1,114
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Granular biofilms: Function, application, and new trends as model microbial communities

, & ORCID Icon
Pages 1702-1725 | Published online: 29 May 2020

References

  • Abma, W. R., Driessen, W., Haarhuis, R., & van Loosdrecht, M. C. M. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science and Technology, 61(7), 1715–1722. doi:10.2166/wst.2010.977
  • Abma, W. R., Schultz, C. E., Mulder, J. W., van der Star, W. R. L., Strous, M., Tokutomi, T., & van Loosdrecht, M. C. M. (2007). Full-scale granular sludge anammox process. Water Science and Technology, 55(8–9), 27–33. doi:10.2166/wst.2007.238
  • Adav, S. S., Lee, D.-J., & Lai, J. Y. (2010). Microbial community of acetate utilizing denitrifiers in aerobic granules. Applied Microbiology and Biotechnology, 85(3), 753–762. doi:10.1007/s00253-009-2263-6
  • Adav, S. S., Lee, D.-J., Show, K.-Y., & Tay, J.-H. (2008). Aerobic granular sludge: Recent advances. Biotechnology Advances, 26(5), 411–423. doi:10.1016/j.biotechadv.2008.05.002
  • Afridi, Z. U. R., Wu, J., Cao, Z. P., Zhang, Z. L., Li, Z. H., Poncin, S., & Li, H. Z. (2017). Insight into mass transfer by convective diffusion in anaerobic granules to enhance biogas production. Biochemical Engineering Journal, 127, 154–160. doi:10.1016/j.bej.2017.07.012
  • Ahn, Y. (2000). Physicochemical and microbial aspects of anaerobic granular biopellets. Journal of Environmental Science and Health, Part A, 35(9), 1617–1635. doi:10.1080/10934520009377059
  • Ali, M., Wang, Z., Salam, K. W., Hari, A. R., Pronk, M., van Loosdrecht, M. C. M., & Saikaly, P. E. (2019). Importance of species sorting and immigration on the bacterial assembly of different-sized aggregates in a full-scale aerobic granular sludge plant. Environmental Science & Technology, 53(14), 8291–8301. doi:10.1021/acs.est.8b07303
  • Alphenaar, P. A., Pérez, M. C., & Lettinga, G. (1993). The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Applied Microbiology and Biotechnology, 39(2), 276–280. doi:10.1007/BF00228619
  • Aqeel, H., Basuvaraj, M., Hall, M., Neufeld, J. D., & Liss, S. N. (2016). Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage. Applied Microbiology and Biotechnology, 100(1), 447–460. doi:10.1007/s00253-015-6981-7
  • Arcand, Y., Guiot, S. R., Desrochers, M., & Chavarie, C. (1994). Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. The Chemical Engineering Journal and the Biochemical Engineering Journal, 56(1), B23–B35. doi:10.1016/0923-0467(94)87028-4
  • Ardern, E., & Lockett, W. T. (1914a). Experiments on the oxidation of sewage without the aid of filters. Journal of the Society of Chemical Industry, 33(10), 523–539. doi:10.1002/jctb.5000331005
  • Ardern, E., & Lockett, W. T. (1914b). Experiments on the oxidation of sewage without the aid of filters, part II. Journal of the Society of Chemical Industry, 33(23), 1122–1124. doi:10.1002/jctb.5000332304
  • Ardern, E., & Lockett, W. T. (1915). Experiments on the oxidation of sewage without the aid of filters, part, III. Journal of the Indian Chemical Society, 3, 937.
