1,036
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2144-2174 | Published online: 19 Dec 2019

References

  • ABS. (2017). Water account, Australia, 2015–16. Belconnen, ACT: Australian Bureau of Statistics.
  • Allende, A., & Monaghan, J. (2015). Irrigation water quality for leafy arops: A perspective of risks and potential solutions. International Journal of Environmental Research and Public Health, 12(7), 7457–7477. doi:10.3390/ijerph120707457
  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38(1), 145–180. doi:10.1146/annurev.phyto.38.1.145
  • Arana, I., Muela, A., Iriberri, J., Egea, L., & Barcina, I. (1992). Role of hydrogen peroxide in loss of culturability mediated by visible light in Escherichia coli in a freshwater ecosystem. Applied and Environmental Microbiology, 58(12), 3903–3907.
  • Arzanlou, M., Chai, W. C., & Venter, H. (2017). Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in Biochemistry, 61, 49–59. doi:10.1042/EBC20160063
  • AWA. (2017). Emerging challenges and opportunities to secure our water future (Discussion paper). St. Leonards, NSW: Australian Water Association.
  • Baker, S., Thomson, N., Weill, F.-X., & Holt, K. E. (2018). Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science, 360(6390), 733–738. doi:10.1126/science.aar3777
  • Bakhir, V. M. (1985). Regulating physical and chemical properties of technological aqueous solutions by unipolar electrochemical exposure and experience of its practical application (PhD thesis). Kazan Institute of Chemical Technologies, Kazan, Tatarstan, Russia, 146 p.
  • Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Microbiological spoilage of fruits and vegetables. In W. H. Sperber & M. P. Doyle (Eds), Compendium of the microbiological spoilage of foods and beverages, food microbiology and food safety. New York: Springer Verlag.
  • Becerra-Castro, C., Lopes, A. R., Vaz-Moreira, I., Silva, E. F., Manaia, C. M., & Nunes, O. C. (2015). Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environment International, 75, 117–135. doi:10.1016/j.envint.2014.11.001
  • Berg, G., Alavi, M., Schmidt, C., Zachow, C., Egamberdieva, D., Kamilova, B., & Lugtenberg, B. J. J. (2013). Biocontrol and osmoprotection for plants under salinated conditions. In F. J. De Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (pp. 587–592). Hoboken, NJ: John Wiley & Sons, Inc.
  • Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673–1685. doi:10.1111/j.1462-2920.2005.00891.x
  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. doi:10.1111/j.1574-6941.2009.00654.x
  • Berger, C. N., Sodha, S. V., Shaw, R. K., Griffin, P. M., Pink, D., Hand, P., & Frankel, G. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12(9), 2385–2397. doi:10.1111/j.1462-2920.2010.02297.x
  • Bohnstedt, R., Surbeck, U., & Bartsch, R. (2009). European Patent EP 1969159 B1.
  • Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., & De Battisti, A. (2000). Electrochemical incineration of glucose as a model organic substrate. Part 2: Role of active chlorine mediation. Journal of the Electrochemical Society, 147(2), 592–596. doi:10.1149/1.1393238
  • Bradford, S. A., & Harvey, R. W. (2017). Future research needs involving pathogens in groundwater. Hydrogeology Journal, 25(4), 931–938. doi:10.1007/s10040-016-1501-0
  • Buck, J. W., van Iersel, M. W., Oetting, R. D., & Hung, Y.-C. (2003). Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Protection, 22(1), 73–77. doi:10.1016/S0261-2194(02)00113-8
  • Cappelier, J. M., Besnard, V., Roche, S. M., Velge, P., & Federighi, M. (2007). Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary Research, 38(4), 573–583. doi:10.1051/vetres:2007017
  • Cerca, F., Andrade, F., Franca, A., Andrade, E. B., Ribeiro, A., Almeida, A. A., … Vilanova, M. (2011). Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. Journal of Medical Microbiology, 60(12), 1717–1724. doi:10.1099/jmm.0.031922-0
  • Chahal, C., van den Akker, B., Young, F., Franco, C., Blackbeard, J., & Monis, P. (2016). In S. Sariaslani & G. M. Gadd (Eds), Advances in applied microbiology (Vol. 97. pp. 63–119). San Diego, CA: Elsevier Academic Press Inc.
