885
Views
85
CrossRef citations to date
0
Altmetric
Original Articles

Trace elements-induced phytohormesis: A critical review and mechanistic interpretation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1984-2015 | Published online: 15 Nov 2019

References

  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., … Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15, 1–45.
  • Agathokleous, E. (2018). Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety. Ecotoxicology and Environmental Safety, 148, 1042–1053. doi:10.1016/j.ecoenv.2017.12.003
  • Agathokleous, E., Kitao, M., & Calabrese, E. J. (2018a). Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective. Environment International, 120, 489–495. doi:10.1016/j.envint.2018.08.035
  • Agathokleous, E., Kitao, M., & Calabrese, E. J. (2018b). The rare earth element (REE) lanthanum (La) induces hormesis in plants. Environmental Pollution, 238, 1044–1047.
  • Aibibu, N., Liu, Y., Zeng, G., Wang, X., Chen, B., Song, H., & Xu, L. (2010). Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology, 101(16), 6297–6303. doi:10.1016/j.biortech.2010.03.028
  • Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (pp. 195–209). Dordrecht: Springer Netherlands.
  • Antoniadis, V., Golia, E. E., Liu, Y.-T., Wang, S.-L., Shaheen, S. M., & Rinklebe, J. (2019). Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International, 124, 79–88. doi:10.1016/j.envint.2018.12.053
  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., … Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? A review. Environment International, 127, 819–847. doi:10.1016/j.envint.2019.03.039
  • Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F., & Leymarie, J. (2011). Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell & Environment, 34, 980–993. doi:10.1111/j.1365-3040.2011.02298.x
  • Bakhat, H. F., Zia, Z., Fahad, S., Abbas, S., Hammad, H. M., Shahzad, A. N., … Shahid, M. (2017). Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environmental Science and Pollution Research, 24(10), 9142–9158. doi:10.1007/s11356-017-8462-2
  • Barba‐Espin, G., Diaz‐Vivancos, P., Clemente‐Moreno, M., Albacete, A., Faize, L., … Hernández, J. (2010). Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant, Cell & Environment, 33, 981–994. doi:10.1111/j.1365-3040.2010.02120.x
  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. doi:10.1093/jxb/ert375
  • Beckers, F., Awad, Y. M., Beiyuan, J., Abrigata, J., Mothes, S., Tsang, D. C., … Rinklebe, J. (2019). Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environment International, 127, 276–290. doi:10.1016/j.envint.2019.03.040
  • Bethke, P. C., Fath, A., Spiegel, Y. N., Hwang, Y-S., & Jones, R. L. (2002). Abscisic acid, gibberellin and cell viability in cereal aleurone. Euphytica, 126(1), 3–11. doi:10.1023/A:1019659319630
  • Bogatek, R., & Gniazdowska, A. (2007). ROS and phytohormons in plant-plant allelopathic interaction. Plant Signaling & Behavior, 2, 317–318. doi:10.4161/psb.2.4.4116
  • Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A., & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40(1 suppl 1), 373–386. doi:10.1590/1678-4685-gmb-2016-0087
  • Calabrese, E. J. (2013). Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features. Environmental Pollution, 182, 452–460. doi:10.1016/j.envpol.2013.07.046
  • Calabrese, E. J., & Blain, R. (2005). The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: An overview. Toxicology and Applied Pharmacology, 202(3), 289–301. doi:10.1016/j.taap.2004.06.023
  • Calabrese, E. J., & Blain, R. B. (2009). Hormesis and plant biology. Environmental Pollution, 157(1), 42–48. doi:10.1016/j.envpol.2008.07.028
