2,641
Views
73
CrossRef citations to date
0
Altmetric
Articles

Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives

, , , , , , & ORCID Icon show all
Pages 2724-2774 | Published online: 23 Dec 2019

References

  • Abhilash, P. C., & Singh, N. (2010). Withania somnifera Dunal-mediated dissipation of lindane from simulated soil: Implications for rhizoremediation of contaminated soil. Journal of Soils and Sediments, 10(2), 272–282. doi:10.1007/s11368-009-0085-x
  • Akter, A., & Ali, M. H. (2011). Arsenic contamination in groundwater and its proposed remedial measures. International Journal of Environmental Science & Technology, 8(2), 433–443. doi:10.1007/BF03326230
  • Al-Ahmad, H., Galili, S., & Gressel, J. (2004). Tandem constructs to mitigate transgene persistence: Tobacco as a model. Molecular Ecology, 13(3), 697–710. doi:10.1046/j.1365-294X.2004.02092.x
  • An, L. Y., Pan, Y. H., Wang, Z. B., & Zhu, C. (2011). Heavy metal absorption status of five plant species in monoculture and intercropping. Plant and Soil, 345(1-2), 237–245. doi:10.1007/s11104-011-0775-1
  • Anderson, C., Moreno, F., & Meech, J. (2005). A field demonstration of gold phytoextraction technology. Minerals Engineering, 18(4), 385–392. doi:10.1016/j.mineng.2004.07.002
  • Andersson-Skold, Y., Bardos, P., Chalot, M., Bert, V., Crutu, G., Phanthavongsa, P., … Cundy, A. B. (2014). Developing and validating a practical decision support tool (DST) for biomass selection on marginal land. Journal of Environmental Management, 145, 113–121. doi:10.1016/j.jenvman.2014.06.012
  • Aronsson, P., Dahlin, T., & Dimitriou, I. (2010). Treatment of landfill leachate by irrigation of willow coppice – Plant response and treatment efficiency. Environmental Pollution, 158(3), 795–804. doi:10.1016/j.envpol.2009.10.003
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. doi:10.1016/j.ecoenv.2019.02.068
  • Azzi, V., Kanso, A., Kazpard, V., Kobeissi, A., Lartiges, B., & El Samrani, A. (2017). Lactuca sativa growth in compacted and non-compacted semi-arid alkaline soil under phosphate fertilizer treatment and cadmium contamination. Soil and Tillage Research, 165, 1–10. doi:10.1016/j.still.2016.07.014
  • Bani, A., Echevarria, G., Sulce, S., & Morel, J. L. (2015). Improving the agronomy of alyssum murale for extensive phytomining: A five-year field study. International Journal of Phytoremediation, 17(2), 117–127. doi:10.1080/15226514.2013.862204
  • Bani, A., Echevarria, G., Zhang, X., Benizri, E., Laubie, B., Morel, J. L., & Simonnot, M. O. (2015). The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Australian Journal of Botany, 63(2), 72–77. doi:10.1071/BT14285
  • Bañuelos, G., Terry, N., Leduc, D. L., Pilon-Smits, E. A. H., & Mackey, B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environmental Science & Technology, 39(6), 1771–1777. doi:10.1021/es049035f
  • Barabasz, A., Mills, R. F., Trojanowska, E., Williams, L. E., & Antosiewicz, D. M. (2011). Expression of AtECA3 in tobacco modifies its responses to manganese, zinc and calcium. Environmental and Experimental Botany, 72(2), 202–209. doi:10.1016/j.envexpbot.2011.03.006
  • Bareen, F. E., & Tahira, S. A. (2011). Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: Field trials for toxic metal cleanup using Suaeda fruticosa. Journal of Hazardous Materials, 186(1), 443–450. doi:10.1016/j.jhazmat.2010.11.022
  • Baum, C., Hrynkiewicz, K., Leinweber, P., & Meißner, R. (2006). Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). Journal of Plant Nutrition and Soil Science, 169(4), 516–522. doi:10.1002/jpln.200521925
  • Begon, M., Harper, J. L., & Townsend, C. R. (1996). Ecology: Individuals, populations, and communities (3rd ed.). Oxford, UK; Cambridge, MA: Blackwell Science.
  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. doi:10.1016/j.jenvman.2012.04.002
  • Bhuiyan, M. S. I., Raman, A., & Hodgkins, D. S. (2017). Plants in remediating salinity-affected agricultural landscapes. Proceedings of the Indian National Science Academy, 83(1), 51–66. doi:10.16943/ptinsa/2016/48857
  • Bissonnette, L., St-Arnaud, M., & Labrecque, M. (2010). Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332(1-2), 55–67. doi:10.1007/s11104-009-0273-x
  • Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. doi:10.1016/j.fuel.2012.03.024
  • Brunetti, G., Farrag, K., Soler-Rovira, P., Nigro, F., & Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160(3-4), 517–523. doi:10.1016/j.geoderma.2010.10.023
  • Camelo, L. G. D., deMiguez, S. R., & Marban, L. (1997). Heavy metals input with phosphate fertilizers used in Argentina. Science of the Total Environment, 204(3), 245–250.
  • Carvalho, C. F. M. D., Viana, D. G., Pires, F. R., Egreja Filho, F. B., Bonomo, R., Martins, L. F., … Rocha Júnior, P. R. D. (2019). Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes. Chemosphere, 214, 10–16. doi:10.1016/j.chemosphere.2018.09.096
  • Castiglione, S., Todeschini, V., Franchin, C., Torrigiani, P., Gastaldi, D., Cicatelli, A., … Lingua, G. (2009). Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil. Environmental Pollution, 157(7), 2108–2117. doi:10.1016/j.envpol.2009.02.011
  • Chaney, R. (1983). Plant uptake of inorganic waste constituents. In J. F. Patt, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge, NJ: Noyes Data Corporation.