  • Chatziprodromidou, I., Bellou, M., Vantarakis, G., & Vantarakis, A. (2018). Viral outbreaks linked to fresh produce consumption: A systematic review. Journal of Applied Microbiology, 124(4), 932–942. doi:10.1111/jam.13747
  • Chevremont, A. C., Boudenne, J. L., Coulomb, B., & Farnet, A. M. (2013). Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil. Water Research, 47(6), 1971–1982. doi:10.1016/j.watres.2013.01.006
  • Ciriminna, R., Albanese, L., Meneguzzo, F., & Pagliaro, M. (2016). Wastewater remediation via controlled hydrocavitation. Environmental Reviews, 25(2), 175–183. doi:10.1139/er-2016-0064
  • Cluff, M. A., Hartsock, A., MacRae, J. D., Carter, K., & Mouser, P. J. (2014). Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environmental Science & Technology, 48(11), 6508–6517. doi:10.1021/es501173p
  • Codex Alimentarius Commission. (2003). Recommended International Code of Practice—General principles of food hygiene (CAC/RCP 1-1969 Rev. 4-2003). Rome: FAO/WHO.
  • Dannehl, D., Schuch, I., Gao, Y., Cordiner, S., & Schmidt, U. (2016). Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. European Food Research and Technology, 242(3), 345–353. doi:10.1007/s00217-015-2544-5
  • De Battisti, A., Formaglio, P., Ferro, S., Al Aukidy, M., & Verlicchi, P. (2018). Electrochemical disinfection of groundwater for civil use – An example of an effective endogenous advanced oxidation process. Chemosphere, 207, 101–109. doi:10.1016/j.chemosphere.2018.05.062
  • De Keuckelaere, A., Jacxsens, L., Amoah, P., Medema, G., McClure, P., Jaykus, L.-A., & Uyttendaele, M. (2015). Zero risk does not exist: Lessons learned from microbial risk assessment related to use of water and safety of fresh produce. Comprehensive Reviews in Food Science and Food Safety, 14(4), 387–410. doi:10.1111/1541-4337.12140
  • Delaedt, Y., Daneels, A., Declerck, P., Behets, J., Ryckeboer, J., Peters, E., & Ollevier, F. (2008). The impact of electrochemical disinfection on Escherichia coli and Legionella pneumophila in tap water. Microbiological Research, 163(2), 192–199. doi:10.1016/j.micres.2006.05.002
  • Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167–176. doi:10.1007/s40726-015-0015-z
  • Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C., & Xie, Z. M. (2004). Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochemistry, 39(11), 1421–1426. doi:10.1016/S0032-9592(03)00274-7
  • Dobrowsky, P. H., De Kwaadsteniet, M., Cloete, T. E., & Khan, W. (2014). Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater. Applied and Environmental Microbiology, 80(7), 2307–2316. doi:10.1128/AEM.04130-13
  • Dorais, M., Alsanius, B. W., Voogt, W., Pepin, S., Tüzel, İH., Tüzel, Y., & Möller, K. (2016). Impact of water quality and irrigation management on organic greenhouse horticulture. BioGreenhouse COST Action FA 1105. Retrieved from www.biogreenhouse.org
  • Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemencic, A., … Kompare, B. (2016). Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 29, 577–588. doi:10.1016/j.ultsonch.2015.10.010
  • E.P.H.C. (2006). Australian guidelines for water recycling. Managing health and environmental risks. Phase 1. National water quality management strategy 21. Natural Resource Management Ministerial Council. Environment Protection and Heritage Council, Australian Health Ministers Conference Council, Canberra.
  • European Commission. (2019). P8_TA(2019)0071. Minimum requirements for water reuse. Retrieved from http://www.europarl.europa.eu/doceo/document/TA-8-2019-0071_EN.pdf
  • Food and Agriculture Organization of the United Nations (FAO) (2015). FAO statistical pocketbook: World Food and Agriculture. Rome: Food and Agriculture Organization of the United Nations.