  • Calabrese, E. J., & Mattson, M. P. (2011). Hormesis provides a generalized quantitative estimate of biological plasticity. Journal of Cell Communication and Signaling, 5(1), 25–38. doi:10.1007/s12079-011-0119-1
  • Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A. H., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(21), 1937–1958. doi:10.1080/10643389.2019.1598240
  • Chen, B.-C., Lai, H.-Y., & Juang, K.-W. (2012). Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety, 80, 393–400. doi:10.1016/j.ecoenv.2012.04.011
  • Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867. doi:10.1111/tpj.13299
  • Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9(3), 322–330. doi:10.1016/j.pbi.2006.03.015
  • de la Rosa, G., Peralta-Videa, J. R., Montes, M., Parsons, J. G., Cano-Aguilera, I., & Gardea-Torresdey, J. L. (2004). Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55(9), 1159–1168. doi:10.1016/j.chemosphere.2004.01.028
  • de Sousa Leite, T., & Monteiro, F. A. (2019). Partial replacement of nitrate by ammonium increases photosynthesis and reduces oxidative stress in tanzania guinea grass exposed to cadmium. Ecotoxicology and Environmental Safety, 174, 592–600. doi:10.1016/j.ecoenv.2019.02.090
  • Del-Saz, N. F., Ribas-Carbo, M., McDonald, A. E., Lambers, H., Fernie, A. R., & Florez-Sarasa, I. (2018). An in vivo perspective of the role (s) of the alternative oxidase pathway. Trends in Plant Science, 23(3), 206–219. doi:10.1016/j.tplants.2017.11.006
  • Dinh, Q. T., Wang, M., Tran, T. A. T., Zhou, F., Wang, D., Zhai, H., … Liang, D. (2019). Bioavailability of selenium in soil-plant system and a regulatory approach. Critical Reviews in Environmental Science and Technology, 49(6), 443–517. doi:10.1080/10643389.2018.1550987
  • do Nascimento, J. L., de Almeida, A.-A. F., Barroso, J. P., Mangabeira, P. A., Ahnert, D., Sousa, A. G., … Baligar, V. C. (2018). Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (III) in soil. Ecotoxicology and Environmental Safety, 159, 272–283. doi:10.1016/j.ecoenv.2018.04.058
  • Durenne, B., Druart, P., Blondel, A., & Fauconnier, M.-L. (2018). How cadmium affects the fitness and the glucosinolate content of oilseed rape plantlets. Environmental and Experimental Botany, 155, 185–194. doi:10.1016/j.envexpbot.2018.06.008
  • Eekhout, T., Larsen, P., & De Veylder, L. (2017). Modification of DNA checkpoints to confer aluminum tolerance. Trends in Plant Science, 22(2), 102–105. doi:10.1016/j.tplants.2016.12.003
  • Erofeeva, E. A. (2014). Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses. Dose-Response, 12(1), 121–135. doi:10.2203/dose-response.13-017.Erofeeva
  • Gapper, C., & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141(2), 341–345. doi:10.1104/pp.106.079079
  • Gawrońska, H., Przybysz, A., Szalacha, E., Pawlak, K., Brama, K., Miszczak, A., … Gawroński, S. W. (2018). Platinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicology and Environmental Safety, 147, 982–989. doi:10.1016/j.ecoenv.2017.09.065
  • Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., … de Moraes Flores, E. M. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology and Biochemistry, 47(9), 814–821. doi:10.1016/j.plaphy.2009.04.002
  • Han, X., Zeng, H., Bartocci, P., Fantozzi, F., & Yan, Y. (2018). Phytohormones and effects on growth and metabolites of microalgae: A review. Fermentation, 4(2), 25. doi:10.3390/fermentation4020025
  • Hashmi, M. Z., Shen, H., Zhu, S., Yu, C., & Shen, C. (2014). Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: A review. Environment International, 64, 28–39.
