1,249
Views
28
CrossRef citations to date
0
Altmetric
Articles

The importance of mineral ingredients in biochar production, properties and applications

Pages 113-139 | Published online: 26 Jan 2020

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Ahn, S. Y., Eom, S. Y., Rhie, Y. H., Sung, Y. M., Moon, C. E., Choi, G. M., & Kim, D. J. (2013). Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Applied Energy, 105, 207–216. doi:10.1016/j.apenergy.2013.01.023
  • Amonette, J. E., & Joseph, S. (2009). Characteristics of biochar: Microchemical properties. In: J. Lehmann & S. Joseph (Eds.), Biochar for environmental management (pp. 33–52). London: Earthscan.
  • Amutio, M., Lopez, G., Alvarez, J., Moreira, R., Duarte, G., Nunes, J., … Bilbao, J. (2013). Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project. Bioresource Technology, 129, 512–518. doi:10.1016/j.biortech.2012.11.114
  • Archanjo, B. S., Baptista, D. L., Sena, L. A., Cancado, L. G., Falcao, N. P. S., Jorio, A., & Achete, C. A. (2015). Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols. Environmental Science: Processes & Impacts, 17, 775–779. doi:10.1039/C4EM00590B
  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18. doi:10.1007/s11104-010-0464-5
  • Bagreev, A., Bandosz, T. J., & Locke, D. C. (2001). Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39(13), 1971–1979. doi:10.1016/S0008-6223(01)00026-4
  • Beaumont, O., & Schwob, Y. (1984). Influence of physical and chemical parameters on wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 23, 637–641. doi:10.1021/i200027a002
  • Becidan, M., Skreiberg, Ø., & Hustad, J. E. (2007). NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy & Fuels, 21(2), 1173–1180. doi:10.1021/ef060426k
  • Blasi, C. D., Galgano, A., & Branca, C. (2009). Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Industrial & Engineering Chemistry Research, 48, 3359–3369. doi:10.1021/ie801468y
  • Bradbury, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280. doi:10.1002/app.1979.070231112
  • Buss, W., Graham, M. C., Shepherd, J. G., & Masek, O. (2016). Risks and benefits of marginal biomass-derived biochars for plant growth. Science of the Total Environment, 569–570, 496–506. doi:10.1016/j.scitotenv.2016.06.129
  • Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 101(14), 5222–5228. doi:10.1016/j.biortech.2010.02.052
  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43(9), 3285–3291. doi:10.1021/es803092k
  • Chen, M. Q., Wang, J., Zhang, M. X., Chen, M. G., Zhu, X. F., Min, F. F., & Tan, Z. C. (2008). Catalytic effects of eight inorganic additives on pyrolysis of pinewood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82(1), 145–150. doi:10.1016/j.jaap.2008.03.001
  • DeGroot, W. F., Kannan, M. P., Richards, G. N., & Theander, O. (1990). Gasification of agricultural residues (biomass): Influence of inorganic constituents. Journal of Agricultural and Food Chemistry, 38(1), 320–323. doi:10.1021/jf00091a070
  • Dumanli, A. G., & Windle, A. H. (2012). Carbon fibres from cellulosic precursors: A review. Journal of Materials Science, 47, 4236–4250. doi:10.1007/s10853-011-6081-8
  • El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., … Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. doi:10.1016/j.geoderma.2018.09.034
  • Elleuch, A., Boussetta, A., Yu, J., Halouani, K., & Li, Y. (2013). Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physico-chemical characterization of the biochar fuel and cell performance examination. International Journal of Hydrogen Energy, 38(36), 16590–16604. doi:10.1016/j.ijhydene.2013.08.090.
  • Gan, C., Liu, Y. G., Tan, X. F., Wang, S. F., Zeng, G. M., Zheng, B. H., … Liu, W. (2015). Effect of porous zinc-biochar nanocomposites on Cr(VI) sorption from aqueous solution. RSC Advances, 5(44), 35107–35115. doi:10.1039/C5RA04416B
  • Han, L., Ro, K. S., Wang, Y., Sun, K., Sun, H., Libra, J. A., & Xing, B. (2018). Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 616–617, 335–344.