  • Ferro, S. (2015). Electrochemical activated solutions. The Australian Hospital Engineer, 38(2), 50–53.
  • Ferro, S., Amorico, T., & Deo, P. (2018). Role of food sanitising treatments in inducing the ‘viable but nonculturable’ state of microorganisms. Food Control, 91, 321–329. doi:10.1016/j.foodcont.2018.04.016
  • Fischer, N., Bourne, A., & Plunkett, D. (2015). Outbreak Alert! 2015: A review of foodborne illnesses in the US from 2004–2013. Washington, DC: Center for Science in the Public Interest.
  • Frenk, S., Hadar, Y., & Minz, D. (2014). Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environmental Microbiology, 16(2), 559–569. doi:10.1111/1462-2920.12183
  • FSANZ. (2011). Supporting document 2: Review of foodborne illness associated with selected ready-to-eat fresh produce (December 2011). Proposal P1015. Primary Production & Processing Requirements for Horticulture. Barton, ACT: Food Standards Australia New Zealand.
  • FSANZ. (2016). Woolworths loose leaf lettuce product recall. Retrieved from http://www.foodstandards.gov.au/industry/foodrecalls/recalls/Pages/Woolworths-loose-leaf-lettuce.aspx
  • Gil, M. I., Selma, M. V., Suslow, T., Jacxsens, L., Uyttendaele, U., & Allende, A. (2015). Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Critical Reviews in Food Science and Nutrition, 55(4), 453–468. doi:10.1080/10408398.2012.657808
  • Grech, N. M., & Rijkenberg, F. H. J. (1992). Injection of electrolytically generated chlorine into citrus microirrigation systems for the control of certain waterborne root pathogens. Plant Disease, 76(5), 457–461. doi:10.1094/PD-76-0457
  • Hai, F., Riley, T., Shawkat, S., Magram, S., & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: A review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 6(12), 3603–3630. doi:10.3390/w6123603
  • Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., … Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320. doi:10.1128/MMBR.00050-14
  • Hedberg, C. (2016). Epidemiology of viral foodborne outbreaks: Role of food handlers, irrigation water, and surfaces. In S. Goyal & J. Cannon (Eds.), Viruses in foods. Food microbiology and food safety (pp. 147-163). Cham: Springer.
  • Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A., & Keevil, C. W. (2018). Viable-but-nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson induced by chlorine stress remain infectious. mBio, 9(2), e00540–18. doi:10.1128/mBio.00540-18
  • Hoelzer, K., Switt, A. I. M., Wiedmann, M., & Boor, K. J. (2018). Emerging needs and opportunities in foodborne disease detection and prevention: From tools to people. Food Microbiology, 75, 65–71. doi:10.1016/j.fm.2017.07.006
  • Hoslett, J., Massara, T. M., Malamis, S., Ahmad, D., van den Boogaert, I., Katsou, E., … Jouhara, H. (2018). Surface water filtration using granular media and membranes: A review. Science of the Total Environment, 639, 1268–1282. doi:10.1016/j.scitotenv.2018.05.247
  • Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40(1), 411–441. doi:10.1146/annurev.phyto.40.120401.130158
  • Jeong, J., Kim, C., & Yoon, J. (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Research, 43(4), 895–901. doi:10.1016/j.watres.2008.11.033
  • Jhaveri, J. H., & Murthy, Z. V. P. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137–154. doi:10.1016/j.desal.2015.11.009
  • Jo, H. Y., Tango, C. N., & Oh, D. H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT, 92, 187–194. doi:10.1016/j.lwt.2018.02.028
  • Jones, L. A., Worobo, R. W., & Smart, C. D. (2014). UV light inactivation of human and plant pathogens in unfiltered surface irrigation water. Applied and Environmental Microbiology, 80(3), 849–854. doi:10.1128/AEM.02964-13
  • Jongman, M., & Korsten, L. (2017). Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. Food Reviews International, 34(4), 308–328. doi:10.1080/87559129.2017.1289385
  • Jusoh, M. N. H., Aris, A., & Talib, J. (2016). Hydrodynamic cavitation using double orifice-plates for the generation of hydroxyl radicals. Jurnal Teknologi, 78(11), 41–47. doi:10.11113/jt.v78.7164
  • Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L., & Holt, D. M. (2005). Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochimica Acta, 50(25-26), 5270–5277. doi:10.1016/j.electacta.2005.02.074
  • Kirpalani, D. M., Singla, A., Lotfi, S., & Mohapatra, D. P. (2016). Cavitation Technology Development: A Paradigm Shift in Mining Effluent Treatment. Energy, Mining & Environment Portfolio, NRC, Québec Mines, November 21st to 24th, 2016.
