–286. doi:10.1016/j.memsci.2011.10.039
  • Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5–25. doi:10.1016/j.polymer.2010.11.042
  • Pretti, C., Oliva, M., Di Pietro, R., Monni, G., Cevasco, G., Chiellini, F., … Chiappe, C. (2014). Ecotoxicity of pristine graphene to marine organisms. Ecotoxicology and Environmental Safety, 101, 138–145. doi:10.1016/j.ecoenv.2013.11.008
  • Prince, J. A., Bhuvana, S., Anbharasi, V., Ayyanar, N., Boodhoo, K. V. K., & Singh, G. (2016). Ultra-wetting graphene-based membranę. Journal of Membrane Science, 500, 76–85. doi:10.1016/j.memsci.2015.11.024
  • Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., & Karajeh, F. (2007). Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management, 87(1), 2–22. doi:10.1016/j.agwat.2006.03.018
  • Qiu, L., Zhang, X., Yang, W., Wang, Y., Simon, G. P., & Li, D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications (Cambridge, England), 47(20), 5810–5812. doi:10.1039/c1cc10720h
  • Robinson, J. T., Zalalutdinov, M., Baldwin, J. W., Snow, E. S., Wei, Z., Sheehan, P., & Houston, B. H. (2008). Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Letters, 8(10), 3441–3445. doi:10.1021/nl8023092
  • Russo, C. J., & Golovchenko, J. A. (2012). Atom-by-atom nucleation and growth of Graphene nanopores. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5953–5957. doi:10.1073/pnas.1119827109
  • Safarpour, M., Khataee, A., & Vatanpour, V. (2015). Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. Journal of Membrane Science, 489, 43–54. doi:10.1016/j.memsci.2015.04.010
  • Safarpour, M., Vatanpour, V., Khataee, A., & Esmaeili, M. (2015). Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separation and Purification Technology, 154, 96–107. doi:10.1016/j.seppur.2015.09.039
  • Schmidt, J., & Vogelsberger, W. (2009). Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 38(10), 1267–1282. doi:10.1007/s10953-009-9445-9
  • Scot, K., & Hughes, R. (1996). Industrial membrane separation technology. London: Blackie Academics & Professional.
  • Shao, L., Cheng, X., Wang, Z., Ma, J., & Guo, Z. (2014). Tuning the performance of polypyrrolebased solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. Journal of Membrane Science, 452, 82–89. doi:10.1016/j.memsci.2013.10.021
  • Sanchez, V. C., Jachak, A., Hurt, R. H., & Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chemical Research in Toxicology, 25(1), 15–34. doi:10.1021/tx200339h
  • Shen, Y.-X., Saboe, P. O., Sines, I. T., Erbakan, M., & Kumar, M. (2014). Biomimetic membranes: A review. Journal of Membrane Science, 454, 359–381. doi:10.1016/j.memsci.2013.12.019
  • Song, X., Wang, L., Tang, C. Y., Wang, Z., & Gao, C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination, 369, 1–9. doi:10.1016/j.desal.2015.04.020
  • Songa, N., Gao, X., Mac, Z., Wanga, X., Weia, Y., & Gao, C. (2018). A review of graphene-based eparation membrane: Materials, characteristics, preparation and applications. Desalination, 37, 59–57. doi:10.1016/j.desal.2018.02.024
  • Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J., & Livingston, A. G. (2013). High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 135(40), 15201–15208. doi:10.1021/ja407665w
  • Srivastava, V., Gusain, D., & Sharma, Y. C. (2015). Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 54(24), 6209–6233. doi:10.1021/acs.iecr.5b01610
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286. doi:10.1038/nature04969
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565. doi:10.1016/j.carbon.2007.02.034
  • Stankovich, S., Dikin, D. A., Compton, O. C., Dommett, G. H., Ruoff, R. S., & Nguyen, S. T. (2010). Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chemistry of Materials, 22(14), 4153–4157. doi:10.1021/cm100454g
  • Suk, M. E., & Aluru, N. R. (2010). Water transport through ultrathin graphene. The Journal of Physical Chemistry Letters, 1(10), 1590–1594. doi:10.1021/jz100240r
  • Sumisha, A., Arthanareeswaran, G., Ismail, A. F., Kumar, D. P., & Shankar, M. V. (2015). Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Advances, 5(49), 39464–39473. doi:10.1039/C5RA03520A
  • Sun, S., Wang, C., Chen, M., & Li, M. (2013). The mechanism for the stability of graphene oxide membranes in a sodium sulfate solution. Chemical Physics Letters. 561–562, 166–169. doi:10.1016/j.cplett.2013.01.024
  • Sun, C., Boutilier, M. S. H., Au, H., Poesio, P., Bai, B., Karnik, R., & Hadjiconstantinou, N. G. (2014). Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir, 30(2), 675–682. doi:10.1021/la403969g