  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environment Quality, 36(5), 1429–1443. doi:10.2134/jeq2006.0514
  • Chang, P., Gerhardt, K. E., Huang, X. D., Yu, X. M., Glick, B. R., Gerwing, P. D., & Greenberg, B. M. (2014). Plant Growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: Implications for phytoremediation of saline soils. International Journal of Phytoremediation, 16(11), 1133–1147. doi:10.1080/15226514.2013.821447
  • Che-Castaldo, J. P., & Inouye, D. W. (2015). Interspecific competition between a non-native metal-hyperaccumulating plant (Noccaea caerulescens, Brassicaceae) and a native congener across a soil-metal gradient. Australian Journal of Botany, 63(2), 141–151. doi:10.1071/BT15045
  • Chen, J., Li, S., Xu, B., Su, C., Jiang, Q., Zhou, C., … Xiao, M. (2017). Characterization of Burkholderia sp. XTB-5 for phenol degradation and plant growth promotion and its application in bioremediation of contaminated soil. Land Degradation & Development, 28(3), 1091–1099. doi:10.1002/ldr.2646
  • Chen, T., Li, H., Lei, M., Wu, B., Song, B., & Zhang, X. (2010). Accumulation of N, P and K in Pteris vittata L. during phytoremediation: A five-year field study. Acta Scientiae Circumstantiae, 30(2), 402–408.
  • Chen, Y., Ding, Q., Chao, Y., Wei, X., Wang, S., & Qiu, R. (2018). Structural development and assembly patterns of the. root-associated microbiomes during phytoremediation. Science of the Total Environment, 644, 1591–1601.
  • Chintakovid, W., Visoottiviseth, P., Khokiattiwong, S., & Lauengsuchonkul, S. (2008). Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere, 70(8), 1532–1537. doi:10.1016/j.chemosphere.2007.08.031
  • Choi, J.-W., Tillman, F. D., & Smith, J. A. (2002). Relative importance of gas-phase diffusive and advective trichloroethene (TCE) fluxes in the unsaturated zone under natural conditions. Environmental Science & Technology, 36, 3157–3164. doi:10.1021/es011348c
  • Cicatelli, A., Torrigiani, P., Todeschini, V., Biondi, S., Castiglione, S., & Lingua, G. (2014). Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: Biochemical and molecular aspects. Iforest – Biogeosciences and Forestry, 7(5), 333–341. doi:10.3832/ifor1045-007
  • Correa-Garcia, S., Pande, P., Seguin, A., St-Arnaud, M., & Yergeau, E. (2018). Rhizoremediation of petroleum hydrocarbons: A model system for plant microbiome manipulation. Microbial Biotechnology, 11(5), 819–832. doi:10.1111/1751-7915.13303
  • Courchesne, F., Turmel, M. C., Cloutier-Hurteau, B., Constantineau, S., Munro, L., & Labrecque, M. (2017). Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. International Journal of Phytoremediation, 19(6), 545–554. doi:10.1080/15226514.2016.1267700
  • da Silva, E. B., Lessl, J. T., Wilkie, A. C., Liu, X., Liu, Y. G., & Ma, L. N. Q. (2018). Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study. Chemosphere, 206, 736–741. doi:10.1016/j.chemosphere.2018.05.055
  • da Silva, E. B., Mussoline, W. A., Wilkie, A. C., & Ma, L. Q. (2019). Anaerobic digestion to reduce biomass and remove arsenic from As-hyperaccumulator Pteris vittata. Environmental Pollution, 250, 23–28. doi:10.1016/j.envpol.2019.03.117
  • Davison, J. (2005). Risk mitigation of genetically modified bacteria and plants designed for bioremediation. Journal of Industrial Microbiology & Biotechnology, 32(11-12), 639–650. doi:10.1007/s10295-005-0242-1
  • del Amor, F. M., & Cuadra-Crespo, P. (2012). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology, 39(1), 82–90. doi:10.1071/FP11173
  • Dickinson, N., Baker, A., Doronila, A., Laidlaw, S., & Reeves, R. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11(2), 97–114. doi:10.1080/15226510802378368
  • Doty, S. L., Freeman, J. L., Cohu, C. M., Burken, J. G., Firrincieli, A., Simon, A., … Blaylock, M. J. (2017). Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environmental Science & Technology, 51(17), 10050–10058. doi:10.1021/acs.est.7b01504
  • Doucette, W., Klein, H., Chard, J., Dupont, R., Plaehn, W., & Bugbee, B. (2013). Volatilization of trichloroethylene from trees and soil: Measurement and scaling approaches. Environmental Science & Technology, 47(11), 5813–5820. doi:10.1021/es304115c
  • Duchini, P. G., Guzatti, G. C., Ribeiro, H. M. N., & Sbrissia, A. F. (2014). Tiller size/density compensation in temperate climate grasses grown in monoculture or in intercropping systems under intermittent grazing. Grass and Forage Science, 69(4), 655–665. doi:10.1111/gfs.12095
  • EEA. (2018). Industrial pollution in Europe.
  • Eevers, N., Hawthorne, J. R., White, J. C., Vangronsveld, J., & Weyens, N. (2018). Endophyte-enhanced phytoremediation of DDE-contaminated using Cucurbita pepo: A field trial. International Journal of Phytoremediation, 20(4), 301–310. doi:10.1080/15226514.2017.1377150
  • Enell, A., Andersson-Sköld, Y., Vestin, J., & Wagelmans, M. (2016). Risk management and regeneration of brownfields using bioenergy crops. Journal of Soils and Sediments, 16(3), 987–1000. doi:10.1007/s11368-015-1264-6
  • Fan, W., Guo, Q., Liu, C. Y., Liu, X. Q., Zhang, M., Long, D. P., … Zhao, A. C. (2018). Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene, 645, 95–104. doi:10.1016/j.gene.2017.12.042
  • Farrag, K., Senesi, N., Rovira, P. S., & Brunetti, G. (2012). Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy. Environmental Monitoring and Assessment, 184(11), 6593–6606. doi:10.1007/s10661-011-2444-5
  • Fladung, M., & Hoenicka, H. (2012). Fifteen years of forest tree biosafety research in Germany. Iforest – Biogeosciences and Forestry, 5(1), 126–130. doi:10.3832/ifor0619-005
  • Friesl-Hanl, W., Platzer, K., Horak, O., & Gerzabek, M. H. (2009). Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: A field study in Austria over 5 years. Environmental Geochemistry and Health, 31(5), 581–594. doi:10.1007/s10653-009-9256-3
  • Galende, M. A., Becerril, J. M., Barrutia, O., Artetxe, U., Garbisu, C., & Hernández, A. (2014). Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil. Journal of Geochemical Exploration, 145, 181–189. doi:10.1016/j.gexplo.2014.06.006
  • Gamalero, E., Cesaro, P., Cicatelli, A., Todeschini, V., Musso, C., Castiglione, S., … Lingua, G. (2012). Poplar clones of different sizes, grown on a heavy metal polluted site, are associated with microbial populations of varying composition. Science of the Total Environment, 425, 262–270. doi:10.1016/j.scitotenv.2012.03.012
  • Gerhardt, K. E., MacNeill, G. J., Gerwing, P. D., & Greenberg, B. M. (2017). Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria (PGPR) to enhance phytoremediation Phytoremediation. Management of Environmental Contaminants, 5, 19–51.