  • Kitis, M. (2004). Disinfection of wastewater with peracetic acid: A review. Environment International, 30(1), 47–55. doi:10.1016/S0160-4120(03)00147-8
  • Kraft, A. (2008). Electrochemical water disinfection: A short review. Platinum Metals Review, 52(3), 177–185. doi:10.1595/147106708X329273
  • Li, D., & Gu, A. Z. (2019). Antimicrobial resistance: A new threat from disinfection byproducts and disinfection of drinking water? Current Opinion in Environmental Science & Health, 7, 83–91. doi:10.1016/j.coesh.2018.12.003
  • Li, P., Song, Y., & Yu, S. L. (2014). Removal of Microcystis aeruginosa using hydrodynamic cavitation: Performance and mechanisms. Water Research, 62, 241–248. doi:10.1016/j.watres.2014.05.052
  • Lim, J. A., Lee, D. H., & Heu, S. (2014). The interaction of human enteric pathogens with plants. The Plant Pathology Journal, 30(2), 109–116. doi:10.5423/PPJ.RW.04.2014.0036
  • Lin, Y. W., Li, D., Gu, A. Z., Zeng, S. Y., & He, M. (2016). Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. Chemosphere, 144, 2165–2174. doi:10.1016/j.chemosphere.2015.10.071
  • Liu, Y., Wang, C., Tyrrell, G., & Li, X. F. (2010). Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157:H7. Water Research, 44(3), 711–718. doi:10.1016/j.watres.2009.10.005
  • López-Gálvez, F., Andujar, S., Marin, A., Tudela, J. A., Allende, A., & Gil, M. I. (2018). Disinfection by-products in baby lettuce irrigated with electrolysed water. Journal of the Science of Food and Agriculture, 98(8), 2981–2988. doi:10.1002/jsfa.8796
  • López-Gálvez, F., Gil, M. I., Meireles, A., Truchado, P., & Allende, A. (2018). Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach. Journal of the Science of Food and Agriculture, 98(8), 2973–2980. doi:10.1002/jsfa.8794
  • Majsztrik, J. C., Fernandez, R. T., Fisher, P. R., Hitchcock, D. R., Lea-Cox, J., Owen, J. S., Jr., … White, S. A. (2017). Water use and treatment in container-grown specialty crop production: A review. Water, Air, and Soil Pollution, 228(4), 151. doi:10.1007/s11270-017-3272-1
  • Mañas, P., Castro, E., & de Las Heras, J. (2009). Irrigation with treated wastewater: Effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms. Journal of Environmental Science and Health, Part A, 44(12), 1261–1273. doi:10.1080/10934520903140033
  • Markland, S. M., Ingram, D., Kniel, K. E., & Sharma, M. (2017). Water for agriculture: The convergence of sustainability and safety. Microbiology Spectrum, 5(3):PFS-0014-2016. doi:10.1128/microbiolspec.PFS-0014-2016
  • Martínez, S. B., Pérez-Parra, J., & Suay, R. (2011). Use of ozone in wastewater treatment to produce water suitable for irrigation. Water Resources Management, 25(9), 2109–2124. doi:10.1007/s11269-011-9798-x
  • Martínez-Huitle, C. A., & Brillas, E. (2008). Electrochemical alternatives for drinking water disinfection. Angewandte Chemie International Edition, 47(11), 1998–2005. doi:10.1002/anie.200703621
  • Matsunaga, T., Nakasono, S., Kitajima, V., & Horiguchi, K. (1994). Electrochemical disinfection of bacteria in drinking water using activated carbon fibers. Biotechnology and Bioengineering, 43(5), 429–433. doi:10.1002/bit.260430511
  • Matsunaga, T., Nakasono, S., Takamuku, T., Burgess, J. G., Nakamura, N., & Sode, K. (1992). Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Applied and Environmental Microbiology, 58(2), 686–689.