  • Bagchi, S., Lamendella, R., Strutt, S., Van Loosdrecht, M. C. M., & Saikaly, P. E. (2016). Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor. Scientific Reports, 6, 28327. doi:10.1038/srep28327
  • Batstone, D. J., & Keller, J. (2001). Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 35(7), 1723–1729. doi:10.1016/S0043-1354(00)00446-2
  • Bellouti, M., Alves, M. M., Novais, J. M., & Mota, M. (1997). Flocs vs granules: Differentiation by fractal dimension. Water Research, 31(5), 1227–1231. doi:10.1016/S0043-1354(96)00347-8
  • Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33(10), 2283–2290. doi:10.1016/S0043-1354(98)00463-1
  • Beun, J. J., van Loosdrecht, M. C. M., & Heijnen, J. J. (2002). Aerobic granulation in a sequencing batch airlift reactor. Water Research, 36(3), 702–712. doi:10.1016/S0043-1354(01)00250-0
  • Bhunia, P., & Ghangrekar, M. M. (2007). Required minimum granule size in UASB reactor and characteristics variation with size. Bioresource Technology, 98(5), 994–999. doi:10.1016/j.biortech.2006.04.019
  • Bovio, P., Cabezas, A., & Etchebehere, C. (2019). Preliminary analysis of Chloroflexi populations in full-scale UASB methanogenic reactors. Journal of Applied Microbiology, 126(2), 667–683. doi:10.1111/jam.14115
  • Campanaro, S., Treu, L., Kougias, P. G., De Francisci, D., Valle, G., & Angelidaki, I. (2016). Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels, 9(1), 26. doi:10.1186/s13068-016-0441-1
  • Campanaro, S., Treu, L., Rodriguez-R, L. M., Kovalovszki, A., Ziels, R. M., Maus, I., Zhu, X., Kougias, P. G., Basile, A., Luo, G., Schlüter, A., Konstantinidis, K. T., & Angelidaki, I. (2019). The anaerobic digestion microbiome: A collection of 1600 metagenome-assembled genomes shows high species diversity related to methane production. BioRxiv, 2019, 680553. doi:10.1101/680553
  • Cerrillo, M., Morey, L., Viñas, M., & Bonmatí, A. (2016). Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor. Applied Microbiology and Biotechnology, 100(23), 10137–10146. doi:10.1007/s00253-016-7862-4
  • Chang, F.-Y., & Lin, C.-Y. (2004). Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy, 29(1), 33–39. doi:10.1016/S0360-3199(03)00082-X
  • Chen, Y.-Y., Ju, S.-P., & Lee, D.-J. (2016). Aerobic granulation of protein-rich granules from nitrogen-lean wastewaters. Bioresource Technology, 218, 469–475. doi:10.1016/j.biortech.2016.06.120
  • Cho, S.-K., Kim, D.-H., Quince, C., Im, W.-T., Oh, S.-E., & Shin, S. G. (2016). Low-strength ultrasonication positively affects methanogenic granules toward higher AD performance: Implications from microbial community shift. Ultrasonics Sonochemistry, 32, 198–203. doi:10.1016/j.ultsonch.2016.03.010
  • Chu, Z., Wang, K., Li, X., Zhu, M., Yang, L., & Zhang, J. (2015). Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing. Chemical Engineering Journal, 262, 41–48. doi:10.1016/j.cej.2014.09.067
  • Connelly, S., Shin, S. G., Dillon, R. J., Ijaz, U. Z., Quince, C., Sloan, W. T., & Collins, G. (2017). Bioreactor scalability: Laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors. Frontiers in Microbiology, 8, 664. doi:10.3389/fmicb.2017.00664
  • Cordero, O. X., & Datta, M. S. (2016). Microbial interactions and community assembly at microscales. Current Opinion in Microbiology, 31, 227–234. doi:10.1016/j.mib.2016.03.015
  • Cydzik-Kwiatkowska, A., Rusanowska, P., & Głowacka, K. (2016). Operation mode and external carbon dose as determining factors in elemental composition and morphology of aerobic granules. Archives of Environmental Protection, 42, 74–79. (1)doi:10.1515/aep-2016-0009
  • Dangcong, P., Bernet, N., Delgenes, J.-P., & Moletta, R. (1999). Aerobic granular sludge—A case report. Water Research, 33(3), 890–893. doi:10.1016/S0043-1354(98)00443-6
  • Ding, Z., Bourven, I., Guibaud, G., van Hullebusch, E. D., Panico, A., Pirozzi, F., & Esposito, G. (2015). Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment. Applied Microbiology and Biotechnology, 99(23), 9883–9905. doi:10.1007/s00253-015-6964-8
  • Fang, H. H. P., Liu, H., & Zhang, T. (2002). Characterization of a hydrogen-producing granular sludge. Biotechnology and Bioengineering, 78(1), 44–52. doi:10.1002/bit.10174