  • Germaine, K. J., Byrne, J., Liu, X., Keohane, J., Culhane, J., Lally, R. D., … Dowling, D. N. (2015). Ecopiling: A combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00756
  • Gopalakrishnan, G., Burken, J. G., & Werth, C. J. (2009). Lignin and lipid impact on sorption and diffusion of trichloroethylene in tree branches for determining contaminant fate during plant sampling and phytoremediation. Environmental Science & Technology, 43(15), 5732–5738. doi:10.1021/es9006417
  • Grobelak, A., Placek, A., Grosser, A., Singh, B. R., Almås, Å. R., Napora, A., & Kacprzak, M. (2017). Effects of single sewage sludge application on soil phytoremediation. Journal of Cleaner Production, 155, 189–197. doi:10.1016/j.jclepro.2016.10.005
  • Gucwa-Przepióra, E., Małkowski, E., Sas-Nowosielska, A., Kucharski, R., Krzyżak, J., Kita, A., & Römkens, P. F. A. M. (2007). Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Environmental Pollution, 150(3), 338–346. doi:10.1016/j.envpol.2007.01.024
  • Guidi Nissim, W., & Labrecque, M. (2016). Planting microcuttings: An innovative method for establishing a willow vegetation cover. Ecological Engineering, 91, 472–476. doi:10.1016/j.ecoleng.2016.03.008
  • Haque, S., Zeyaullah, M., Nabi, G., Srivastava, P. S., & Ali, A. (2010). Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury. Journal of Microbiology and Biotechnology, 20(5), 917–924. doi:10.4014/jmb.1002.02001
  • He, Y. J., Langenhoff, A. A. M., Sutton, N. B., Rijnaarts, H. H. M., Blokland, M. H., Chen, F. R., … Schroder, P. (2017). Metabolism of ibuprofen by Phragmites australis: Uptake and phytodegradation. Environmental Science & Technology, 51(8), 4576–4584. doi:10.1021/acs.est.7b00458
  • Herzig, R., Nehnevajova, E., Pfistner, C., Schwitzguebel, J. P., Ricci, A., & Keller, C. (2014). Feasibility of labile zn phytoextraction using enhanced tobacco and sunflower: Results of five- and one-year field-scale experiments in Switzerland. International Journal of Phytoremediation, 16(7-8), 735–754. doi:10.1080/15226514.2013.856846
  • Hou, D., & Ok, Y. S. (2019). Soil pollution – Speed up global mapping. Nature, 566(7745), 455–455. doi:10.1038/d41586-019-00669-x
  • Hou, D. Y., & Al-Tabbaa, A. (2014). Sustainability: A new imperative in contaminated land remediation. Environmental Science & Policy, 39, 25–34. doi:10.1016/j.envsci.2014.02.003
  • Hou, D. Y., Al-Tabbaa, A., Guthrie, P., Hellings, J., & Gu, Q. B. (2014). Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. Journal of Cleaner Production, 83, 87–95. doi:10.1016/j.jclepro.2014.07.062
  • Hou, D. Y., Ding, Z. Y., Li, G. H., Wu, L. H., Hu, P. J., Guo, G. L., … Wang, X. H. (2018). A sustainability assessment framework for agricultural land remediation in China. Land Degradation & Development, 29(4), 1005–1018. doi:10.1002/ldr.2748
  • Hou, D. Y., Qi, S. Q., Zhao, B., Rigby, M., & O'Connor, D. (2017). Incorporating life cycle assessment with health risk assessment to select the 'greenest' cleanup level for Pb contaminated soil. Journal of Cleaner Production, 162, 1157–1168. doi:10.1016/j.jclepro.2017.06.135
  • Hou, D. Y., Song, Y. N., Zhang, J. L., Hou, M., O'Connor, D., & Harclerode, M. (2018). Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method. Journal of Cleaner Production, 171, 1396–1406. doi:10.1016/j.jclepro.2017.10.071
  • Hu, N., Lang, T., Ding, D. X., Hu, J. S., Li, C. W., Zhang, H., & Li, G. Y. (2019). Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. Journal of Environmental Radioactivity, 199-200, 58–65. doi:10.1016/j.jenvrad.2018.12.023
  • Hu, Z. H., Zhuo, F., Jing, S. H., Li, X., Yan, T. X., Lei, L. L., … Jing, Y. X. (2019). Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays. International Journal of Phytoremediation, 21(9), 857–865. doi:10.1080/15226514.2019.1577355
  • Huang, H., Yao, W. L., Li, R. H., Ali, A., Du, J., Guo, D., … Awasthi, M. K. (2018). Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresource Technology, 249, 487–493. doi:10.1016/j.biortech.2017.10.020
  • Hussein, S., Ruiz, O. N., Terry, N., & Daniell, H. (2007). Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environmental Science & Technology, 41(24), 8439–8446. doi:10.1021/es070908q
  • Jacobs, A., De Brabandere, L., Drouet, T., Sterckeman, T., & Noret, N. (2018). Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: Influence of nitrogen fertilization and planting density. Ecological Engineering, 116, 178–187. doi:10.1016/j.ecoleng.2018.03.007
  • Jacobs, A., Drouet, T., & Noret, N. (2018). Field evaluation of cultural cycles for improved cadmium and zinc phytoextraction with Noccaea caerulescens. Plant and Soil, 430(1-2), 381–394. doi:10.1007/s11104-018-3734-2
  • Jacobs, A., Drouet, T., Sterckeman, T., & Noret, N. (2017). Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials. Environmental Science and Pollution Research, 24(9), 8176–8188. doi:10.1007/s11356-017-8504-9
  • Jacobs, A., Noret, N., Van Baekel, A., Lienard, A., Colinet, G., & Drouet, T. (2019). Influence of edaphic conditions and nitrogen fertilizers on cadmium and zinc phytoextraction efficiency of Noccaea caerulescens. Science of the Total Environment, 665, 649–659. doi:10.1016/j.scitotenv.2019.02.073
  • Ji, P., Sun, T., Song, Y., Ackland, M. L., & Liu, Y. (2011). Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159(3), 762–768. doi:10.1016/j.envpol.2010.11.029
  • Jia, X., O'Connor, D., Hou, D., Jin, Y., Li, G., Zheng, C., … Luo, J. (2019). Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672, 551–562. doi:10.1016/j.scitotenv.2019.03.457
  • Kabouw, P., van Dam, N. M., van der Putten, W. H., & Biere, A. (2012). How genetic modification of roots affects rhizosphere processes and plant performance. Journal of Experimental Botany, 63(9), 3475–3483. doi:10.1093/jxb/err399
  • Kebeish, R., Azab, E., Peterhaensel, C., & El-Basheer, R. (2014). Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2. Environmental Science and Pollution Research, 21(13), 8224–8232. doi:10.1007/s11356-014-2710-5
  • Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., … Puschenreiter, M. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation, 17(11), 1005–1037. doi:10.1080/15226514.2014.1003788
  • Kiiskila, J. D., Das, P., Sarkar, D., & Datta, R. (2015). Phytoremediation of explosive-contaminated soils. Current Pollution Reports, 1(1), 23–34. doi:10.1007/s40726-015-0003-3
  • Kolbas, A., Kolbas, N., Marchand, L., Herzig, R., & Mench, M. (2018). Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series. Environmental Science and Pollution Research, 25(17), 16686–16701. doi:10.1007/s11356-018-1837-1
  • Kolbas, A., Mench, M., Herzig, R., Nehnevajova, E., & Bes, C. M. (2011). Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. International Journal of Phytoremediation, 13(Suppl.1), 55–76. doi:10.1080/15226514.2011.568536
  • Koppolu, L., Prasad, R., & Clements, L. D. (2004). Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: Pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy, 26(5), 463–472. doi:10.1016/j.biombioe.2003.08.010
  • Kumpiene, J., Antelo, J., Brännvall, E., Carabante, I., Ek, K., Komárek, M., … Wårell, L. (2019). In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review. Applied Geochemistry, 100, 335–351. doi:10.1016/j.apgeochem.2018.12.003
  • Lambers, H., Chapin, F. S., III, & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). New York: Springer.
  • Lebrun, M., Miard, F., Nandillon, R., Scippa, G. S., Bourgerie, S., & Morabito, D. (2019). Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222, 810–822. doi:10.1016/j.chemosphere.2019.01.188
  • Legault, E. K., James, C. A., Stewart, K., Muiznieks, I., Doty, S. L., & Strand, S. E. (2017). A field trial of TCE Phytoremediation by genetically modified poplars expressing cytochrome P450 2E1. Environmental Science & Technology, 51(11), 6090–6099. doi:10.1021/acs.est.5b04758
  • Lehoux, A. P., Lockwood, C. L., Mayes, W. M., Stewart, D. I., Mortimer, R. J. G., Gruiz, K., & Burke, I. T. (2013). Gypsum addition to soils contaminated by red mud: Implications for aluminium, arsenic, molybdenum and vanadium solubility. Environmental Geochemistry and Health, 35(5), 643–656. doi:10.1007/s10653-013-9547-6
  • Lei, M., Wan, X. M., Guo, G. H., Yang, J. X., & Chen, T. B. (2018). Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: Comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Environmental Science and Pollution Research, 25(1), 124–131. doi:10.1007/s11356-016-8184-x
  • Leon-Romero, M. A., Soto-Rios, P. C., Nomura, M., & Nishimura, O. (2018). Effect of steel slag to improve soil quality of Tsunami-impacted land while reducing the risk of heavy metal bioaccumulation. Water Air and Soil Pollution, 229(1)p, 14.
  • Lessl, J. T., Luo, J., & Ma, L. Q. (2014). Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. Journal of Hazardous Materials, 279, 485–492. doi:10.1016/j.jhazmat.2014.06.056
  • Li, J., Sun, Y., Yin, Y., Ji, R., Wu, J., Wang, X., & Guo, H. (2010). Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix × aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River. Journal of Hazardous Materials, 181(1-3), 673–678. doi:10.1016/j.jhazmat.2010.05.065
  • Li, J. T., Liao, B., Dai, Z. Y., Zhu, R., & Shu, W. S. (2009). Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere, 76(9), 1233–1239. doi:10.1016/j.chemosphere.2009.05.042
  • Li, N. Y., Guo, B., Li, H., Fu, Q. L., Feng, R. W., & Ding, Y. Z. (2016). Effects of double harvesting on heavy metal uptake by six forage species and the potential for phytoextraction in field. Pedosphere, 26(5), 717–724. doi:10.1016/S1002-0160(15)60082-0
  • Li, Y. M., Chaney, R., Brewer, E., Roseberg, R., Angle, J. S., Baker, A., … Nelkin, J. (2003). Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant and Soil, 249(1), 107–115. doi:10.1023/A:1022527330401
  • Li, Z. Y., Yang, S. X., Peng, X. Z., Li, F. M., Liu, J., Shu, H. Y., … Li, J. T. (2018). Field comparison of the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China. International Journal of Phytoremediation, 20(12), 1264–1273. doi:10.1080/15226514.2018.1474434
  • Lin, T. Y., Wei, C. C., Huang, C. W., Chang, C. H., Hsu, F. L., & Liao, V. H. C. (2016). Both phosphorus fertilizers and indigenous bacteria enhance arsenic release into groundwater in arsenic-contaminated aquifers. Journal of Agricultural and Food Chemistry, 64(11), 2214–2222. doi:10.1021/acs.jafc.6b00253
  • Liu, D. L., An, Z. G., Mao, Z. J., Ma, L. B., & Lu, Z. Q. (2015). Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. Plos One, 10(6), 15. doi:10.1371/journal.pone.0128824
  • Lopareva-Pohu, A., Pourrut, B., Waterlot, C., Garçon, G., Bidar, G., Pruvot, C., … Douay, F. (2011). Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial. Part 1. Influence on soil parameters and metal extractability. Science of the Total Environment, 409(3), 647–654. doi:10.1016/j.scitotenv.2010.10.040
  • Lord, R. A. (2015). Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass and Bioenergy, 78, 110–125. doi:10.1016/j.biombioe.2015.04.015
  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209–216. doi:10.1016/j.chemosphere.2014.06.024
  • Lyyra, S., Meagher, R. B., Kim, T., Heaton, A., Montello, P., Balish, R. S., & Merkle, S. A. (2007). Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnology Journal, 5(2), 254–262. doi:10.1111/j.1467-7652.2006.00236.x
  • Ma, J., Lei, E., Lei, M., Liu, Y. H., & Chen, T. B. (2018). Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere, 194, 737–744. doi:10.1016/j.chemosphere.2017.11.135
  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579–579. doi:10.1038/35054664
  • Mackenzie, A., Ball, A. S., Virdee, S. R., Mackenzie, A., Ball, A. S., & Virdee, S. R. (2001). Instant notes series. Ecology (2nd ed.). New York, NY: BIOS Scientific Publishers Ltd.