  • Matsunaga, T., Okochi, M., & Nakasono, S. (1995). Direct count of bacteria using fluorescent dyes: Application to assessment of electrochemical disinfection. Analytical Chemistry, 67(24), 4487–4490. doi:10.1021/ac00120a010
  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. doi:10.1111/1574-6976.12028
  • Migliarina, F., & Ferro, S. (2014). A modern approach to disinfection, as old as the evolution of vertebrates. Healthcare, 2(4), 516–526. doi:10.3390/healthcare2040516
  • Moorman, E., Montazeri, N., & Jaykus, L. A. (2017). Efficacy of neutral electrolyzed water for inactivation of human norovirus. Applied and Environmental Microbiology, 83(16), e00653–17. doi:10.1128/AEM.00653-17
  • Nakasono, S., Nakamura, N., Sode, K., & Matsunaga, T. (1992). Electrochemical disinfection of marine bacteria attached on a plastic electrode. Bioelectrochemistry and Bioenergetics, 27(2), 191–198. doi:10.1016/0302-4598(92)87042-S
  • NHMRC & NRMMC. (2011). In National Health and Medical Research Council & N.R.M.M.C. (Eds.), Australian drinking water guidelines Paper 6 National Water Quality Management Strategy. Canberra: Commonwealth of Australia.
  • Oliver, J. D., Dagher, M., & Linden, K. (2005). Induction of Escherichia coli and Salmonella Typhimurium into the viable but nonculturable state following chlorination of wastewater. Journal of Water and Health, 3(3), 249–257. doi:10.2166/wh.2005.040
  • Pachepsky, Y., Shelton, D. R., McLain, J. E. T., Patel, J., & Mandrell, R. E. (2011). Irrigation waters as a source of pathogenic microorganisms in produce: A review. Advances in Agronomy, 113, 75–141.
  • Park, E., Lee, C., Bisesi, M., & Lee, J. (2014). Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods. Journal of Water and Health, 12(1), 13–23. doi:10.2166/wh.2013.002
  • Patrone, V., Campana, R., Vallorani, L., Dominici, S., Federici, S., Casadei, L., … Baffone, W. (2013). CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie Van Leeuwenhoek, 103(5), 979–988. doi:10.1007/s10482-013-9877-5
  • Pawlowski, D. R., Metzger, D. J., Raslawsky, A., Howlett, A., Siebert, G., Karalus, R. J., … Whitehouse, C. A. (2011). Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm. PLoS One, 6(3), e17585. doi:10.1371/journal.pone.0017585
  • Petkovšek, M., Zupanc, W., Dular, M., Kosjek, T., Heath, E., Kompare, B., & Širok, B. (2013). Rotation generator of hydrodynamic cavitation for water treatment. Separation and Purification Technology, 118, 415–423. doi:10.1016/j.seppur.2013.07.029
  • Quadrelli, S., & Ferro, S. (2010). Electrochemical reactor. International Patent Application WO 2010/055108.