  • Fernández, I., Vázquez-Padín, J. R., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2008). Biofilm and granular systems to improve Anammox biomass retention. Biochemical Engineering Journal, 42(3), 308–313. doi:10.1016/j.bej.2008.07.011
  • Franca, R. D. G., Pinheiro, H. M., van Loosdrecht, M. C. M., & Lourenço, N. D. (2018). Stability of aerobic granules during long-term bioreactor operation. Biotechnology Advances, 36(1), 228–246. doi:10.1016/j.biotechadv.2017.11.005
  • Fukuzaki, S., Nishio, N., & Nagai, S. (1995). High rate performance and characterization of granular methanogenic sludges in upflow anaerobic sludge blanket reactors fed with various defined substrates. Journal of Fermentation and Bioengineering, 79(4), 354–359. doi:10.1016/0922-338X(95)93994-U
  • Gagliano, M. C., Ismail, S. B., Stams, A. J. M., Plugge, C. M., Temmink, H., & Van Lier, J. B. (2017). Biofilm formation and granule properties in anaerobic digestion at high salinity. Water Research, 121, 61–71. doi:10.1016/j.watres.2017.05.016
  • Gao, D., Liu, L., Liang, H., & Wu, W. (2011). Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment. Critical Reviews in Biotechnology, 31(2), 137–152. doi:10.3109/07388551.2010.497961
  • Garcia-Pichel, F., Wade, B. D., & Farmer, J. D. (2002). Jet-suspended, calcite-ballasted cyanobacterial waterwarts in a desert spring. Journal of Phycology, 38(3), 420–428. doi:10.1046/j.1529-8817.2002.01178.x
  • Gonzalez-Gil, G., Sougrat, R., Behzad, A. R., Lens, P. N. L., & Saikaly, P. E. (2015). Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Microbial Ecology, 70(1), 118–131. doi:10.1007/s00248-014-0546-7
  • Guo, J., Peng, Y., Fan, L., Zhang, L., Ni, B.-J., Kartal, B., Feng, X., Jetten, M. S. M., & Yuan, Z. (2016). Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 18(9), 2979–2993. doi:10.1111/1462-2920.13132
  • Guo, J., Peng, Y., Ni, B.-J., Han, X., Fan, L., & Yuan, Z. (2015). Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microbial Cell Factories, 14(1), 33. doi:10.1186/s12934-015-0218-4
  • He, Q., Zhou, J., Song, Q., Zhang, W., Wang, H., & Liu, L. (2017). Elucidation of microbial characterization of aerobic granules in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal at varying carbon to phosphorus ratios. Bioresource Technology, 241, 127–133. doi:10.1016/j.biortech.2017.05.093
  • Heijnen, J. J., & van Loosdrecht, M. C. M. (1998). US 6,566,119 B1. United States.
  • Henze, M., & Harremoës, P. (1983). Anaerobic treatment of wastewater in fixed film reactors – A literature review. Water Science and Technology, 15(8–9), 1–101. doi:10.2166/wst.1983.0161
  • Henze, M., & van Loosdrecht, M. C. M., Ekama, G. A., & Brdjanovic, D. (2008). Biological wastewater treatment. IWA Publishing.
  • Hu, Z., Speth, D., Francoijs, K.-J., Quan, Z.-X., & Jetten, M. S. M. (2012). Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica.” Frontiers in Microbiology, 3, 366. doi:10.3389/fmicb.2012.00366
  • Hulshoff Pol, L. W., de Castro Lopes, S. I., Lettinga, G., & Lens, P. N. L. (2004). Anaerobic sludge granulation. Water Research, 38(6), 1376–1389. doi:10.1016/j.watres.2003.12.002
  • Hulshoff Pol, L. W., de Zeeuw, W. J., Velzeboer, C. T. M., & Lettinga, G. (1983). Granulation in UASB-reactors. Water Science and Technology, 15(8–9), 291–304. doi:10.2166/wst.1983.0172
  • Jang, A., Yoon, Y.-H., Kim, I. S., Kim, K.-S., & Bishop, P. L. (2003). Characterization and evaluation of aerobic granules in sequencing batch reactor. Journal of Biotechnology, 105(1–2), 71–82. doi:10.1016/S0168-1656(03)00142-1
  • Jeison, D., & Chamy, R. (1998). Novel technique for measuring the size distribution of granules from anaerobic reactors for wastewater treatment. Biotechnology Techniques, 12(9), 659–662. doi:10.1023/A:1008800601291
  • Jetten, M. S. M., Camp, H. J. M., Kuenen, J. G., & Strous, M. (2010). Description of the order brocadiales. In N. R., Krieg, W. Ludwig, W. Whitman, B. P. Hedlund, B. J. Paster, J. T. Staley, N. Ward, D. Brown, & A. Parte (Eds.), Bergey’s manual of systematic bacteriology (Vol. 4, pp. 596–603). Springer.