  • Mains, D., Craw, D., Rufaut, C., & Smith, C. (2006). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163–183. doi:10.1080/15226510600742559
  • Marr, L. C., Booth, E. C., Andersen, R. G., Widdowson, M. A., & Novak, J. T. (2006). Direct volatilization of naphthalene to the atmosphere at a phytoremediation site. Environmental Science & Technology, 40, 5560–5566.
  • Mathakutha, R., Steyn, C., Le Roux, P. C., Blom, I. J., Chown, S. L., Daru, B. H., … Greve, M. (2019). Invasive species differ in key functional traits from native and non-invasive alien plant species. Journal of Vegetation Science, 30(5), 994-1006. doi:10.1111/jvs.12772
  • Matsui, K., Togami, J., Mason, J. G., Chandler, S. F., & Tanaka, Y. (2013). Enhancement of phosphate absorption by garden plants by genetic engineering: A new tool for phytoremediation. Biomed Research International, 7. doi:10.1155/2013/182032
  • Maxted, A. P., Black, C. R., West, H. M., Crout, N. M. J., McGrath, S. P., & Young, S. D. (2007). Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: Development of a predictive model. Environmental Pollution, 150(3), 363–372. doi:10.1016/j.envpol.2007.01.021
  • Medas, D., De Giudici, G., Casu, M. A., Musu, E., Gianoncelli, A., Iadecola, A., … Lattanzi, P. (2015). Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. Pioneer plant. Environmental Science & Technology, 49(3), 1400–1408. doi:10.1021/es503842w
  • Meeinkuirt, W., Kruatrachue, M., Tanhan, P., Chaiyarat, R., & Pokethitiyook, P. (2013). Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water, Air, and Soil Pollution, 224(10).
  • Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., & Chaiyarat, R. (2012). Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation, 14(9), 925–938. doi:10.1080/15226514.2011.636403
  • Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., … Tack, F. M. G. (2010). The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78(1), 35–41. doi:10.1016/j.chemosphere.2009.08.015
  • Meissner, R., Bolze, S., Rupp, H., Baum, C., Zimmer, D., & Leinweber, P. (2009). Contamination of the Elbe River Floodplains and Testing of its Restoration by Phytoremediation. Wasserwirtschaft, 99(6), 30–37.
  • Mench, M., Lepp, N., Bert, V., Schwitzguebel, J. P., Gawronski, S. W., Schroder, P., & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10(6), 1039–1070. doi:10.1007/s11368-010-0190-x
  • Mench, M. J., Dellise, M., Bes, C. M., Marchand, L., Kolbas, A., Coustumer, P. L., & Oustrière, N. (2018). Phytomanagement and remediation of cu-contaminated soils by high yielding crops at a former wood preservation site: Sunflower biomass and ionome. Frontiers in Ecology and Evolution, 6(Sept). doi:10.3389/fevo.2018.00123
  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments - An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283. doi:10.1289/ehp.10608
  • MEP. (2014). National soil contamination survey report, China.
  • Mishima, S. I., Kimura, R., & Inoue, T. (2004). Estimation of cadmium load on Japanese farmland associated with the application of chemical fertilizers and livestock excreta. Soil Science and Plant Nutrition, 50(2), 263–267. doi:10.1080/00380768.2004.10408476
  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2004). Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environmental Practice, 6(2), 165–175. doi:10.1017/S1466046604000274
  • Morris, E. C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., … Bennett, M. J. (2017). Shaping 3D root system architecture. Current Biology, 27(17), R919–R930. doi:10.1016/j.cub.2017.06.043
  • Murakami, M., Nakagawa, F., Ae, N., Ito, M., & Arao, T. (2009). Phytoextraction by rice capable of accumulating Cd at high levels: Reduction of Cd content of rice grain. Environmental Science & Technology, 43(15), 5878–5883. doi:10.1021/es8036687
  • Nagata, T., Morita, H., Akizawa, T., & Pan-Hou, H. (2010). Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Applied Microbiology and Biotechnology, 87(2), 781–786. doi:10.1007/s00253-010-2572-9
  • Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Mandal, A. (2017). Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 218, 121–126. doi:10.1016/j.jplph.2017.08.001
  • Nausch, H., Sautter, C., Broer, I., & Schmidt, K. (2015). Public funded field trials with transgenic plants in Europe: A comparison between Germany and Switzerland. Current Opinion in Biotechnology, 32, 171–178. doi:10.1016/j.copbio.2014.12.023
  • Nejad, Z. D., Kim, J. W., & Jung, M. C. (2017). Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation. Geosciences Journal, 21(3), 385–396. doi:10.1007/s12303-016-0059-0
  • Nowack, B., Schulin, R., & Robinson, B. H. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology, 40(17), 5225–5232. doi:10.1021/es0604919
  • O'Connor, D., Hou, D. Y., Ok, Y. S., Mulder, J., Duan, L., Wu, Q. R., … Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761.
  • O'Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.-M., & Hou, D. (2019). Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249, 527–534. doi:10.1016/j.envpol.2019.03.092
  • O'Connor, D., Peng, T. Y., Li, G. H., Wang, S. X., Duan, L., Mulder, J., … Hou, D. Y. (2018). Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment, 621, 819–826. doi:10.1016/j.scitotenv.2017.11.213
  • O'Connor, D., Peng, T. Y., Zhang, J. L., Tsang, D. C. W., Alessi, D. S., Shen, Z. T., … Hou, D. Y. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619, 815–826. doi:10.1016/j.scitotenv.2017.11.132
  • O'Connor, D., Zheng, X., Hou, D., Shen, Z., Li, G., Miao, G., … Guo, M. (2019). Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environment International, 130, 104945. p doi:10.1016/j.envint.2019.104945
  • Ohlson, M., & Staaland, H. (2001). Mineral diversity in wild plants: Benefits and bane for moose. Oikos, 94(3), 442–454. doi:10.1034/j.1600-0706.2001.940307.x
  • Panda, D., Panda, D., Padhan, B., & Biswas, M. (2018). Growth and physiological response of lemongrass (Cymbopogon citratus (DC) Stapf.) under different levels of fly ash-amended soil. International Journal of Phytoremediation, 20(6), 538–544. doi:10.1080/15226514.2017.1393394
  • Pavel, P. B., Puschenreiter, M., Wenzel, W. W., Diacu, E., & Barbu, C. H. (2014). Aided phytostabilization using Miscanthus sinensis x giganteus on heavy metal-contaminated soils. Science of the Total Environment, 479, 125–131.