  • Rahman, S. M. E., Khan, I., & Oh, D.-H. (2016). Electrolyzed water as a novel sanitizer in the food industry: Current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 15(3), 471–490. doi:10.1111/1541-4337.12200
  • Rajoriya, S., Carpenter, J., Saharan Virendra, K., & Pandit Aniruddha, B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Reviews in Chemical Engineering, 32(4), 379–411. doi:10.1515/revce-2015-0075
  • Ramamurthy, T., Ghosh, A., Pazhani, G. P., & Shinoda, S. (2014). Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Frontiers in Public Health, 2, 103. doi:10.3389/fpubh.2014.00103
  • Ramírez-Castillo, F. Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-González, F. J., Harel, J., & Guerrero-Barrera, A. L. (2015). Waterborne pathogens: Detection methods and challenges. Pathogens, 4(2), 307–334. doi:10.3390/pathogens4020307
  • Raudales, R. E., Fisher, P. R., & Hall, C. R. (2017). The cost of irrigation sources and water treatment in greenhouse production. Irrigation Science, 35(1), 43–54. doi:10.1007/s00271-016-0517-5
  • Raudales, R. E., Parke, J. L., Guy, C. L., & Fisher, P. R. (2014). Control of waterborne microbes in irrigation: A review. Agricultural Water Management, 143, 9–28. doi:10.1016/j.agwat.2014.06.007
  • Raut-Jadhav, S., Badve, M. P., Pinjari, D. V., Saini, D. R., Sonawane, S. H., & Pandit, A. B. (2016). Treatment of the pesticide industry effluent using hydrodynamic cavitation and its combination with process intensifying additives (H2O2 and ozone). Chemical Engineering Journal, 295, 326–335. doi:10.1016/j.cej.2016.03.019
  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. doi:10.1016/j.scitotenv.2013.01.032
  • Scarlett, K., Collins, D., Tesoriero, L., Jewell, L., van Ogtrop, F., & Daniel, R. (2016). Efficacy of chlorine, chlorine dioxide and ultraviolet radiation as disinfectants against plant pathogens in irrigation water. European Journal of Plant Pathology, 145(1), 27–38. doi:10.1007/s10658-015-0811-8
  • Shionoiri, N., Nogariya, O., Tanaka, M., Matsunaga, T., & Tanaka, T. (2015). Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment. Journal of Hazardous Materials, 283, 410–415. doi:10.1016/j.jhazmat.2014.09.049
  • Steele, M., & Odumeru, J. (2004). Irrigation water as source of foodborne pathogens on fruit and vegetables. Journal of Food Protection, 67(12), 2839–2849. doi:10.4315/0362-028X-67.12.2839
  • Stevenson, S. M. L., Cook, S. R., Bach, S. J., & McAllister, T. A. (2004). Effects of water source, dilution, storage, and bacterial and fecal loads on the efficacy of electrolyzed oxidizing water for the control of Escherichia coli O157:H7. Journal of Food Protection, 67(7), 1377–1383. doi:10.4315/0362-028X-67.7.1377
  • Stoner, G. E., Cahen, G. L., Sachyani, M., & Gileadi, E. (1982). The mechanism of low-frequency a.c. electrochemical disinfection. Bioelectrochemistry and Bioenergetics, 9(3), 229–243. doi:10.1016/0302-4598(82)80013-5
  • Suslow, T. V. (2010). Standards for irrigation and foliar contact water. An initiative of the Pew Charitable Trusts at Georgetown University. Peer-reviewed issue. Retrieved from http://www.producesafetyproject.org/admin/assets/files/Water-Suslow-1.pdf
  • Tao, Y. Q., Cai, J., Huai, X. L., Liu, B., & Guo, Z. X. (2016). Application of hydrodynamic cavitation to wastewater treatment. Chemical Engineering & Technology, 39(8), 1363–1376. doi:10.1002/ceat.201500362
  • Thanner, S., Drissner, D., & Walsh, F. (2016). Antimicrobial resistance in agriculture. mBio, 7(2), 7. doi:10.1128/mBio.02227-15
  • Thebo, A. L., Drechsel, P., Lambin, E. F., & Nelson, K. L. (2017). A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environmental Research Letters, 12(7), 074008. doi:10.1088/1748-9326/aa75d1
  • Torabi Angaji, M., & Ghiaee, R. (2015). Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process. Ultrasonics Sonochemistry, 23, 257–265. doi:10.1016/j.ultsonch.2014.09.007
  • Trevors, J. T., Bej, A. K., Mojib, N., van Elsas, J. D., & Van Overbeek, L. (2012). Bacterial gene expression at low temperatures. Extremophiles, 16(2), 167–176. doi:10.1007/s00792-011-0423-y