  • Jetten, M. S. M., van Niftrik, L., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. M. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 44(2–3), 65–84. doi:10.1080/10409230902722783
  • Jia, F., Yang, Q., Liu, X., Li, X., Li, B., Zhang, L., & Peng, Y. (2017). Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms. Environmental Science & Technology, 51(6), 3260–3268. doi:10.1021/acs.est.6b05761
  • Jiang, J., Wu, J., Zhang, Z., Poncin, S., Falk, V., & Li, H. Z. (2016). Crater formation on anaerobic granular sludge. Chemical Engineering Journal, 300, 423–428. doi:10.1016/j.cej.2016.05.053
  • Kartal, B., Kuenen, J. G., & van Loosdrecht, M. C. M. (2010). Engineering. Sewage treatment with anammox. Science (New York, N.Y.), 328(5979), 702–703. doi:10.1126/science.1185941
  • Kato, M. T. (1994). Treatment of low-strength soluble wastewaters in UASB reactors. Journal of Fermentation and Bioengineering, 77(6), 679–686. doi:10.1002/bit.260440410
  • Kato, M. T., Field, J. A., & Lettinga, G. (1997). The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Science and Technology, 36(6–7), 375–382. doi:10.2166/wst.1997.0613
  • Kato, M. T., Field, J. A., Versteeg, P., & Lettinga, G. (1994). Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnology and Bioengineering, 44(4), 469–479.
  • Kato, M. T., Rebac, S., & Lettinga, G. (1999). Anaerobic treatment of low-strength brewery wastewater in expanded granular sludge bed reactor. Applied Biochemistry and Biotechnology, 76(1), 15–32. doi:10.1385/ABAB:76:1:15
  • Keating, C., Hughes, D., Mahony, T., Cysneiros, D., Ijaz, U. Z., Smith, C. J., & O'Flaherty, V. (2018). Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage. FEMS Microbiology Ecology, 94(7), fiy095. doi:10.1093/femsec/fiy095
  • Kent, T. R., Bott, C. B., & Wang, Z. W. (2018). State of the art of aerobic granulation in continuous flow bioreactors. Biotechnology Advances, 36(4), 1139–1166. doi:10.1016/j.biotechadv.2018.03.015
  • Khramenkov, S. V., Kozlov, M. N., Kevbrina, M. V., Dorofeev, A. G., Kazakova, E. A., Grachev, V. A., Kuznetsov, B. B., Polyakov, D. Y., & Nikolaev, Y. A. (2013). A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology, 82(5), 628–636. doi:10.1134/S002626171305007X
  • Kleerebezem, R., Joosse, B., Rozendal, R., & Van Loosdrecht, M. C. M. (2015). Anaerobic digestion without biogas? Reviews in Environmental Science and Bio/Technology, 14(4), 787–801. doi:10.1007/s11157-015-9374-6
  • Koster, I. W., & Lettinga, G. (1988). Anaerobic digestion at extreme ammonia concentrations. Biological Wastes, 25(1), 51–59. doi:10.1016/0269-7483(88)90127-9
  • Kuenen, J. G. (2008). Anammox bacteria: From discovery to application. Nature Reviews. Microbiology, 6(4), 320–326. doi:10.1038/nrmicro1857
  • Kuroda, K., Nobu, M. K., Mei, R., Narihiro, T., Bocher, B. T. W., Yamaguchi, T., & Liu, W.-T. (2016). A single-granule-level approach reveals ecological heterogeneity in an upflow anaerobic sludge blanket reactor. PLoS One, 11(12), e0167788. doi:10.1371/journal.pone.0167788
  • Lawson, C. E., Wu, S., Bhattacharjee, A. S., Hamilton, J. J., McMahon, K. D., Goel, R., & Noguera, D. R. (2017). Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications, 8, 15416. doi:10.1038/ncomms15416
  • Lettinga, G. (1995). Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek, 67(1), 3–28. doi:10.1007/BF00872193
  • Lettinga, G. (2001). Digestion and degradation, air for life. Water Science and Technology, 44(8), 157–176. doi:10.2166/wst.2001.0489
  • Lettinga, G. (2014). My anaerobic sustainability story. LeAF.