  • Pereira, A. C. C., Sobrinho, N., Tolon-Becerra, A., Magalhaes, M. O. L., Mazur, N., & Lastra-Bravo, X. (2013). Use of Cordia africana in the phytostabilization of substrates from excavations of the ore courtyard at the port of Itaguai. Soil and Sediment Contamination: An International Journal, 22(4), 376–389. doi:10.1080/15320383.2013.733446
  • Perez-Palacios, P., Romero-Aguilar, A., Delgadillo, J., Doukkali, B., Caviedes, M. A., Rodriguez-Llorente, I. D., & Pajuelo, E. (2017). Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environmental Science and Pollution Research, 24(17), 14910–14923. doi:10.1007/s11356-017-9092-4
  • Pérez Rodríguez, N., Langella, F., Rodushkin, I., Engström, E., Kothe, E., Alakangas, L., & Öhlander, B. (2014). The role of bacterial consortium and organic amendment in Cu and Fe isotope fractionation in plants on a polluted mine site. Environmental Science and Pollution Research, 21(11), 6836–6844. doi:10.1007/s11356-013-2156-1
  • Peuke, A. D., & Rennenberg, H. (2005). Phytoremediation with transgenic trees. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 60(3-4), 199–207.
  • Phieler, R., Merten, D., Roth, M., Büchel, G., & Kothe, E. (2015). Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environmental Science and Pollution Research, 22(24), 19408–19416. doi:10.1007/s11356-015-4471-1
  • Prapagdee, B., & Khonsue, N. (2015). Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: A field trial experiment. International Journal of Environmental Science and Technology, 12(12), 3843–3852. doi:10.1007/s13762-015-0816-z
  • Puschenreiter, M., Mench, M., Bert, V., Kumpiene, J., Kidd, P., Cundy, A., … Serani Loppinet, A. (2014). Best practice guidance for practical application of gentle remediation options (GRO). FP7 EU Project GREENLAND – Gentle Remediation of Trace Element Contaminated Land (FP7-KBBE-266124, Greenland). Retrieved from https://cordis.europa.eu/project/rcn/97418/reporting/en?rcn=172023.
  • Qu, G. Z., Tong, Y. A., Gao, P. C., Zhao, Z. P., Song, X. Y., & Ji, P. H. (2013). Phytoremediation potential of Solanum nigrum L. Under different cultivation protocols. Bulletin of Environmental Contamination and Toxicology, 91(3), 306–309. doi:10.1007/s00128-013-1046-z
  • Quintela-Sabarís, C., Marchand, L., Kidd, P. S., Friesl-Hanl, W., Puschenreiter, M., Kumpiene, J., … Mench, M. (2017). Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment, 599-600, 1388–1398. doi:10.1016/j.scitotenv.2017.04.187
  • Rai, S., Wasewar, K. L., & Agnihotri, A. (2017). Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Management & Research, 35(6), 563–580. doi:10.1177/0734242X17696147
  • Raldugina, G. N., Maree, M., Mattana, M., Shumkova, G., Mapelli, S., Kholodova, V. P., … Kuznetsov, V. V. (2018). Expression of rice OsMyb4 transcription factor improves tolerance to copper or zinc in canola plants. Biologia Plantarum, 62(3), 511–520. doi:10.1007/s10535-018-0800-9
  • Robinson, B. H., Anderson, C. W. N., & Dickinson, N. M. (2015). Phytoextraction: Where's the action? Journal of Geochemical Exploration, 151, 34–40. doi:10.1016/j.gexplo.2015.01.001
  • Robinson, B. H., Brooks, R. R., & Clothier, B. E. (1999). Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of Botany, 84(6), 689–694. doi:10.1006/anbo.1999.0970
  • Roderick, M. L., & Barnes, B. (2004). Self-thinning of plant populations from a dynamic viewpoint. Functional Ecology, 18(2), 197–203. doi:10.1111/j.0269-8463.2004.00832.x
  • Rodriguez-Ortiz, J. C., Valdez-Cepeda, R. D., Lara-Mireles, J. L., Rodriguez-Fuentes, H., Vazquez-Alvarado, R. E., Magallanes-Quintanar, R., & Garcia-Hernandez, J. L. (2006). Soil nitrogen fertilization effects on phytoextraction of cadmium and lead by tobacco (Nicotiana tabacum L.). Bioremediation Journal, 10(3), 105–114. doi:10.1080/10889860600939815
  • Ruiz, O. N., Alvarez, D., Torres, C., Roman, L., & Daniell, H. (2011). Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnology Journal, 9(5), 609–617. doi:10.1111/j.1467-7652.2011.00616.x
  • Ruiz, O. N., & Daniell, H. (2009). Genetic engineering to enhance mercury phytoremediation. Current Opinion in Biotechnology, 20(2), 213–219. doi:10.1016/j.copbio.2009.02.010
  • Ruttens, A., Boulet, J., Weyens, N., Smeets, K., Adriaensen, K., Meers, E., … Vangronsveld, J. (2011). Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. International Journal of Phytoremediation, 13(sup1), 194–207. doi:10.1080/15226514.2011.568543
  • Santibañez, C., De La Fuente, L. M., Bustamante, E., Silva, S., León-Lobos, P., & Ginocchio, R. (2012). Potential use of organic- and hard-rock mine wastes on aided phytostabilization of large-scale mine tailings under semiarid mediterranean climatic conditions: Short-Term field study. Applied and Environmental Soil Science, 2012, 1–15.