  • Sun, P., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., … Zhu, H. (2013). Selective ion penetration of graphene oxide membranes. ACS Nano, 7(1), 428–437. doi:10.1021/nn304471w
  • Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., & Wang, S.-G. (2015). Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53–59. doi:10.1016/j.cej.2015.06.059
  • Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., & Mahurin, S. M. (2015). Water desalination using nanoporous single-layer Graphene. Nature Nanotechnology, 10(5), 459–464. doi:10.1038/nnano.2015.37
  • Teli, S. B., Molina, S., Calvo, E. G., Lozano, A. E., & de Abajo, J. (2012). Preparation, characterization and antifouling property of polyethersulfone–PANI/PMA ultrafiltration membranes. Desalination, 299, 113–122. doi:10.1016/j.desal.2012.05.031
  • Tian, M., Wang, R., Goh, K., Liao, Y., & Fane, A. G. (2015). Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. Journal of Membrane Science, 486, 151–160. doi:10.1016/j.memsci.2015.03.054
  • Tian, M., Wang, Y.-N., & Wang, R. (2015). Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 370, 79–86. doi:10.1016/j.desal.2015.05.016
  • Tong, L. X., Yan, M. X., Li, W. X., Xuan, M. L., Bi, G. W., Qiang, M. Y., … Feng, L. X. (2014). Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Biomedical and Environmental Sciences, 27, 676–683.
  • Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., … Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594–601. doi:10.1038/nnano.2013.125
  • van der Marel, P., Zwijnenburg, A., Kemperman, A., Wessling, M., Temmink, H., & van der Meer, W. (2010). Influence of membrane properties on fouling in submerged membrane bioreactors. Journal of Membrane Science, 348(1–2), 66–74. doi:10.1016/j.memsci.2009.10.054
  • Vatanpour, V., Shockravi, A., Zarrabi, H., Nikjavan, Z., & Javadi, A. (2015). Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. Journal of Industrial and Engineering Chemistry, 30, 342–352. doi:10.1016/j.jiec.2015.06.004
  • Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., & Yao, J. (2009). Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47(14), 3242–3246. doi:10.1016/j.carbon.2009.07.040
  • Wang, E. N., & Karnik, R. (2012). Water desalination: Graphene cleans up water. Nature Nanotechnology, 7(9), 552–554. doi:10.1038/nnano.2012.153
  • Wang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine—thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745–23755. doi:10.1039/c2jm35340g
  • Wang, N., Ji, S., Zhang, G., Li, J., & Wang, L. (2012). Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chemical Engineering Journal, 213, 318–329. doi:10.1016/j.cej.2012.09.080
  • Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50–54. doi:10.1016/j.desal.2012.05.015
  • Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., … Ren, M. (2013). Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Advances in Colloid and Interface Science, 195–196, 19–40. doi:10.1016/j.cis.2013.03.009
  • Wang, H., Shi, L., Yan, T., Zhang, J., & Zhong, Q. (2014). Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 13, 4739–4750. doi:10.1039/C3TA15152B
  • Wang, J., Gao, X., Wang, J., Wei, Y., Li, Z., & Gao, C. (2015). O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties. ACS Applied Materials & Interfaces, 7(7), 4381–4389. doi:10.1021/am508903g
  • Wang, J., Zhang, P., Liang, B., Liu, Y., Xu, T., Wang, L., … Pan, K. (2016). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 8(9), 6211–6218. doi:10.1021/acsami.5b12723
  • Wang, J., Zhao, C., Wang, T., Wu, Z., Li, X., & Li, J. (2016). Graphene oxide polypiperazineamide nanofiltration membrane for improving flux and anti-fouling in water purification. RSC Advances, 6(85), 82174–82185. doi:10.1039/C6RA17284A
  • Wang, J., Dou, W., Zhang, X., Han, W., Mu, X., Zhang, Y., … Wang, X. (2017). Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochimica Acta., 224, 260–268. doi:10.1016/j.electacta.2016.12.073
  • Wei, N., Peng, X., & Xu, Z. (2014). Understanding water permeation in graphene oxide membranes. ACS Applied Materials & Interfaces, 6(8), 5877–−5883. doi:10.1021/am500777b
  • Wei, N., Lv, C., & Xu, Z. (2014). Wetting of graphene oxide: A molecular dynamics study. Langmuir: The ACS Journal of Surfaces and Colloids, 30(12), 3572–3578. doi:10.1021/la500513x
  • Wei, Y., Zhang, Y., Gao, X., Yuan, Y., Su, B., & Gao, C. (2016). Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon, 108, 568–575. doi:10.1016/j.carbon.2016.07.056
  • Werber, J. R., Osuji, C. O., & Elimelech, M. (2016a). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1, 16018.