  • Han, Y. T., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. W. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341. doi:10.1016/j.chemosphere.2015.11.050
  • Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid Appalachian soil. Journal of Environmental Quality, 41(4), 1096–1106.
  • Ho, S.-H., Chen, Y.-D., Yang, Z.-K., Nagarajan, D., Chang, J.-S., & Ren, N.-Q. (2017). High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresource Technology, 246, 142–149. doi:10.1016/j.biortech.2017.08.025
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880
  • Jensen, A., Dam-Johansen, K., Wojtowicz, M. A., & Serio, M. A. (1998). TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy & Fuels, 12(5), 929–938. doi:10.1021/ef980008i
  • Jensen, P. A., Frandsen, F. J., Johansen, K. D., & Sander, B. (2000). Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy & Fuels, 14(6), 1280–1285. doi:10.1021/ef000104v
  • Jung, K. W., Hwang, M. J., Ahn, K. H., & Ok, Y. S. (2015). Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 12(10), 3363–3372. doi:10.1007/s13762-015-0766-5
  • Kimetu, J. M., Lehmann, J., Ngoze, S. O., Mugendi, D. N., Kinyangi, J. M., Riha, S., … Pell, A. N. (2008). Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems, 11(5), 726–739. doi:10.1007/s10021-008-9154-z
  • Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S. (2015). Mineral-organic associations: Formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1–140.
  • Kleen, M., & Gellerstedt, G. (1995). Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. Journal of Analytical and Applied Pyrolysis, 35(1), 15–41. doi:10.1016/0165-2370(95)00893-J
  • Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., … Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171(1), 61–82. doi:10.1002/jpln.200700048
  • Lahori, A. H., Zhang, Z., Guo, Z., Li, R., Mahar, A., Awasthi, M. K., … Guo, D. (2017). Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 528–538.
  • Laird, D. A. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 178–181. doi:10.2134/agrojnl2007.0161
  • Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144. doi:10.1038/447143a
  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Biochar for environmental management science and technology (pp. 1–12). London: Earthscan.
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812–1836. doi:10.1016/j.soilbio.2011.04.022
  • Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642. doi:10.1016/j.biortech.2018.09.030
  • Li, F. Y., Cao, X. D., Zhao, L., Wang, J., & Ding, Z. L. (2014). Effects of mineral additives on biochar formation: Carbon retention, stability, and properties. Environmental Science & Technology, 48(19), 11211–11217. doi:10.1021/es501885n
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. doi:10.1016/j.chemosphere.2017.03.072
  • Lin, Y., Munroe, P., Joseph, S., Kimber, S., & Van Zwieten, L. (2012). Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant and Soil, 357(1–2), 369–380. doi:10.1007/s11104-012-1169-8
  • Liu, N., Charrua, A. B., Weng, C. H., Yuan, X., & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology, 198, 55–62. doi:10.1016/j.biortech.2015.08.129
  • Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y., & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102, 137–143. doi:10.1016/j.jaap.2013.03.004
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3), 854–862.
  • Mahadevan, R., Adhikari, S., Shakya, R., Wang, K., Dayton, D., Lehrich, M., & Taylor, S. E. (2016). Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass – A microreactor study. Energy and Fuels, 30(4), 3045–3056.