  • Truchado, P., Gil, M. I., Suslow, T., & Allende, A. (2018). Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One, 13(7), e0199291. doi:10.1371/journal.pone.0199291
  • Uyttendaele, M., Jaykus, L.-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., … Rao Jasti, P. (2015). Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Comprehensive Reviews in Food Science and Food Safety, 14(4), 336–356. doi:10.1111/1541-4337.12133
  • van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottova, D., Kristufek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences USA, 109(4), 1159–1164. doi:10.1073/pnas.1109326109
  • Van Haute, S., Sampers, I., Jacxsens, L., & Uyttendaele, M. (2015). Selection criteria for water disinfection techniques in agricultural practices. Critical Reviews in Food Science and Nutrition, 55(11), 1529–1551. doi:10.1080/10408398.2012.705360
  • Villanueva, M. V., Luna, M. C., Gil, M. I., & Allende, A. (2015). Ultrasound treatments improve the microbiological quality of water reservoirs used for the irrigation of fresh produce. Food Research International, 75, 140–147. doi:10.1016/j.foodres.2015.05.040
  • World Health Organization (WHO). (1989). Health guidelines for the use of wastewater in agriculture and aquaculture. Retrieved from http://whqlibdoc.who.int/trs/WHO_TRS_778.pdf
  • World Health Organization (WHO). (2015a). Global action plan on antimicrobial resistance. World Health Organization. Retrieved from http://www.who.int/iris/handle/10665/193736
  • World Health Organization (WHO). (2015b). WHO estimates of the global burden of foodborne diseases. Geneva: World Health Organization.
  • Wuijts, S., van den Berg, H., Miller, J., Abebe, L., Sobsey, M., Andremont, A., … Husman, A. M. D. (2017). Towards a research agenda for water, sanitation and antimicrobial resistance. Journal of Water and Health, 15(2), 175–184. doi:10.2166/wh.2017.124
  • Yang, R., Li, H., Huang, M., Yang, H., & Li, A. (2016). A review on chitosan-based flocculants and their applications in water treatment. Water Research, 95, 59–89. doi:10.1016/j.watres.2016.02.068
  • Zarattini, M., De Bastiani, M., Bernacchia, G., Ferro, S., & De Battisti, A. (2015). The use of ECAS in plant protection: A green and efficient antimicrobial approach that primes selected defense genes. Ecotoxicology, 24(9), 1996–2008. doi:10.1007/s10646-015-1535-4
  • Zhang, C. L., Chen, X., Xia, X. D., Li, B. M., & Hung, Y. C. (2018). Viability assay of E-coli O157: H7 treated with electrolyzed oxidizing water using flow cytometry. Food Control, 88, 47–53. doi:10.1016/j.foodcont.2017.12.029
  • Zhang, S., Ye, C., Lin, H., Lv, L., & Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environmental Science & Technology, 49(3), 1721–1728. doi:10.1021/es505211e
  • Zhao, F., Bi, X. F., Hao, Y. L., & Liao, X. J. (2013). Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. Plos One , 8(4):e62388. doi:10.1371/journal.pone.0062388
  • Zheng, J., Kase, J., De Jesus, A., Sahu, S., Hayford, A. E., Luo, Y., … Bell, R. (2017). Microbial ecology of fresh vegetables. Food and Drug Administration Papers, 18. U.S. Department of Health and Human Services Chapter 17, pp. 341–357.
  • Zhu, Q., Gooneratne, R., & Hussain, M. A. (2017). Listeria monocytogenes in fresh produce: Outbreaks, prevalence and contamination Levels. Foods, 6(3), 21. doi:10.3390/foods6030021
  • Zupanc, M., Kosjek, T., Petkovsek, M., Dular, M., Kompare, B., Sirok, B., … Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry, 20(4), 1104–1112. doi:10.1016/j.ultsonch.2012.12.003
  • Zupanc, M., Kosjek, T., Petkovsek, M., Dular, M., Kompare, B., Sirok, B., … Heath, E. (2014). Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrasonics Sonochemistry, 21(3), 1213–1221. doi:10.1016/j.ultsonch.2013.10.025
  • Zupanc, M., Pandur, Ž., Stepišnik Perdih, T., Stopar, D., Petkovšek, M., & Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57, 147–165. doi:10.1016/j.ultsonch.2019.05.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.