  • Santos, E., Pires, F. R., Ferreira, A. D., Egreja, F. B., Madalao, J. C., Bonomo, R., & da Rocha, P. R. (2019). Phytoremediation and natural attenuation of sulfentrazone: Mineralogy influence of three highly weathered soils. International Journal of Phytoremediation, 21(7), 652–662. doi:10.1080/15226514.2018.1556583
  • Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., … Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721. doi:10.1016/j.chemosphere.2016.12.116
  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22(12), 1007–1019. doi:10.1016/j.mineng.2009.04.001
  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: A review. Pedosphere, 26(2), 148–166. doi:10.1016/S1002-0160(15)60032-7
  • Shim, D., Kim, S., Choi, Y. I., Song, W. Y., Park, J., Youk, E. S., … Lee, Y. (2013). Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere, 90(4), 1478–1486. doi:10.1016/j.chemosphere.2012.09.044
  • Smith, K. E., Schwab, A. P., & Banks, M. K. (2008). Dissipation of PAHs in saturated, dredged sediments: A field trial. Chemosphere, 72(10), 1614–1619. doi:10.1016/j.chemosphere.2008.03.020
  • Song, Y., Kirkwood, N., Maksimović, Č., Zheng, X., O'Connor, D., Jin, Y., & Hou, D. (2019). Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Science of the Total Environment, 663, 568–579.
  • Song, Y. N., Hou, D. Y., Zhang, J. L., O'Connor, D., Li, G. H., Cu, Q. B., … Liu, P. (2018). Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Science of the Total Environment, 610, 391–401.
  • Strawn, D. G., Bohn, H. L., & O'Connor, G. A. (2015). Soil chemistry. John Wiley & Sons, Incorporated.
  • Stuczynski, T., Siebielec, G., Daniels, W. L., McCarty, G., & Chaney, R. L. (2007). Biological aspects of metal waste reclamation with biosolids. Journal of Environment Quality, 36(4), 1154–1162. doi:10.2134/jeq2006.0366
  • Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Advances in Intelligent Systems and Computing, 871.
  • Sun, L. P., Ma, Y. F., Wang, H. H., Huang, W. P., Wang, X. Z., Han, L., … Wang, B. J. (2018). Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4), 997–1002. doi:10.1016/j.bbrc.2018.02.133
  • Surat, W., Kruatrachue, M., Pokethitiyook, P., Tanhan, P., & Samranwanich, T. (2008). Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. International Journal of Phytoremediation, 10(4), 325–342. doi:10.1080/15226510802096184
  • Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M., & Falla, J. (2012). Assessment of Miscanthus × giganteus for rhizoremediation of long term PAH contaminated soils. Applied Soil Ecology, 62, 42–49.
  • Teng, Y., Luo, Y. M., Sun, X. H., Tu, C., Xu, L., Liu, W. X., … Christie, P. (2010). Influence of arbuscular Mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A field study. International Journal of Phytoremediation, 12(5), 516–533. doi:10.1080/15226510903353120
  • Terzaghi, E., Zanardini, E., Morosini, C., Raspa, G., Borin, S., Mapelli, F., … Di Guardo, A. (2018). Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Science of the Total Environment, 612, 544–560. doi:10.1016/j.scitotenv.2017.08.189
  • Thuiller, W., Gasso, N., Pino, J., & Vila, M. (2012). Ecological niche and species traits: Key drivers of regional plant invader assemblages. Biological Invasions, 14(9), 1963–1980. doi:10.1007/s10530-012-0206-0
  • Titah, H. S., Abdullah, S. R. S., Mushrifah, I., Anuar, N., Basri, H., & Mukhlisin, M. (2013). Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecological Engineering, 58, 303–313. doi:10.1016/j.ecoleng.2013.07.018
  • Touceda-González, M., Álvarez-López, V., Prieto-Fernández, Á., Rodríguez-Garrido, B., Trasar-Cepeda, C., Mench, M., … Kidd, P. S. (2017). Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Journal of Environmental Management, 186, 301–313. doi:10.1016/j.jenvman.2016.09.019
  • Unver, I. K., & Terzi, M. (2018). Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review. Journal of Mining and Environment, 9(3), 641–655.
  • Upadhyay, S. K., & Singh, D. P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17(1), 288–293. doi:10.1111/plb.12173
  • USEPA. (2004). Cleaning up the nation's waste sites. Markets and Technology Trends. Washington DC: USEPA.
  • USEPA. (2017). Superfund remedy report 15th edition EPA-542-R-17-001. Washington DC: USEPA.
  • Vamerali, T., Marchiol, L., Bandiera, M., Fellet, G., Dickinson, N. M., Lucchini, P., … Zerbi, G. (2012). Advances in agronomic management of phytoremediation: Methods and results from a 10-year study of metal-polluted soils. Italian Journal of Agronomy, 7(4), 42–330. doi:10.4081/ija.2012.e42
  • Van Slycken, S., Witters, N., Meiresonne, L., Meers, E., Ruttens, A., Van Peteghem, P., … Vangronsveld, J. (2013). Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. International Journal of Phytoremediation, 15(7), 677–689. doi:10.1080/15226514.2012.723070
  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., … Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794. doi:10.1007/s11356-009-0213-6
  • Vromman, D., Flores-Bavestrello, A., Šlejkovec, Z., Lapaille, S., Teixeira-Cardoso, C., Briceño, M., … Lutts, S. (2011). Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Science of the Total Environment, 412-413, 286–295. doi:10.1016/j.scitotenv.2011.09.085
  • Wang, F. Y. (2017). Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 47(20), 1901–1957. doi:10.1080/10643389.2017.1400853
  • Wang, F. Y., Adams, C. A., Yang, W. W., Sun, Y. H., & Shi, Z. Y. (2019). Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production. Critical Reviews in Environmental Science and Technology, 33. doi:10.1080/10643389.2019.1665945
  • Wang, J. X., Feng, X. B., Anderson, C. W. N., Xing, Y., & Shang, L. H. (2012). Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 221, 1–18. doi:10.1016/j.jhazmat.2012.04.035
  • Wang, L., Hou, D., Cao, Y., Ok, Y. S., Tack, F. M. G., Rinklebe, J., & O'Connor, D. (2020). Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International, 134, 105281. doi:10.1016/j.envint.2019.105281