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939–7954. doi:10.1021/es301029g
  • Marris, E. (2006). Putting the carbon back: Black is the new green. Nature, 442(7103), 624–626. doi:10.1038/442624a
  • Nartey, O. D., & Zhao, B. (2014). Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Advances in Materials Science and Engineering, 2014, 715398–715312. doi:10.1155/2014/715398
  • Nik-Azar, M., Hajaligol, M. R., Sohrabi, M., & Dabir, B. (1997). Mineral matter effects in rapid pyrolysis of beech wood. Fuel Processing Technology, 51(1–2), 7–17. doi:10.1016/S0378-3820(96)01074-0
  • Ong, H. R., Khan, M. R., Yousuf, A., Jeyaratnam, N., & Prasad, D. M. R. (2015). Effect of waste rubber powder as filler for plywood application. Polish Journal of Chemical Technology, 17(1), 41–47. doi:10.1515/pjct-2015-0007
  • Pan, J. J., Jiang, J., & Xu, R. K. (2014). Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere, 101, 71–76. doi:10.1016/j.chemosphere.2013.12.026
  • Pan, W.-P., & Richards, G. N. (1989). Influence of metal ions on volatile products of pyrolysis of wood. Journal of Analytical and Applied Pyrolysis, 16(2), 117–126. doi:10.1016/0165-2370(89)85011-9
  • Patwardhan, P. R., Satrio, J. A., Brown, R. C., & Shanks, B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource Technology, 101(12), 4646–4655. doi:10.1016/j.biortech.2010.01.112
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. doi:10.1016/j.rser.2014.10.074
  • Qian, L., & Chen, B. (2013). Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology, 47(15), 8759–8768. doi:10.1021/es401756h
  • Qian, L., Shang, X., Zhang, B., Zhang, W., Su, A., Chen, Y., … Chen, M. (2019). Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere, 215, 739–745. doi:10.1016/j.chemosphere.2018.10.030
  • Qin, Y., Li, G., Gao, Y., Zhang, L., Ok, Y. S., & An, T. (2018). Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research, 137, 130–143. doi:10.1016/j.watres.2018.03.012
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., … Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043
  • Renner, R. (2007). Rethinking biochar. Environmental Science & Technology, 41(17), 5932–5933. doi:10.1021/es0726097
  • Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708. doi:10.1007/s00374-006-0152-z
  • Rutherford, D. W., Wershaw, R. L., Rostad, C. E., & Kelly, C. N. (2012). Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass and Bioenergy, 46, 693–701. doi:10.1016/j.biombioe.2012.06.026
  • Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2013). Sorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1(4), 981–988. doi:10.1016/j.jece.2013.08.009
  • Sathishkumar, M., Mahadevan, A., Vijayaraghavan, K., Pavagadhi, S., & Balasubramanian, R. (2010). Green recovery of gold through biosorption, biocrystallization, and pyro-crystallization. Industrial & Engineering Chemistry Research, 49(16), 7129–7135. doi:10.1021/ie100104j
  • Sathishkumar, M., Pavagadhi, S., Vijayaraghavan, K., Balasubramanian, R., & Ong, S. L. (2010). Experimental studies on removal of microcystin-LR by peat. Journal of Hazardous Materials, 184(1–3), 417–424. doi:10.1016/j.jhazmat.2010.08.051
  • Senthilkumar, R., Prasad, D. M. R., Govindarajan, L., Saravanakumar, K., & Prasad, B. S. N. (2019). Green alga-mediated treatment process for removal of zinc from synthetic solution and industrial effluent. Environmental Technology, 40(10), 1262–1270. doi:10.1080/09593330.2017.1420696
  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525. doi:10.1071/SR10058
  • Smernik, R. J. (2009). Biochar and sorption of organic compounds. Biochar for environmental management: Science and technology (pp. 289–300). London: Routledge.
  • Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145. doi:10.1016/j.jaap.2011.11.018
  • Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., & Qiu, W. (2014). Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 242, 36–42. doi:10.1016/j.cej.2013.12.061
  • Streubel, J. D., Collins, H. P., Tarara, J. M., & Cochran, R. L. (2012). Biochar produced from anaerobically digested fiber reduces phosphorus in dairy lagoons. Journal of Environmental Quality, 41(4), 1166–1174. doi:10.2134/jeq2011.0131
  • Subedi, R., Taupe, N., Ikoyi, I., Bertora, C., Zavattaro, L., Schmalenberger, A., … Grignani, C. (2016). Chemically and biologically-mediated fertilizing value of manure-derived biochar. Science of the Total Environment, 550, 924–933. doi:10.1016/j.scitotenv.2016.01.160
  • Sun, K., Kang, M., Zhang, Z., Jin, J., Wang, Z., Pan, Z., … Xing, B. (2013). Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology, 47(20), 11473–11481. doi:10.1021/es4026744
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. doi:10.1016/j.chemosphere.2014.12.058
  • Tian, J., Miller, V., Chiu, P. C., Maresca, J. A., Guo, M., & Imhoff, P. T. (2016). Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment. Science of the Total Environment, 553, 596–606. doi:10.1016/j.scitotenv.2016.02.129
  • Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3), 828–834. doi:10.1016/j.cej.2011.06.069
  • Vijayaraghavan, K. (2016). Biochar: Production strategies, potential feedstocks and applications. Journal of Environment and Biotechnology Research, 4, 41–49.
