661
Views
9
CrossRef citations to date
0
Altmetric
Articles

The adsorptive removal of lead ions in aquatic media: Performance comparison between advanced functional materials and conventional materials

, , ORCID Icon, &
Pages 2441-2483 | Published online: 02 Dec 2019

References

  • Adamiec, E., & Wieszała, R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental Monitoring & Assessment, 188(6), 1–11.
  • Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., & Beolchini, F. (2015). A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24–36. 10.1016/j.jclepro.2014.08.009 doi:10.1016/j.jclepro.2014.08.009
  • Al Hamouz, O. C., Adelabu, I. O., & Saleh, T. A. (2017). Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 192, 163–170. doi:10.1016/j.jenvman.2017.01.056
  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. 10.1016/j.chemosphere.2013.01.075 doi:10.1016/j.chemosphere.2013.01.075
  • Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661. doi:10.1038/nprot.2006.370
  • Anirudhan, T., & Sreekumari, S. (2011). Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences, 23(12), 1989–1998. doi:10.1016/S1001-0742(10)60515-3
  • Arancibia-Miranda, N., Baltazar, S. E., García, A., Muñoz-Lira, D., Sepúlveda, P., Rubio, M. A., & Altbir, D. (2016). Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. Journal of Hazardous Materials, 301, 371–380. https://doi.org/10.1016/j.jhazmat.2015.09.007 doi:10.1016/j.jhazmat.2015.09.007
  • Boudrahem, F., Aissani-Benissad, F., & Aït-Amar, H. (2009). Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Journal of Environmental Management, 90(10), 3031–3039. doi:10.1016/j.jenvman.2009.04.005
  • Buica, G.-O., Lazar, I.-G., Saint-Aman, E., Tecuceanu, V., Dumitriu, C., Anton, I. A., … Ungureanu, E.-M. (2017). Ultrasensitive modified electrode based on poly (1H-pyrrole-1-hexanoic acid) for Pb (II) detection. Sensors and Actuators B: Chemical, 246, 434–443. doi:10.1016/j.snb.2017.02.112
  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034 doi:10.1016/j.ecoenv.2017.11.034
  • Cao, C.-Y., Li, P., Qu, J., Dou, Z.-F., Yan, W.-S., Zhu, J.-F., … Song, W.-G. (2012). High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. Journal of Materials Chemistry, 22(37), 19898–19903. doi:10.1039/c2jm34138g
  • Cechinel, M. A. P., Ulson de Souza, S. M. A. G., & Ulson de Souza, A. A. (2014). Study of lead (II) adsorption onto activated carbon originating from cow bone. Journal of Cleaner Production, 65, 342–349. doi:10.1016/j.jclepro.2013.08.020
  • Chen, H., & Wang, A. (2007). Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. Journal of Colloid and Interface Science, 307(2), 309–316. doi:10.1016/j.jcis.2006.10.054
  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6), 745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003 doi:10.1016/j.biotechadv.2015.05.003
  • Chi, T., Zuo, J., & Liu, F. (2017). Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Frontiers of Environmental Science & Engineering, 11(2), 15.
  • Choong, C. E., Ibrahim, S., Yoon, Y., & Jang, M. (2018). Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicology and Environmental Safety, 148, 142–151. doi:10.1016/j.ecoenv.2017.10.025
  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40. https://doi.org/10.1016/j.susmat.2016.06.002 doi:10.1016/j.susmat.2016.06.002
  • Dichiara, A. B., Weinstein, S. J., & Rogers, R. E. (2015). On the choice of batch or fixed bed adsorption processes for wastewater treatment. Industrial & Engineering Chemistry Research, 54(34), 8579–8586. doi:10.1021/acs.iecr.5b02350
  • Ding, Z., Hu, X., Wan, Y., Wang, S., & Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239–245. doi:10.1016/j.jiec.2015.10.007
  • Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., … Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability,7(2), 2189.
  • Domingos, R., Gelabert, A., Carreira, S., Cordeiro, A., Sivry, Y., & Benedetti, M. (2014). Metals in the aquatic environment—Interactions and implications for the speciation and bioavailability: A critical overview (Vol. 21).
  • Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology 97(23), 9909–9921. doi:10.1007/s00253-013-5216-z
  • Etci, Ö., Bektaş, N., & Öncel, M. S. (2010). Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite. Environmental Earth Sciences, 61(2), 231–240. doi:10.1007/s12665-009-0338-4
  • Fan, L., Luo, C., Sun, M., Li, X., & Qiu, H. (2013). Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 103(1), 523–529. doi:10.1016/j.colsurfb.2012.11.006
  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. doi:10.1016/j.jenvman.2010.11.011
  • Ghaedi, A. M., Panahimehr, M., Nejad, A. R. S., Hosseini, S. J., Vafaei, A., & Baneshi, M. M. (2018). Factorial experimental design for the optimization of highly selective adsorption removal of lead and copper ions using metal organic framework MOF-2 (Cd). Journal of Molecular Liquids, 272, 15–26. doi:10.1016/j.molliq.2018.09.051
  • Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185(1), 17–23. doi:10.1016/j.jhazmat.2010.08.053
  • Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—A sugar industry waste. Journal of Colloid and Interface Science, 271(2), 321–328. doi:10.1016/j.jcis.2003.11.007
  • Hayati, B., Maleki, A., Najafi, F., Daraei, H., Gharibi, F., & McKay, G. (2017). Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer. Journal of Hazardous Materials, 336, 146–157. doi:10.1016/j.jhazmat.2017.02.059
  • Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. https://doi.org/10.1016/j.hbrcj.2013.08.004 doi:10.1016/j.hbrcj.2013.08.004
  • Ho, Y. S., Huang, C. T., & Huang, H. W. (2002). Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37(12), 1421–1430. doi:10.1016/S0032-9592(02)00036-5
  • Ho, Y. S., Ng, J. C. Y., & McKay, G. (2001). Removal of lead(II) from effluents by sorption on peat using second-order kinetics. Separation Science and Technology, 36(2), 241–261. doi:10.1081/SS-100001077
  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211, 317–331. doi:10.1016/j.jhazmat.2011.10.016
  • Huang, Y., Li, S., Chen, J., Zhang, X., & Chen, Y. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science, 293, 160–168. https://doi.org/10.1016/j.apsusc.2013.12.123 doi:10.1016/j.apsusc.2013.12.123
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880
  • Jamali, A., Tehrani, A. A., Shemirani, F., & Morsali, A. (2016). Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions. Dalton Transactions, 45(22), 9193–9200. doi:10.1039/C6DT00782A
  • Jin, X., Li, Y., Yu, C., Ma, Y., Yang, L., & Hu, H. (2011). Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution. Journal of Hazardous Materials, 198(247-256), 247. doi:10.1016/j.jhazmat.2011.10.040
  • Ju, X. J., Zhang, S. B., Zhou, M. Y., Xie, R., Yang, L., & Chu, L. Y. (2009). Novel heavy-metal adsorption material: Ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. Journal of Hazardous Materials, 167(1–3), 114. doi:10.1016/j.jhazmat.2008.12.089
  • Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92–107. https://doi.org/10.1016/j.ccr.2017.12.010 doi:10.1016/j.ccr.2017.12.010
  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96(13), 1518–1521. doi:10.1016/j.biortech.2004.12.005
  • Kukkar, D., Vellingiri, K., Kim, K.-H., & Deep, A. (2018). Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 273, 1346–1370. https://doi.org/10.1016/j.snb.2018.06.128 doi:10.1016/j.snb.2018.06.128
  • Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Balasubramanyam, J., & Hanumanthappa, H. (2013). Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technology, 246, 125–136. https://doi.org/10.1016/j.powtec.2013.05.017 doi:10.1016/j.powtec.2013.05.017
  • Kumar, R., Joanni, E., Singh, R. K., Singh, D. P., & Moshkalev, S. A. (2018). Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Progress in Energy and Combustion Science, 67, 115–157. doi:10.1016/j.pecs.2018.03.001
  • Lalmi, A., Bouhidel, K.-E., Sahraoui, B., & el Houda Anfif, C. (2018). Removal of lead from polluted waters using ion exchange resin with Ca (NO3)2 for elution. Hydrometallurgy, 178, 287–293. doi:10.1016/j.hydromet.2018.05.009
  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Abingdon, UK: Routledge.