  • Werber, J. R., Deshmukh, A., & Elimelech, M. (2016). The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environmental Science & Technology Letters, 3(4), 112–120. doi:10.1021/acs.estlett.6b00050
  • Wu, H., Tang, B., & Wu, P. (2013). Optimizing polyamide thin film composite membranę covalently bonded with modified mesoporous silica nanoparticles. Journal of Membrane Science, 428, 341–348. doi:10.1016/j.memsci.2012.10.053
  • Wu, J., Yu, C., & Li, Q. (2015). Regenerable antimicrobial activity in polyamide thin film nanocomposite membranes. Journal of Membrane Science, 476, 119–127. doi:10.1016/j.memsci.2014.11.030
  • Wu, Q., Chen, G.-E., Sun, W.-G., Xu, Z.-L., Kong, Y.-F., Zheng, X.-P., & Xu, S.-J. (2017). Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance. Chemical Engineering Journal, 313, 450–460. doi:10.1016/j.cej.2016.12.079
  • Xia, S., & Ni, M. (2015). Preparation of poly(vinylidene fluoride) membran es with graphene oxide addition for natural organic matter removal. Journal of Membrane Science, 473, 54–62. doi:10.1016/j.memsci.2014.09.018
  • Xie, G., Yang, R., Chen, P., Zhang, J., Tian, X., Wu, S., Zhao, J., … Zhang, G. (2014). A general route towards defect and pore engineering in graphene. Small, 10(11), 2280–2284. doi:10.1002/smll.201303671
  • Xu, C., Cui, A., Xu, Y., & Fu, X. (2013). Grapheneoxide–TiO2 composite filtration membranes and their potential application fo water purification. Carbon, 62, 465–471. doi:10.1016/j.carbon.2013.06.035
  • Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., … Qian, X. (2014). Organosilane functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 458, 1–13. doi:10.1016/j.memsci.2014.01.050
  • Xu, J., Zhang, L., Gao, X., Bie, H., Fu, Y., & Gao, C. (2015). Constructing antimicrobial membranę surfaces with polycation–copper(II) complex assembly for efficient seawater softening treatment. Journal of Membrane Science, 491, 28–36. doi:10.1016/j.memsci.2015.05.017
  • Xu, Y., Gao, X., Wang, Q., Wang, X., Ji, Z., & Gao, C. (2016). Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment. RSC Advances, 6(86), 82669–82675. doi:10.1039/C6RA16896E
  • Xu, K., Feng, B., Zhou, C., & Huang, A. (2016). Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chemical Engineering Sciences., 146, 159–165. doi:10.1016/j.ces.2016.03.003
  • Xu, W. L., Fang, C., Zhou, F., Song, Z., Liu, Q., Qiao, R., & Yu, M. (2017). Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Letters, 17(5), 2928–2933. doi:10.1021/acs.nanolett.7b00148
  • Xue, S.-M., Xu, Z.-L., Tang, Y.-J., & Ji, C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Applied Materials &Amp; Interfaces, 8(29), 19135–19144. doi:10.1021/acsami.6b05545
  • Yang, R., Xu, J., Ozaydin-Ince, G., Wong, S. Y., & Gleason, K. K. (2011). Surface-Tethered Zwitter ionic Ultrathin Antifouling Coatings on reverse osmosis membranes by initiated chemical vapor deposition. Chemistry of Materials, 23(5), 1263–1272. doi:10.1021/cm1031392
  • Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., … Zhang, G. (2010). An anisotropic etching effect in the graphene basal plane. Advanced Materials (Deerfield Beach, FL), 22(36), 4014–4019. doi:10.1002/adma.201000618
  • Yang, Z., Ma, X.-H., & Tang, C. Y. (2018). Recent development of novel membranes for desalination. Desalination, 434, 37–59. doi:10.1016/j.desal.2017.11.046
  • Yang, Z., Wu, Y., Wang, J., Cao, B., & Tang, C. Y. (2016). In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environmental Science & Technology, 50(17), 9543–9550. doi:10.1021/acs.est.6b01867
  • Yang, Z., Yin, J., & Deng, B. (2016). Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. AIMS Environmental Science, 3(2), 185–198. doi:10.3934/environsci.2016.2.185
  • Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H., & Huang, J. (2014). On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 7(2), 166–170. doi:10.1038/nchem.2145
  • Yin, J., & Deng, B. (2015). Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 479, 256–275. doi:10.1016/j.memsci.2014.11.019
  • Yin, J., Kim, E.-S., Yang, J., & Deng, B. (2012). Fabrication of a novel thin-film nanocomposite(TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 423, 238–246. doi:10.1016/j.memsci.2012.08.020
  • Yin, J., Zhu, G., & Deng, B. (2013). Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science, 437, 237–248. doi:10.1016/j.memsci.2013.03.021
  • Yin, J., Zhu, G., & Deng, B. (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93–101. doi:10.1016/j.desal.2015.11.001
  • Yoo, B. M., Shin, H. J., Yoon, H. W., & Park, H. B. (2014). Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 131, 39628.