  • Lettinga, G., Roersma, R., & Grin, P. (1983). Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and bioengineering, 25(7), 1701–1723. doi:10.1002/bit.260250703
  • Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22(4), 699–734. doi:10.1002/bit.260220402
  • Leventhal, G. E., Boix, C., Kuechler, U., Enke, T. N., Sliwerska, E., Holliger, C., & Cordero, O. X. (2018). Strain-level diversity drives alternative community types in millimetre-scale granular biofilms. Nature Microbiology, 3(11), 1295–1303. doi:10.1038/s41564-018-0242-3
  • Li, A., Yang, S., Li, X., & Gu, J. (2008). Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 42(13), 3552–3560. doi:10.1016/j.watres.2008.05.005
  • Lin, X., & Wang, Y. (2017). Microstructure of anammox granules and mechanisms endowing their intensity revealed by microscopic inspection and rheometry. Water Research, 120, 22–31. doi:10.1016/j.watres.2017.04.053
  • Liu, J., Li, J., Wang, X., Zhang, Q., & Littleton, H. (2017). Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP. Journal of Environmental Sciences (China), 51, 332–341. doi:10.1016/j.jes.2016.06.012
  • Liu, Y., & Tay, J. H. (2002). The essential role of hydrodynamic shear force in the. Water Research, 36(7), 1653–1665. doi:10.1016/S0043-1354(01)00379-7
  • Liu, Y., & Tay, J. H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22(7), 533–563. doi:10.1016/j.biotechadv.2004.05.001
  • Liu, Y., Wang, Z.-W., Qin, L., Liu, Y.-Q., & Tay, J.-H. (2005). Selection pressure-driven aerobic granulation in a sequencing batch reactor. Applied Microbiology and Biotechnology, 67(1), 26–32. doi:10.1007/s00253-004-1820-2
  • López-Palau, S., Dosta, J., & Mata-Alvarez, J. (2009). Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater. Water Science and Technology, 60(4), 1049–1054. doi:10.2166/wst.2009.554
  • Lu, H., Zheng, P., Ji, Q., Zhang, H., Ji, J., Wang, L., Ding, S., Chen, T.-T., Zhang, J.-Q., Tang, C.-J., & Chen, J. (2012). The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresource Technology, 123, 312–317. doi:10.1016/j.biortech.2012.07.003
  • Lv, Y., Wan, C., Lee, D.-J., Liu, X., & Tay, J.-H. (2014). Microbial communities of aerobic granules: Granulation mechanisms. Bioresource Technology, 169, 344–351. doi:10.1016/j.biortech.2014.07.005
  • Ma, B., Peng, Y., Zhang, S., Wang, J., Gan, Y., Chang, J., Wang, S., Wang, S., & Zhu, G. (2013). Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresource Technology, 129, 606–611. doi:10.1016/j.biortech.2012.11.025
  • MacLeod, F. A., Guiot, S. R., & Costerton, J. W. (1990). Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology, 56(6), 1598–1607. doi:10.1128/AEM.56.6.1598-1607.1990
  • Manonmani, U., & Joseph, K. (2018). Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater. Environmental Chemistry Letters, 16(3), 881–901. doi:10.1007/s10311-018-0732-9
  • McCarty, P. L. (1964). Anaerobic waste treatment fundamentals. Public Works, 95(9), 107–112.
  • McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer-can this be achieved? Environmental Science & Technology, 45(17), 7100–7106. doi:10.1021/es2014264
  • McHugh, S., O'Reilly, C., Mahony, T., Colleran, E., & O'Flaherty, V. (2003). Anaerobic granular sludge bioreactor technology. Reviews in Environmental Science and Bio/Technology, 2(2–4), 225–245. doi:10.1023/B:RESB.0000040465.45300.97
  • McKeown, R. M., Hughes, D., Collins, G., Mahony, T., & O'Flaherty, V. (2012). Low-temperature anaerobic digestion for wastewater treatment. Current Opinion in Biotechnology, 23(3), 444–451. doi:10.1016/j.copbio.2011.11.025
  • McKeown, R. M., Scully, C., Enright, A.-M., Chinalia, F. A., Lee, C., Mahony, T., Collins, G., & O'Flaherty, V. (2009). Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. The ISME Journal, 3(11), 1231–1242. doi:10.1038/ismej.2009.67
  • Milferstedt, K., Hamelin, J., Park, C., Jung, J., Hwang, Y., Cho, S.-K., Jung, K.-W., & Kim, D.-H. (2017). Biogranules applied in environmental engineering. International Journal of Hydrogen Energy, 42(45), 27801–27811. doi:10.1016/j.ijhydene.2017.07.176
  • Milferstedt, K., Kuo-Dahab, W. C., Butler, C. S., Hamelin, J., Abouhend, A. S., Stauch-White, K., McNair, A., Watt, C., Carbajal-González, B. I., Dolan, S., & Park, C. (2017). The importance of filamentous cyanobacteria in the development of oxygenic photogranules. Scientific Reports, 7(1), 17944. doi:10.1038/s41598-017-16614-9
  • Montalvo, S., Martin, J. S., Huiliñir, C., Guerrero, L., & Borja, R. (2014). Assessment of a UASB reactor with high ammonia concentrations: Effect of zeolite addition on process performance. Process Biochemistry, 49(12), 2220–2227. doi:10.1016/j.procbio.2014.09.011
  • Morgenroth, E., Sherden, T., Van Loosdrecht, M. C. M., Heijnen, J. J., & Wilderer, P. A. (1997). Aerobic granular sludge in a sequencing batch reactor. Water Research, 31(12), 3191–3194. doi:10.1016/S0043-1354(97)00216-9
  • Mulder, A., Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177–183. doi:10.1111/j.1574-6941.1995.tb00281.x
  • Na, J.-G., Lee, M.-K., Yun, Y.-M., Moon, C., Kim, M.-S., & Kim, D.-H. (2016). Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing. Biochemical Engineering Journal, 112, 241–248. doi:10.1016/j.bej.2016.04.030
  • Nancharaiah, Y. V., & Kiran Kumar Reddy, G. (2018). Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Bioresource Technology, 247, 1128–1143. doi:10.1016/j.biortech.2017.09.131
  • Ni, S.-Q., Gao, B.-Y., Wang, C.-C., Lin, J.-G., & Sung, S. (2011). Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules. Bioresource Technology, 102(3), 2448–2454. doi:10.1016/j.biortech.2010.11.006
  • Ni, S.-Q., Sun, N., Yang, H., Zhang, J., & Ngo, H. H. (2015). Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation. Biochemical Engineering Journal, 101, 126–133. doi:10.1016/j.bej.2015.05.014
  • Nzeteu, C. O., Trego, A. C., Abram, F., & O'Flaherty, V. (2018). Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 11, 108. doi:10.1186/s13068-018-1101-4
  • Oehmen, A., Lopez-Vazquez, C. M., Carvalho, G., Reis, M. A. M., & van Loosdrecht, M. C. M. (2010). Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Research, 44(15), 4473–4486. doi:10.1016/j.watres.2010.06.017
  • Okabe, S., Oshiki, M., Takahashi, Y., & Satoh, H. (2011). N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research, 45(19), 6461–6470. doi:10.1016/j.watres.2011.09.040
  • Pereboom, J. H. F. (1994). Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Science and Technology, 30(12), 211–221. doi:10.2166/wst.1994.0613
  • Riffat, R. (2012). Fundamentals of wastewater treatment and engineering. CRC Press.