  • Iavicoli, I., Fontana, L., Leso, V., & Calabrese, E. J. (2014). Hormetic dose–responses in nanotechnology studies. Science of the Total Environment, 487, 361–374. doi:10.1016/j.scitotenv.2014.04.023
  • Ishibashi, Y., Aoki, N., Kasa, S., Sakamoto, M., Kai, K., Tomokiyo, R., … Iwaya-Inoue, M. (2017). The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Frontiers in Plant Science, 8, 275. doi:10.3389/fpls.2017.00275
  • Jalmi, S. K., Bhagat, P. K., Verma, D., Noryang, S., Tayyeba, S., Singh, K., … Sinha, A. K. (2018). Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 9, 12. doi:10.3389/fpls.2018.00012
  • Jia, L., He, X., Chen, W., Liu, Z., Huang, Y., & Yu, S. (2013). Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb. Ecotoxicology (London, England), 22(3), 476–485. doi:10.1007/s10646-013-1041-5
  • Jia, L., Liu, Z., Chen, W., & He, X. (2012). Stimulative effect induced by low-concentration Cadmium in Lonicera japonica Thunb. African Journal of Microbiology Research, 6, 826–833.
  • Jia, L., Liu, Z., Chen, W., Ye, Y., Yu, S., & He, X. (2015). Hormesis effects induced by cadmium on growth and photosynthetic performance in a Hyperaccumulator, Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34(1), 13–21. doi:10.1007/s00344-014-9433-1
  • Kang, H., Park, S. J., & Kwak, K. J. (2013). Plant RNA chaperones in stress response. Trends in Plant Science, 18(2), 100–106. doi:10.1016/j.tplants.2012.08.004
  • Khalid, S., Shahid, M., Natasha, I. B., Sarwar, T., Shah, A. H., & Niazi, N. K. (2018). A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. International Journal of Environmental Research and Public Health, 15, 1–36.
  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. doi:10.1016/j.gexplo.2016.11.021
  • Kobayashi, T., Itai, R. N., Aung, M. S., Senoura, T., Nakanishi, H., & Nishizawa, N. K. (2012). The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. The Plant Journal, 69(1), 81–91. doi:10.1111/j.1365-313X.2011.04772.x
  • Koprivova, A., & Kopriva, S. (2016). Sulfation pathways in plants. Chemico-Biological Interactions, 259, 23–30. doi:10.1016/j.cbi.2016.05.021
  • Kumarathilaka, P., Seneweera, S., Ok, Y. S., Meharg, A. A., & Bundschuh, J. (2019). Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach – A critical review. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2019.1618691
  • Kwak, J. M., Nguyen, V., & Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiology, 141(2), 323–329. doi:10.1104/pp.106.079004
  • Leskova, A., Giehl, R. F. H., Hartmann, A., Fargasová, A., & von Wirén, N. (2017). Heavy metals induce iron-deficiency responses at different hierarchic and regulatory levels. Plant Physiology, 174, 1648–1668. doi:10.1104/pp.16.01916
  • Liu, Z., Chen, W., & He, X. (2011). Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.). Journal of Medicinal Plants Research, 5, 1411–1417.
  • Liu, Z., Chen, W., He, X., Jia, L., Huang, Y., Zhang, Y., & Yu, S. (2013). Cadmium‐Induced Physiological Response in Lonicera japonica Thunb. CLEAN - Soil, Air, Water, 41(5), 478–484. doi:10.1002/clen.201200183
  • Liu, Z., Chen, W., He, X., Jia, L., Yu, S., & Zhao, M. (2015). Hormetic responses of Lonicera japonica Thunb. to cadmium stress. Dose-Response, 13. doi:10.2203/dose-response.14-033.He
  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579. doi:10.1038/35054664
  • Marino, D., Dunand, C., Puppo, A., & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends in Plant Science, 17(1), 9–15. doi:10.1016/j.tplants.2011.10.001
  • Moreno-Brush, M., McLagan, D. S., & Biester, H. (2019). Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls. A critical review. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2019.1629793
  • Mottier, A., Mouchet, F., Pinelli, E., Gauthier, L., & Flahaut, E. (2017). Environmental impact of engineered carbon nanoparticles: From releases to effects on the aquatic biota. Current Opinion in Biotechnology, 46, 1–6. doi:10.1016/j.copbio.2016.11.024
  • Natasha, Shahid, M., Dumat, C., Khalid, S., Rabbani, F., Farooq, A. B. U., … Niazi, N. K. (2019). Foliar uptake of arsenic nanoparticles by spinach: An assessment of physiological and human health risk implications. Environmental Science and Pollution Research, 26, 20121–20131.