  • Li, M., Liu, J., Xu, Y., & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews, 24(3), 319–332. doi:10.1139/er-2015-0080
  • Li, P., Wang, J., Li, X., Zhu, W., He, S., Han, C., … Dionysiou, D. D. (2019). Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal. Journal of Hazardous Materials, 378, 120664. doi:10.1016/j.jhazmat.2019.05.057
  • Li, W., Gao, S., Wu, L., Qiu, S., Guo, Y., Geng, X., … Liu, L. (2013). High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Scientific Reports, 3(1), 2125. doi:10.1038/srep02125
  • Li, X., Wang, Z., Li, Q., Ma, J., & Zhu, M. (2015). Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. Chemical Engineering Journal, 273, 630–637. doi:10.1016/j.cej.2015.03.104
  • Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., & Wu, D. (2003). Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 41(5), 1057–1062. doi:10.1016/S0008-6223(02)00440-2
  • Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., … Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters, 357(3–4), 263–266. doi:10.1016/S0009-2614(02)00502-X
  • Li, Y., Cao, L., Li, L., & Yang, C. (2015). In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water. Journal of Hazardous Materials, 289, 140–148. https://doi.org/10.1016/j.jhazmat.2015.02.051 doi:10.1016/j.jhazmat.2015.02.051
  • Li, Z., Chen, J., & Ge, Y. (2017). Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chemical Engineering Journal, 308, 809–817. doi:10.1016/j.cej.2016.09.126
  • Li, Z., Ge, Y., & Wan, L. (2015). Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials, 285, 77–83. doi:10.1016/j.jhazmat.2014.11.033
  • Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., & Brookes, P. (2018). Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036 doi:10.1016/j.jhazmat.2017.09.036
  • Liu, J., & Wang, X. (2013). Novel silica-based hybrid adsorbents: Lead(II) adsorption isotherms. The Scientific World Journal, 2013(1), 897159. doi:10.1155/2013/897159
  • Liu, Z., & Zhang, F.-S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167(1-3), 933–939. doi:10.1016/j.jhazmat.2009.01.085
  • Lo, S.-F., Wang, S.-Y., Tsai, M.-J., & Lin, L.-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design, 90(9), 1397–1406. doi:10.1016/j.cherd.2011.11.020
  • Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2(12), 1015–1024. doi:10.1038/nchem.907
  • Lucia, R., Jana, S., Ivo, Š., Mirka, Š., Michaela, C., & Roman, G. (2014). Magnetically modified tea for lead sorption. Advanced Science, Engineering and Medicine6(4), 473–476. doi:10.1166/asem.2014.1527
  • Luo, X., Ding, L., & Luo, J. (2015). Adsorptive removal of Pb (II) ions from aqueous samples with amino-functionalization of metal–organic frameworks MIL-101 (Cr). Journal of Chemical & Engineering Data, 60(6), 1732–1743. doi:10.1021/je501115m
  • Medina, R. P., Nadres, E. T., Ballesteros, F. C., & Rodrigues, D. F. (2016). Incorporation of graphene oxide into a chitosan–poly(acrylic acid) porous polymer nanocomposite for enhanced lead adsorption. Environmental Science: Nano, 3(3), 638–646. doi:10.1039/C6EN00021E
  • Mihajlović, M. T., Lazarević, S. S., Janković-Častvan, I. M., Kovač, J., Jokić, B. M., Janaćković, D. T., … Policy, E. (2015). Kinetics, thermodynamics, and structural investigations on the removal of Pb2+, Cd2+, and Zn2+ from multicomponent solutions onto natural and Fe(III)-modified zeolites. Clean Technologies and Environmental Policy 17(2), 407–419. doi:10.1007/s10098-014-0794-8
  • Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H., Silipas, D., & Indrea, E. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. Journal of Environmental Management, 137, 69–80. doi:10.1016/j.jenvman.2014.02.007
  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6), 1027–1039. doi:10.1016/j.chemosphere.2006.03.033
  • Mohamad Nor, N., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. Journal of Environmental Chemical Engineering, 1(4), 658–666. https://doi.org/10.1016/j.jece.2013.09.017 doi:10.1016/j.jece.2013.09.017
  • Mohan, D., Singh, P., Sarswat, A., Steele, P. H., & Pittman, C. U., Jr. (2015). Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 448, 238–250. doi:10.1016/j.jcis.2014.12.030
  • Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences, 45, 143–155. doi:10.1016/j.jes.2015.12.025
  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2015). Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 270, 393–404. https://doi.org/10.1016/j.cej.2015.02.047 doi:10.1016/j.cej.2015.02.047
  • Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., & Chung, D. Y. (2007). Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials, 147(1–2), 91–96. doi:10.1016/j.jhazmat.2006.12.046
  • Pandey, S., & Ramontja, J. (2016). Guar gum-grafted poly(acrylonitrile)-templated silica xerogel: Nanoengineered material for lead ion removal. Journal of Analytical Science & Technology, 7(1), 24.