  • Rillig, M. C., Muller, L. A., & Lehmann, A. (2017). Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11(9), 1943–1948. doi:10.1038/ismej.2017.56
  • Sayed, S., van der Zanden, J., Wijffels, R., & Lettinga, G. (1988). Anaerobic degradation of the various fractions of slaughterhouse wastewater. Biological Wastes, 23(2), 117–142. doi:10.1016/0269-7483(88)90069-9
  • Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., & Harada, H. (1999). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Applied and Environmental Microbiology, 65(3), 1280–1288. https://aem.asm.org/content/65/3/1280.abstract
  • Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882–894. doi:10.1016/j.biotechadv.2010.08.001
  • Shin, S. G., Ahn, Y., Park, C., Choi, Y.-K., Cho, H.-M., & Cho, S.-K. (2019). Size and morphological analyses of ultrasonicated hydrogen-producing granules using a simple method. International Journal of Hydrogen Energy, 44(4), 2246–2252. doi:10.1016/j.ijhydene.2018.07.032
  • Shu, D., He, Y., Yue, H., Zhu, L., & Wang, Q. (2015). Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process. Bioresource Technology, 196, 621–633. doi:10.1016/j.biortech.2015.07.107
  • Song, Y.-X., Liao, Q., Yu, C., Xiao, R., Tang, C.-J., Chai, L.-Y., & Duan, C.-S. (2017). Physicochemical and microbial properties of settled and floating anammox granules in upflow reactor. Biochemical Engineering Journal, 123, 75–85. doi:10.1016/j.bej.2017.04.002
  • Speth, D. R., in ’t Zandt, M. H., Guerrero-Cruz, S., Dutilh, B. E., & andand Jetten, M. S. M. (2016). Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nature Communications, 7, 11172. doi:10.1038/ncomms11172
  • St-Pierre, B., & Wright, A.-D G. (2014). Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Applied Microbiology and Biotechnology, 98(6), 2709–2717. doi:10.1007/s00253-013-5220-3
  • Sun, H., Yu, P., Li, Q., Ren, H., Liu, B., Ye, L., & Zhang, X.-X. (2017). Transformation of anaerobic granules into aerobic granules and the succession of bacterial community. Applied Microbiology and Biotechnology, 101(20), 7703–7713. doi:10.1007/s00253-017-8491-2
  • Tan, C. H., Koh, K. S., Xie, C., Tay, M., Zhou, Y., Williams, R., Ng, W. J., Rice, S. A., & Kjelleberg, S. (2014). The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. The ISME Journal, 8(6), 1186–1197. doi:10.1038/ismej.2013.240
  • Tang, C.-J., Zheng, P., Wang, C.-H., Mahmood, Q., Zhang, J.-Q., Chen, X.-G., Zhang, L., & Chen, J.-W. (2011). Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Research, 45(1), 135–144. doi:10.1016/j.watres.2010.08.018
  • Tay, J.-H., Ivanov, V., Pan, S., & Tay, S. T.-L. (2002). Specific layers in aerobically grown microbial granules. Letters in Applied Microbiology, 34(4), 254–257. doi:10.1046/j.1472-765x.2002.01099.x
  • Tay, J. H., Liu, Q. S., & Liu, Y. (2001). Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 91(1), 168–175. doi:10.1046/j.1365-2672.2001.01374.x
  • Tillman, G.M. (2017). Wastewater treatment: Troubleshooting and problem solving. Routledge.