  • Natasha, Shahid, M., & Khalid, S. (2019). Foliar application of lead and arsenic solutions to Spinacia oleracea: Biophysiochemical analysis and risk assessment. Environmental Science and Pollution Research. doi:10.1007/s11356-019-06519-7
  • Natasha, Shahid, M., Khalid, S., Dumat, C., Pierart, A., & Niazi, N. K. (2019). Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Applied Geochemistry, 106, 45–59.
  • Natasha, Shahid, M., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., & Rashid, M. I. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915–934.
  • O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., … Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761. doi:10.1016/j.envint.2019.03.019
  • Oliveira, J., Pereira, M., Duarte, V., Corrêa, F., Castro, E., & Pereira, F. (2018). Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Brazilian Journal of Biology, 78(3), 509–516. doi:10.1590/1519-6984.171961
  • Pan, X., Zhang, D., Chen, X., Bao, A., & Li, L. (2011). Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water, Air, & Soil Pollution, 215, 517–523.
  • Patnaik, A. R., Achary, V. M. M., & Panda, B. B. (2013). Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regulation, 71(2), 157–170. doi:10.1007/s10725-013-9816-5
  • Pinto, A., Mota, A., De Varennes, A., & Pinto, F. (2004). Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326(1–3), 239–247. doi:10.1016/j.scitotenv.2004.01.004
  • Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., & Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry, 52, 52–65. doi:10.1016/j.plaphy.2011.11.009
  • Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., & Barceló, J. (2013). Do toxic ions induce hormesis in plants? Plant Science, 212, 15–25. doi:10.1016/j.plantsci.2013.07.012
  • Pourrut, B., Perchet, G., Silvestre, J., Cecchi, M., Guiresse, M., & Pinelli, E. (2008). Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. Journal of Plant Physiology, 165(6), 571–579. doi:10.1016/j.jplph.2007.07.016
  • Pourrut, B., Shahid, M., Douay, F., Dumat, C., & Pinelli, E. (2013). Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants Heavy metal stress in plants. In D. Gupta, F. Corpas, & J. Palma (Eds.), Heavy metal stress in plants (pp. 121–147). Berlin, Heidelberg: Springer.
  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. In D. M. Whitacre (Ed.) Reviews of environmental contamination and toxicology (Vol. 213, pp. 113–136). New York, NY: Springer New York.
  • Prasad, A., Singh, A. K., Chand, S., Chanotiya, C., & Patra, D. (2010). Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Communications in Soil Science and Plant Analysis, 41(18), 2170–2186. doi:10.1080/00103624.2010.504798
  • Rafiq, M., Shahid, M., Shamshad, S., Khalid, S., Niazi, N. K., Abbas, G., … Murtaza, B. (2018). A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. Journal of Soils and Sediments, 18(6), 2271–2281. doi:10.1007/s11368-017-1693-5
  • Rathinasabapathi, B., Ma, L. Q., & Srivastava, M. (2006). Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. Floriculture, Ornamental and Plant Biotechnology, 3, 304–311.
  • Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Del Campo, F. F., & Hernández, L. E. (2006). Stress responses of Zea mays to cadmium and mercury. Plant and Soil, 279(1–2), 41–50. doi:10.1007/s11104-005-3900-1
  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. doi:10.1016/j.envint.2019.02.011
  • Romero-Puertas, M., Palma, J., Gómez, M., Del Rio, L., & Sandalio, L. (2002). Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment, 25, 677–686. doi:10.1046/j.1365-3040.2002.00850.x
  • Seth, C. S., Chaturvedi, P. K., & Misra, V. (2007). Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environmental Toxicology, 22(6), 539–549. doi:10.1002/tox.20292
  • Shah, A. H., Shahid, M., Khalid, S., Shabbir, Z., Bakhat, H. F., Murtaza, B., … Nasim, W. (2019). Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health. doi:10.1007/s10653-019-00306-6
  • Shaheen, S. M., Abdelrazek, M. A., Elthoth, M., Moghanm, F. S., Mohamed, R., Hamza, A., … Rinklebe, J. (2019). Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Science of the Total Environment, 649, 1237–1249. doi:10.1016/j.scitotenv.2018.08.359
  • Shahid, M. (2017). Biogeochemical behavior of heavy metals in soil-plant system (pp. 1–196). Islamabad, Pakistan: Higher Education Commission of Pakistan.
  • Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. (2017). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 241, 73–137.
  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58. doi:10.1016/j.jhazmat.2016.11.063
  • Shahid, M., Dumat, C., Pourrut, B., Sabir, M., & Pinelli, E. (2014). Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. Journal of Geochemical Exploration, 144, 290–297. doi:10.1016/j.gexplo.2014.01.003
  • Shahid, M., Dumat, C., Pourrut, B., Silvestre, J., Laplanche, C., & Pinelli, E. (2014). Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. Journal of Soils and Sediments, 14(4), 835–843. doi:10.1007/s11368-013-0724-0
  • Shahid, M., Dumat, C., Silvestre, J., & Pinelli, E. (2012). Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biology and Fertility of Soils, 48(6), 689–697. doi:10.1007/s00374-012-0662-9
  • Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of zirconium in the soil–plant system: Plant uptake and phytotoxicity. Reviews of Environmental Contamination and Toxicology, 221(221), 107–127.
  • Shahid, M., Khalid, M., Dumat, C., Khalid, S., Niazi, N. K., Imran, M., … Tabassum, R. A. (2018). Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health, 10(4), 229–239. doi:10.1007/s12403-017-0257-7
  • Shahid, M., Natasha, Dumat, C., Niazi, N., Xiong, T., Farooq, A., & Khalid, S. (2020). Ecotoxicology of heavy metal(loid) enriched particulate matter: Foliar accumulation by plants and health impacts. Reviews of Environmental Contamination and Toxicology.
  • Shahid, M., Niazi, N. K., Dumat, C., Naidu, R., Khalid, S., Rahman, M. M., & Bibi, I. (2018). A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution, 242, 307–319. doi:10.1016/j.envpol.2018.06.083
  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219, 1–12. doi:10.1016/j.jhazmat.2012.01.060
  • Shahid, M., Pinelli, E., & Dumat, C. (2018). Tracing trends in plant physiology and biochemistry: Need of databases from genetic to kingdom level. Plant Physiology and Biochemistry, 127, 630–635. doi:10.1016/j.plaphy.2018.04.030
  • Shahid, M., Pinelli, E., Pourrut, B., & Dumat, C. (2014). Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. Journal of Geochemical Exploration, 144, 282–289. doi:10.1016/j.gexplo.2014.01.008
  • Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., & Dumat, C. (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety , 74(1), 78–84. doi:10.1016/j.ecoenv.2010.08.037
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1–44.