  • Payne, K. B., & Abdel-Fattah, T. M. (2004). Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances & Environmental Engineering, 39(9), 2275–2291. doi:10.1081/LESA-200026265
  • Pitsari, S., Tsoufakis, E., & Loizidou, M. (2013). Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chemical Engineering Journal, 223, 18–30. doi:10.1016/j.cej.2013.02.105
  • Pyrzyńska, K., & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1), 102–109. doi:10.1016/j.colsurfa.2010.03.047
  • Ramesh, A., Lee, D., & Wong, J. (2005). Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents. Journal of Colloid and Interface Science, 291(2), 588–592. doi:10.1016/j.jcis.2005.04.084
  • Ren, H., Jiang, J., Wu, D., Gao, Z., Sun, Y., Luo, C. J. W., & Air, & Pollution, S. (2016). Selective adsorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: A comparative study on kinetics, equilibrium, and mechanism. Water Air & Soil Pollution 227(4), 101. doi:10.1007/s11270-016-2790-6
  • Rho, H. S., Hanke, A. T., Ottens, M., & Gardeniers, H. (2017). A microfluidic device for the batch adsorption of a protein on adsorbent particles. The Analyst, 142(19), 3656–3665. doi:10.1039/C7AN00917H
  • Sánchez-Marín, P., Fortin, C., & Campbell, P. G. C. (2013). Copper and lead internalisation by freshwater microalgae at different carbonate concentrations. Journal of Environmental Chemistry, 10(2), 80–90. https://doi.org/10.1071/EN13011 doi:10.1071/EN13011
  • Saleh, T. A., & Gupta, V. K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environmental Science and Pollution Research, 19(4), 1224–1228. doi:10.1007/s11356-011-0670-6
  • Shafeeyan, M. S., Wan, M. A. W. D., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151. doi:10.1016/j.jaap.2010.07.006
  • Sharifpour, E., Khafri, H. Z., Ghaedi, M., Asfaram, A., & Jannesar, R. (2018). Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization. Ultrasonics Sonochemistry, 40, 373–382. https://doi.org/10.1016/j.ultsonch.2017.07.030 doi:10.1016/j.ultsonch.2017.07.030
  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. J. B. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216. doi:10.1007/s13205-018-1237-8
  • Sheet, I., Kabbani, A., Holail, H., Sheet, I., Kabbani, A., & Holail, H. (2014). Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia, 50(5), 130–138. doi:10.1016/j.egypro.2014.06.016
  • Shengli, Z., Haoyun, C., Lichun, T., Chinpao, H., Man, J., & Zuowan, Z. (2018). Magnetic activated carbon for efficient removal of Pb(II) from aqueous solution. Environmental Engineering Science 35(2), 111–120. doi:10.1089/ees.2016.0632
  • Singh, R. P., Tripathi, R. D., Dabas, S., Rizvi, S. M. H., Ali, M. B., Sinha, S. K., … Rai, U. N. (2003). Effect of lead on growth and nitrate assimilation of Vigna radiata (L.) Wilczek seedlings in a salt affected environment. Chemosphere, 52(7), 1245–1250. doi:10.1016/S0045-6535(03)00318-7
  • Stafiej, A., & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology, 58(1), 49–52. doi:10.1016/j.seppur.2007.07.008
  • Ströbel, R., Garche, J., Moseley, P. T., Jörissen, L., & Wolf, G. (2006). Hydrogen storage by carbon materials. Journal of Power Sources, 159(2), 781–801. doi:10.1016/j.jpowsour.2006.03.047
  • Szulejko, J. E., Kim, K.-H., & Parise, J. (2019). Seeking the most powerful and practical real-world sorbents for gaseous benzene as a representative volatile organic compound based on performance metrics. Separation and Purification Technology, 212, 980–985. https://doi.org/10.1016/j.seppur.2018.11.001 doi:10.1016/j.seppur.2018.11.001
  • Tahmasebi, E., Masoomi, M. Y., Yamini, Y., & Morsali, A. (2015). Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: A comparative study. Inorganic Chemistry, 54(2), 425–433. doi:10.1021/ic5015384
  • Tao, H.-C., Zhang, H.-R., Li, J.-B., & Ding, W.-Y. (2015). Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 192, 611–617. doi:10.1016/j.biortech.2015.06.006
  • Tofighy, M. A., & Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials, 185(1), 140–147.