  • Vijayaraghavan, K., & Raja, F. D. (2014). Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water Research, 63, 94–101. doi:10.1016/j.watres.2014.06.012
  • Vijayaraghavan, K., Sathishkumar, M., & Balasubramanian, R. (2011). Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination, 265(1–3), 54–59. doi:10.1016/j.desal.2010.07.030
  • Vijayaraghavan, K., & Yun, Y.-S. (2008a). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. doi:10.1016/j.biotechadv.2008.02.002
  • Vijayaraghavan, K., & Yun, Y. S. (2008b). Competition of Reactive red 4, Reactive orange 16 and Basic blue 3 during biosorption of Reactive blue 4 by polysulfone-immobilized Corynebacterium glutamicum. Journal of Hazardous Materials, 153(1–2), 478–486. doi:10.1016/j.jhazmat.2007.08.079
  • Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015). Removal of Pb(II), Cu(II), and Cd (II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356–362. doi:10.1016/j.biortech.2015.08.132
  • Wang, K., Zhang, J., Shanks, B. H., & Brown, R. C. (2015). The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation. Applied Energy, 148, 115–120. doi:10.1016/j.apenergy.2015.03.034
  • Wang, M., Wang, J. J., Tafti, N. D., Hollier, C. A., Myers, G., & Wang, X. (2019). Effect of alkali-enhanced biochar on silicon uptake and suppression of gray leaf spot development in perennial ryegrass. Crop Protection, 119, 9–16. doi:10.1016/j.cropro.2019.01.013
  • Wang, S. S., Gao, B., Zimmerman, A. R., Li, Y. C., Ma, L. Q., Harris, W. G., & Migliaccio, K. W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395. doi:10.1016/j.biortech.2014.10.104
  • Wang, W., Li, G., Xia, D., An, T., Zhao, H., & Wong, P. K. (2017). Photocatalytic nanomaterials for solar-driven bacterial inactivation: Recent progress and challenges. Environmental Science: Nano, 4(4), 782–799.
  • Wang, Y., Zhang, Y., Pei, L., Ying, D., Xu, X., Zhao, L., … Cao, X. (2017). Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents. Scientific Reports, 7(1), 41523–41530. doi:10.1038/srep41523
  • Wang, Z. Y., Wang, F., Cao, J. Q., & Wang, J. (2010). Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology, 91(8), 942–950. doi:10.1016/j.fuproc.2009.09.015
  • Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300(1–2), 9–20. doi:10.1007/s11104-007-9391-5
  • Waseem, M., Mustafa, S., Naeem, A., & Koper, G. (2010). Physiochemical properties of mixed oxides of iron and silicon. Journal of Non-Crystalline Solids, 356(50), 2704–2708. doi:10.1016/j.jnoncrysol.2010.09.055
  • Wen, W.-Y. (1980). Mechanisms of alkali metal catalysis in the gasification of coal, char, or graphite. Catalysis Reviews - Reviews, 22(1), 1–28. doi:10.1080/03602458008066528
  • Wnetrzak, R., Leahy, J. J., Chojnacka, K. W., Saeid, A., Novotny, E., Jensen, L. S., & Kwapinski, W. (2014). Influence of pig manure biochar mineral content on Cr(III) sorption capacity. Journal of Chemical Technology & Biotechnology, 89(4), 569–578. doi:10.1002/jctb.4159
  • Wu, H., Che, X., Ding, Z., Hu, X., Creamer, A. E., Chen, H., & Gao, B. (2016). Release of soluble elements from biochars derived from various biomass feedstocks. Environmental Science and Pollution Research, 23(2), 1905–1915. doi:10.1007/s11356-015-5451-1
  • Xia, D., Ng, T. W., An, T., Li, G., Li, Y., Yip, H. Y., … Wong, P.-K. (2013). A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: Natural magnetic sphalerite. Environmental Science & Technology, 47(19), 11166–11173. doi:10.1021/es402170b
  • Xu, G., Lv, Y., Sun, J., Shao, H., & Wei, L. (2012). Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. CLEAN – Soil, Air, Water, 40(10), 1093–1098. doi:10.1002/clen.201100738