  • Shahid, M., Rafiq, M., Niazi, N. K., Dumat, C., Shamshad, S., Khalid, S., & Bibi, I. (2017). Arsenic accumulation and physiological attributes of spinach in the presence of amendments: An implication to reduce health risk. Environmental Science and Pollution Research, 24(19), 16097–16106. doi:10.1007/s11356-017-9230-z
  • Shahid, M., Shamshad, S., Farooq, A. B. U., Rafiq, M., Khalid, S., Dumat, C., … Niazi, N. K. (2019). Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: A multivariate analysis. Environmental Science and Pollution Research, 26(12), 11579–11590. doi:10.1007/s11356-018-2689-4
  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., … Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. doi:10.1016/j.chemosphere.2017.03.074
  • Shamshad, S., Shahid, M., Dumat, C., Rafiq, M., Khalid, S., Sabir, M., … Murtaza, B. (2019). A multivariate analysis of health risk assessment, phytoremediation potential, and biochemical attributes of Spinacia oleracea exposed to cadmium in the presence of organic amendments under hydroponic conditions. International Journal of Phytoremediation, 21(5), 461–470. doi:10.1080/15226514.2018.1540539
  • Shamshad, S., Shahid, M., Rafiq, M., Khalid, S., Dumat, C., Sabir, M., … Shah, N. S. (2018). Effect of organic amendments on cadmium stress to pea: A multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicology and Environmental Safety, 151, 91–97. doi:10.1016/j.ecoenv.2018.01.002
  • Shamsi, I. H., Ali, E., Jiang, L., Liu, W., Sun, C., Jin, C., & Lin, X. (2013). Plant cell signaling in metal stress. Stress Signaling in Plants: Genomics and Proteomics Perspective, 1, 169–190.
  • Silva, S., Silva, P., Oliveira, H., Gaivão, I., Matos, M., Pinto-Carnide, O., & Santos, C. (2017). Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiology and Biochemistry, 112, 109–116. doi:10.1016/j.plaphy.2016.12.026
  • Singh, N., Ma, L. Q., Vu, J. C., & Raj, A. (2009). Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environmental Pollution, 157(8–9), 2300–2305. doi:10.1016/j.envpol.2009.03.036
  • Soliman, H. A. M., Hamed, M., Lee, J.-S., & Sayed, A. E.-D. H. (2019). Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus. Environmental Pollution, 247, 678–684. doi:10.1016/j.envpol.2019.01.074
  • Srivastava, M., Ma, L. Q., & Santos, J. A. G. (2006). Three new arsenic hyperaccumulating ferns. Science of the Total Environment, 364(1–3), 24–31. doi:10.1016/j.scitotenv.2005.11.002
  • Tabassum, R. A., Shahid, M., Dumat, C., Niazi, N. K., Khalid, S., Shah, N. S., … Khalid, S. (2019). Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: Effect of sampling area, depth, and source. Environmental Science and Pollution Research, 26(20), 20018–20029.
  • Tabassum, R. A., Shahid, M., Niazi, N. K., Dumat, C., Zhang, Y., Imran, M., … Khalid, S. (2019). Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: A column-scale investigation. International Journal of Phytoremediation, 21(6), 509–518.
  • Tamaoki, M. (2008). The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signaling & Behavior, 3, 166–174. doi:10.4161/psb.3.3.5538
  • Tang, Y.-T., Qiu, R.-L., Zeng, X.-W., Ying, R.-R., Yu, F.-M., & Zhou, X.-Y. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 66(1), 126–134. doi:10.1016/j.envexpbot.2008.12.016
  • Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science, 9, 452. doi:10.3389/fpls.2018.00452
  • Tu, C., & Ma, L. Q. (2003). Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant and Soil, 249(2), 373–382.