  • Wang, X. T., Zhi, J. K., Liu, X. R., Zhang, H., Liu, H. B., & Xu, J. C. (2018). Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr. (PtoHMA5) demonstrate improved cadmium transport. International Journal of Biological Macromolecules, 113, 655–661. doi:10.1016/j.ijbiomac.2018.02.081
  • Wang, Y., Jiang, Q., Zhou, C., Chen, B., Zhao, W., Song, J., … Xiao, M. (2014). In-situ remediation of contaminated farmland by horizontal transfer of degradative plasmids among rhizosphere bacteria. Soil Use and Management, 30(2), 303–309. doi:10.1111/sum.12105
  • Wang, Y., O'Connor, D., Shen, Z., Lo, I. M. C., Tsang, D. C. W., Pehkonen, S., … Hou, D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 226, 540–549. doi:10.1016/j.jclepro.2019.04.128
  • Wei, Z. W., Hao, Z. K., Li, X. H., Guan, Z. B., Cai, Y. J., & Liao, X. R. (2019). The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements. Science of the Total Environment, 670, 950–960. doi:10.1016/j.scitotenv.2019.03.118
  • White, J. C., Ross, D. W., Gent, M. P. N., Eitzer, B. D., & Mattina, M. I. (2006). Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. Journal of Hazardous Materials, 137(3), 1750–1757. doi:10.1016/j.jhazmat.2006.05.012
  • Whitfield Åslund, M. L., Zeeb, B. A., Rutter, A., & Reimer, K. J. (2007). In situ phytoextraction of polychlorinated biphenyl – (PCB)contaminated soil. Science of the Total Environment, 374(1), 1–12. doi:10.1016/j.scitotenv.2006.11.052
  • Witters, N., Mendelsohn, R., Van Passel, S., Van Slycken, S., Weyens, N., Schreurs, E., … Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy, 39, 470–477. doi:10.1016/j.biombioe.2011.11.017
  • Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., … Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass and Bioenergy, 39, 454–469. doi:10.1016/j.biombioe.2011.08.016
  • Witters, N., Van Slycken, S., Ruttens, A., Adriaensen, K., Meers, E., Meiresonne, L., … Vangronsveld, J. (2009). Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: A sustainability assessment. Bioenergy Research, 2(3), 144–152. doi:10.1007/s12155-009-9042-1
  • Xia, H., Liang, D., Chen, F. B., Liao, M. A., Lin, L. J., Tang, Y., … Ren, W. (2018). Effects of mutual intercropping on cadmium accumulation by the accumulator plants Conyza canadensis, Cardamine hirsuta, and Cerstium glomeratum. International Journal of Phytoremediation, 20(9), 855–861. doi:10.1080/15226514.2018.1438356
  • Yadav, R., Arora, P., Kumar, S., & Chaudhury, A. (2010). Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology, 19(8), 1574–1588. doi:10.1007/s10646-010-0543-7
  • Yan, K., Xu, H., Zhao, S., Shan, J., & Chen, X. (2016). Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. Ecological Engineering, 88, 226–231. doi:10.1016/j.ecoleng.2015.12.040
  • Yanai, J., Zhao, F. J., McGrath, S. P., & Kosaki, T. (2006). Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution, 139(1), 167–175. doi:10.1016/j.envpol.2005.03.013
  • Yang, S., Cao, J., Li, F., Peng, X., Peng, Q., Yang, Z., & Chai, L. (2016). Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings. Environmental Science: Processes & Impacts, 18(1), 95–103. doi:10.1039/C5EM00471C
  • Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of Biology, Osaka City University, 14, 107–129.
  • Zayed, A., Pilon-Smits, E., deSouza, M., Lin, Z. Q., & Terry, N. (2000). Remediation of selenium-polluted soils and waters by phytovolatilization. Boca Raton: Lewis Publishers Inc.
  • Zhang, L., Rylott, E. L., Bruce, N. C., & Strand, S. E. (2019). Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. Planta, 249(4), 1007–1015. doi:10.1007/s00425-018-3057-9
  • Zhang, R. Q., Tang, C. F., Wen, S. Z., Liu, Y. G., & Li, K. L. (2006). Advances in research on genetically engineered plants for metal resistance. Journal of Integrative Plant Biology, 48(11), 1257–1265. doi:10.1111/j.1744-7909.2006.00346.x
  • Zhang, X., Houzelot, V., Bani, A., Morel, J. L., Echevarria, G., & Simonnot, M.-O. (2014). Selection and combustion of Ni-hyperaccumulators for the phytomining process. International Journal of Phytoremediation, 16(10), 1058–1072. doi:10.1080/15226514.2013.810585
  • Zhang, Y., Hou, D., O’Connor, D., Shen, Z., Shi, P., Ok, Y. S., … Luo, M. (2019). Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 49(15), 1386–1423. doi:10.1080/10643389.2019.1571354
  • Zhao, H., Wei, Y., Wang, J., & Chai, T. (2019). Isolation and expression analysis of cadmium-induced genes from Cd/Mn hyperaccumulator Phytolacca americana in response to high Cd exposure. Plant Biology, 21(1), 15–24. doi:10.1111/plb.12908
  • Zhu, B., Han, H. J., Fu, X. Y., Li, Z. J., Gao, J. J., & Yao, Q. H. (2018). Degradation of trinitrotoluene by transgenic nitroreductase in Arabidopsis plants. Plant Soil and Environment, 64(8), 379–385.
  • Zhu, B., Peng, R. H., Fu, X. Y., Jin, X. F., Zhao, W., Xu, J., … Yao, Q. H. (2012). Enhanced transformation of TNT by arabidopsis plants expressing an old yellow enzyme. Plos One, 7(7), 7. p doi:10.1371/journal.pone.0039861
  • Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil, 276(1-2), 153–162. doi:10.1007/s11104-005-3901-0
  • Zimmer, D., Baum, C., Leinweber, P., Hrynkiewicz, K., & Meissner, R. (2009). Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. International Journal of Phytoremediation, 11(2), 200–213. doi:10.1080/15226510802378483
  • Zimmer, D., Kiersch, K., Baum, C., Meissner, R., Muller, R., Jandl, G., & Leinweber, P. (2011). Scale-dependent variability of as and heavy metals in a river Elbe floodplain. CLEAN - Soil, Air, Water, 39(4), 328–337. doi:10.1002/clen.201000295
  • Złoch, M., Tyburski, J., & Hrynkiewicz, K. (2015). Analysis of microbiologically stimulated biomass of Salix viminalis L. In the presence of CD2 + under in vitro conditions – Implications for phytoremediation. Acta Biologica Cracoviensia s. Botanica, 57(2), 67–78. doi:10.1515/abcsb-2015-0024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.