  • Xu, M., Gao, P., Yang, Z., Su, L., Wu, J., Yang, G., … Xiao, Y. (2019). Biochar impacts on phosphorus cycling in rice ecosystem. Chemosphere, 225, 311–319. doi:10.1016/j.chemosphere.2019.03.069
  • Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102(22), 10293–10298. doi:10.1016/j.biortech.2011.08.089
  • Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92(8), 955–961. doi:10.1016/j.chemosphere.2013.03.009
  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358–368. doi:10.1007/s11356-012-0873-5
  • Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., & Cao, X. (2017). Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, 887–899. doi:10.1016/j.biortech.2017.06.023
  • Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. doi:10.1016/S0196-8904(03)00177-8
  • Yan, L., Kong, L., Qu, Z., Li, L., & Shen, G. (2015). Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustainable Chemistry & Engineering, 3(1), 125–132. doi:10.1021/sc500619r
  • Yang, X., Ng, W., Wong, B. S. E., Baeg, G. H., Wang, C.-H., & Ok, Y. S. (2019). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178–185. doi:10.1016/j.jhazmat.2018.10.047
  • Yang, Y., Sun, K., Han, L., Jin, J., Sun, H., Yang, Y., & Xing, B. (2018). Effect of minerals on the stability of biochar. Chemosphere, 204, 310–317. doi:10.1016/j.chemosphere.2018.04.057
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190(1–3), 501–507. doi:10.1016/j.jhazmat.2011.03.083
  • Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. doi:10.1016/j.chemosphere.2012.06.002
  • Yip, K., Tian, F., Hayashi, J.-I., & Wu, H. (2010). Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification. Energy & Fuels, 24(1), 173–181. doi:10.1021/ef900534n
  • Yuan, H., Lu, T., Huang, H., Zhao, D., Kobayashi, N., & Chen, Y. (2015). Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis, 112, 284–289. doi:10.1016/j.jaap.2015.01.010
  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. doi:10.1016/j.biortech.2010.11.018
  • Yue, Y., Cui, L., Lin, Q., Li, G., & Zhao, X. (2017). Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere, 173, 551–556. doi:10.1016/j.chemosphere.2017.01.096
  • Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., & He, P. (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports, 5(1), 9406. doi:10.1038/srep09406
  • Zhang, J., & Wang, Q. (2016). Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia–nitrogen capture. Journal of Cleaner Production, 112, 3927–3934. doi:10.1016/j.jclepro.2015.07.096
  • Zhang, M., Gao, B., Yao, Y., Xue, Y. W., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32. doi:10.1016/j.cej.2012.08.052
  • Zhang, T., Zhu, X., Shi, L., Li, J., Li, S., Lü, J., & Li, Y. (2017). Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Bioresource Technology, 235, 185–192.
  • Zhang, W., Mao, S., Chen, H., Huang, L., & Qiu, R. (2013). Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresource Technology, 147, 545–552. doi:10.1016/j.biortech.2013.08.082
  • Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9. doi:10.1016/j.jhazmat.2013.04.015
  • Zhao, L., Cao, X., Zheng, W., Scott, J. W., Sharma, B. K., & Chen, X. (2016). Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4(3), 1630–1636. doi:10.1021/acssuschemeng.5b01570
  • Zhao, L., Cao, X., Zheng, W., Wang, Q., & Yang, F. (2015). Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere, 136, 133–139.
  • Zhao, Z., & Zhou, W. (2019). Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole. Environmental Pollution, 245, 208–217. doi:10.1016/j.envpol.2018.11.013
  • Zhou, Y. M., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. D. (2014). Biochar supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542. doi:10.1016/j.biortech.2013.11.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.