  • Yu, C., Zhang, B., Yan, F., Zhao, J., Li, J., Li, L., & Li, J. (2016). Engineering nano-porous graphene oxide by hydroxyl radicals. Carbon, 105, 291–296. doi:10.1016/j.carbon.2016.04.050
  • Yu, L., Zhang, Y., Zhang, B., Liu, J., Zhang, H., & Song, C. (2013). Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. Journal of Membrane Science, 447, 452–462. doi:10.1016/j.memsci.2013.07.042
  • Yu, S., Zheng, Y., Zhou, Q., Shuai, S., Lü, Z., & Gao, C. (2012). Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration. Desalination, 298, 49–58. doi:10.1016/j.desal.2012.04.027
  • Yuan, Y., Gao, X., Wei, Y., Wang, X., Wang, J., Zhang, Y., & Gao, C. (2017). Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination, 405, 29–39. doi:10.1016/j.desal.2016.11.024
  • Zhang, C., Hu, Z., & Deng, B. (2016). Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Research, 88, 403–427. doi:10.1016/j.watres.2015.10.025
  • Zhang, H., Peng, C., Yang, J., Lv, M., Liu, R., He, D., … Huang, Q. (2013). Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Applied Materials & Interfaces, 5(5), 1761–1767. doi:10.1021/am303005j
  • Zhang, J., Xu, Z., Shan, M., Zhou, B., Li, Y., Li, B., … Qian, X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 448, 81–92. doi:10.1016/j.memsci.2013.07.064
  • Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438(7065), 201–204. doi:10.1038/nature04235
  • Zhanga, L., Shi, G.-Z., Qiu, S., Cheng, L.-H., & Chen, H.-L. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalination and Water Treatment, 34(1–3), 19–24. doi:10.5004/dwt.2011.2801
  • Zhao, C., Xu, X., Chen, J., & Yang, F. (2013). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Journal of Environmental Chemical Engineering, 1(3), 349–354. doi:10.1016/j.jece.2013.05.014
  • Zhao, H., Wu, L., Zhou, Z., Zhang, L., & Chen, H. (2013). Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide. Physical Chemistry Chemical Physics, 15(23), 9084–9092. doi:10.1039/c3cp50955a
  • Zhao, H., Qiu, S., Wu, L., Zhang, L., Chen, H., & Gao, C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. Journal of Membrane Science, 450, 249–256. doi:10.1016/j.memsci.2013.09.014
  • Zhao, C., Xu, X., Chen, J., & Yang, F. (2014). Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination, 334(1), 17–22. doi:10.1016/j.desal.2013.07.011
  • Zhao, J., Zhu, Y., Pan, F., He, G., Fang, C., Cao, K., … Jiang, Z. (2015). Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. Journal of Membrane Science, 487, 162–172. doi:10.1016/j.memsci.2015.03.073
  • Zheng, S., Tu, Q., Urban, J. J., Li, S., & Mi, B. (2017). Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano, 11(6), 6440–6450. doi:10.1021/acsnano.7b02999
  • Zhou, Y., Yu, S., Gao, C., & Feng, X. (2009). Surface modification of thin film composite polyamide membranes by electrostatic self-deposition of polycations for improved fouling resistance. Separation and Purification Technology, 66(2), 287–294. doi:10.1016/j.seppur.2008.12.021
  • Zhou, Y., Yu, S., Liu, M., Chen, H., & Gao, C. (2006). Effect of mixed crosslinking agents on performance of thin-film-composite membranes. Desalination, 192(1–3), 182–189. doi:10.1016/j.desal.2005.05.029
  • Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301. doi:10.1016/j.memsci.2013.10.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.