  • Town, R. M., & Filella, M. (2002). Implications of natural organic matter binding heterogeneity on understanding lead(II) complexation in aquatic systems. Science of the Total Environment, 300(1–3), 143–154. doi:10.1016/S0048-9697(01)01065-8
  • Unuabonah, E., Adebowale, K., & Olu-Owolabi, B. (2007). Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. Journal of Hazardous Materials, 144(1–2), 386–395. doi:10.1016/j.jhazmat.2006.10.046
  • Vellingiri, K., Deng, Y.-X., Kim, K.-H., Jiang, J.-J., Kim, T., Shang, J., … Boukhvalov, D. W. (2019). Amine-functionalized metal–organic frameworks and covalent organic polymers as potential sorbents for removal of formaldehyde in aqueous phase: Experimental versus theoretical study. ACS Applied Materials & Interfaces, 11(1), 1426–1439. doi:10.1021/acsami.8b17479
  • Vikrant, K., & Kim, K.-H. (2018). Nanomaterials for the adsorptive treatment of Hg (II) ions from water. Chemical Engineering Journal, 358, 264–282. doi:10.1016/j.cej.2018.10.022
  • Wang, T., Xu, X., Ren, Z., Gao, B., & Wang, H. (2016). Adsorption of phosphate on surface of magnetic reed: Characteristics, kinetic, isotherm, desorption, competitive and mechanistic studies. RSC Advances, 6(6), 5089–5099. doi:10.1039/C5RA25280F
  • Wang, X., Pei, Y., Lu, M., Lu, X., & Du, X. (2015). Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. Journal of Materials Science, 50(5), 2113–2121. doi:10.1007/s10853-014-8773-3
  • Wilson, O. C., Jr,., & Riman, R. E. (1994). Morphology control of lead carboxylate powders via anionic substitutional effects. Journal of Colloid and Interface Science, 167(2), 358–370. doi:10.1006/jcis.1994.1371
  • Wu, W., Li, J., Lan, T., Müller, K., Niazi, N. K., Chen, X., … Wang, H. (2017). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 576, 766–774. doi:10.1016/j.scitotenv.2016.10.163
  • Xu, J., Cao, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X., & Wang, X. (2018). A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 195, 351–364. doi:10.1016/j.chemosphere.2017.12.061
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200, 673–680. doi:10.1016/j.cej.2012.06.116
  • Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., … Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, 854–864. doi:10.1016/j.cej.2014.08.081
  • Yin, C. Y., Aroua, M. K., & Daud, W. M. A. W. (2007). Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 52(3), 403–415. doi:10.1016/j.seppur.2006.06.009
  • Yin, N., Wang, K., Wang, L., & Li, Z. (2016). Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal. Chemical Engineering Journal, 306, 619–628. doi:10.1016/j.cej.2016.07.064
  • Yu, C., Shao, Z., & Hou, H. (2017). A functionalized metal–organic framework decorated with O-groups showing excellent performance for lead (ii) removal from aqueous solution. Chemical Science, 8(11), 7611–7619. doi:10.1039/C7SC03308G
  • Yurekli, Y. (2016). Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of Hazardous Materials, 309, 53–64. https://doi.org/10.1016/j.jhazmat.2016.01.064 doi:10.1016/j.jhazmat.2016.01.064
  • Zhang, J., Xiong, Z., Li, C., & Wu, C. (2016). Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. Journal of Molecular Liquids, 221, 43–50. doi:10.1016/j.molliq.2016.05.054
  • Zhang, R., Wilson, V. L., Hou, A., & Meng, G. (2015). Source of lead pollution, its influence on public health and the countermeasures. International Journal of Health, Animal Science and Food Safety, 2(1).
  • Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., & Wang, X. (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polymer Chemistry, 9(26), 3562–3582. doi:10.1039/C8PY00484F
  • Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y., & Lu, X. (2017). Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresource Technology, 232, 204–210. doi:10.1016/j.biortech.2017.01.074
  • Zhu, W., Li, X., Wu, D., Yu, J., Zhou, Y., Luo, Y., … Ma, W. (2016). Synthesis of spherical mesoporous silica materials by pseudomorphic transformation of silica fume and its Pb2+ removal properties. Microporous and Mesoporous Materials, 222, 192–201. doi:10.1016/j.micromeso.2015.10.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.