  • UdDin, I., Bano, A., & Masood, S. (2015). Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicology and Environmental Safety, 113, 271–278. doi:10.1016/j.ecoenv.2014.12.014
  • Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. doi:10.1186/s12870-016-0771-y
  • Wang, C.-R., Tian, Y., Wang, X.-R., Yu, H.-X., Lu, X.-W., Wang, C., & Wang, H. (2010). Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere, 80(9), 965–971. doi:10.1016/j.chemosphere.2010.05.049
  • Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162–176. doi:10.1016/j.cj.2016.01.010
  • Wu, M., Luo, Q., Liu, S., Zhao, Y., Long, Y., & Pan, Y. (2018). Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicology and Environmental Safety, 162, 35–41. doi:10.1016/j.ecoenv.2018.06.049
  • Xia, S., Song, Z., Jeyakumar, P., Shaheen, S. M., Rinklebe, J., Ok, Y. S., … Wang, H. (2019). A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Critical Reviews in Environmental Science and Technology, 49(12), 1027–1078. doi:10.1080/10643389.2018.1564526
  • Xia, X.-J., Zhou, Y.-H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J.-Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66(10), 2839–2856. doi:10.1093/jxb/erv089
  • Xie, L., Hao, P., Cheng, Y., Ahmed, I. M., & Cao, F. (2018). Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 162, 71–76. doi:10.1016/j.ecoenv.2018.06.072
  • Xiong, T., Dumat, C., Pierart, A., Shahid, M., Kang, Y., Li, N., … Laplanche, C. (2016). Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: Field study of soil–plant–atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health, 38(6), 1283–1301. doi:10.1007/s10653-016-9796-2
  • Xiong, T., Zhang, T., Dumat, C., Sobanska, S., Dappe, V., Shahid, M., … Li, S. (2019). Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environmental Science and Pollution Research, 26(20), 20064–20078. doi:10.1007/s11356-018-3084-x
  • Yan, L., Xu, X., & Xia, J. (2019). Different impacts of external ammonium and nitrate addition on plant growth in terrestrial ecosystems: A meta-analysis. Science of the Total Environment, 686, 1010–1018. doi:10.1016/j.scitotenv.2019.05.448
  • Yang, S., Yu, Q., Zhang, Y., Jia, Y., Wan, S., Kong, X., & Ding, Z. (2018). ROS: The Fine-Tuner of Plant Stem Cell Fate. Trends in Plant Science, 23(10), 850. doi:10.1016/j.tplants.2018.07.010
  • Yang, S., Zu, Y., Li, B., Bi, Y., Jia, L., He, Y., & Li, Y. (2019). Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere, 220, 69–76. doi:10.1016/j.chemosphere.2018.12.101
  • Ye, W., Zhang, J., Fan, T., Lu, H., Chen, H., Li, X., & Hua, R. (2017). Arsenic speciation in the phloem exudates of rice and its role in arsenic accumulation in rice grains. Ecotoxicology and Environmental Safety, 143, 87–91. doi:10.1016/j.ecoenv.2017.05.006
  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249(1), 139–156.
  • Zhang, H., Ding, Y., Zhi, J., Li, X., Liu, H., & Xu, J. (2018). Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. International Journal of Biological Macromolecules, 116, 676–682. doi:10.1016/j.ijbiomac.2018.05.053
  • Zhang, J., Yu, J., Hong, H., Liu, J., Lu, H., & Yan, C. (2017). Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization. Marine Pollution Bulletin, 119(1), 81–91. doi:10.1016/j.marpolbul.2017.03.023
  • Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D. W., & Song, C.-P. (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology, 126(4), 1438–1448. doi:10.1104/pp.126.4.1438
  • Zhang, Y., Hou, D., O’Connor, D., Shen, Z., Shi, P., Ok, Y. S., … Luo, M. (2019). Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 49(15), 1386–1423. doi:10.1080/10643389.2019.1571354
  • Zhang, Y., Shen, G., Yu, Y., & Zhu, H. (2009). The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida. Environmental Pollution, 157(11), 3064–3068. doi:10.1016/j.envpol.2009.05.039
  • Zhao, F.-J., McGrath, S. P., & Meharg, A. A. (2010). Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61(1), 535–559. doi:10.1146/annurev-arplant-042809-112152
  • Zhiguo, E., Tingting, L., Chen, C., & Lei, W. (2018). Genome-Wide Survey and Expression Analysis of P 1B-ATPases in Rice, Maize and Sorghum. Rice Science, 25(4), 208–217. doi:10.1016/j.rsci.2018.06.004
  • Zhu, G., Xiao, H., Guo, Q., Zhang, Z., Zhao, J., & Yang, D. (2018). Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 158, 300–308. doi:10.1016/j.ecoenv.2018.04.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.