  • Togashi, T., Sasaki, H., & Yoshimura, J. (2014). A geometrical approach explains Lake Ball (Marimo) formations in the green alga, Aegagropila linnaei. Scientific Reports, 4, 3761. doi:10.1038/srep03761
  • Toh, S., Tay, J., Moy, B., Ivanov, V., & Tay, S. (2003). Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiology and Biotechnology, 60(6), 687–695. doi:10.1007/s00253-002-1145-y
  • Torres, K., Álvarez-Hornos, F. J., San-Valero, P., Gabaldón, C., & Marzal, P. (2018). Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents. Water Research, 130, 376–387. doi:10.1016/j.watres.2017.12.009
  • Trego, A. C., Morabito, C., Mills, S., Connelly, S., Bourven, I., Guibaud, G., Quince, C., Ijaz, U. Z., & Collins, G. (2018). Diversity converges during community assembly in methanogenic granules suggesting a biofilm life-cycle. BioRxiv, 2018, 484642. doi:10.1101/484642
  • Treu, L., Kougias, P. G., Campanaro, S., Bassani, I., & Angelidaki, I. (2016). Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresource Technology, 216, 260–266. doi:10.1016/j.biortech.2016.05.081
  • van Lier, J. B., van der Zee, F. P., Frijters, C. T. M. J., & Ersahin, M. E. (2015). Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Reviews in Environmental Science and Bio/Technology, 14(4), 681–702. doi:10.1007/s11157-015-9375-5
  • van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., & Heijnen, J. J. (1995). Biofilm structures. Water Science and Technology, 32(8), 35–43. doi:10.1016/0273-1223(96)00005-4
  • van Niftrik, L. A., Fuerst, J. A., Sinninghe Damsté, J. S., Kuenen, J. G., Jetten, M. S. M., & Strous, M. (2004). The anammoxosome: An intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters, 233(1), 7–13. doi:10.1016/j.femsle.2004.01.044
  • Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B. J., Hugenholtz, P., & Tyson, G. W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology, 1, 16170. doi:10.1038/nmicrobiol.2016.170
  • Vanwonterghem, I., Jensen, P. D., Ho, D. P., Batstone, D. J., & Tyson, G. W. (2014). Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Current Opinion in Biotechnology, 27, 55–64. doi:10.1016/j.copbio.2013.11.004
  • Vega, N. M., & Gore, J. (2018). Simple organizing principles in microbial communities. Current Opinion in Microbiology, 45, 195–202. doi:10.1016/j.mib.2018.11.007
  • Vlaeminck, S. E., Terada, A., Smets, B. F., De Clippeleir, H., Schaubroeck, T., Bolca, S., Demeestere, L., Mast, J., Boon, N., Carballa, M., & Verstraete, W. (2010). Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Applied and Environmental Microbiology, 76(3), 900–909. doi:10.1128/AEM.02337-09
  • Volcke, E. I. P., Picioreanu, C., De Baets, B., & van Loosdrecht, M. C. M. (2010). Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environmental Technology, 31(11), 1271–1280. doi:10.1080/09593331003702746
  • Volcke, E. I. P., Picioreanu, C., De Baets, B., & van Loosdrecht, M. C. M. (2012). The granule size distribution in an anammox-based granular sludge reactor affects the conversion-implications for modeling. Biotechnology and Bioengineering, 109(7), 1629–1636. doi:10.1002/bit.24443
  • Wang, T., Huang, Z., Ruan, W., Zhao, M., Shao, Y., & Miao, H. (2018). Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system. Journal of Environmental Sciences (China), 64, 227–234. doi:10.1016/j.jes.2017.06.024
  • Watnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10), 2675–2679. doi:10.1128/jb.182.10.2675-2679.2000
  • Wenjie, Z., Huaqin, W., Joseph, D. R., & Yue, J. (2015). Granular activated carbon as nucleus for formation of anammox granules in an expanded granular-sludge-bed reactor. Global NEST Journal, 17(3), 508–514. doi:10.13140/RG.2.1.2335.5603
  • Wiegant, W. M., Lettinga, G., Zehnder, A. J. B., Grotenhuis, J. T. C., & Hulshoff Pol, L. W. (1988). The Spaghetti theory on anaerobic granular sludge fermentation or the inevitability of granulation. In G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, & L. W. Hulshoff Pol (Eds.), Granular anaerobic sludge: Microbiology and technology (pp. 146–152). Wageningen.
  • Wilbanks, E. G., Jaekel, U., Salman, V., Humphrey, P. T., Eisen, J. A., Facciotti, M. T., Buckley, D. H., Zinder, S. H., Druschel, G. K., Fike, D. A., & Orphan, V. J. (2014). Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environmental Microbiology, 16(11), 3398–3415. doi:10.1111/1462-2920.12388
  • Wilén, B.-M., Liébana, R., Persson, F., Modin, O., & Hermansson, M. (2018). The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Applied Microbiology and Biotechnology, 102(12), 5005–5020. doi:10.1007/s00253-018-8990-9
  • Willems, A. (2014). The family comamonadaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes: Alphaproteobacteria and Betaproteobacteria (pp. 777–851). Springer. doi:10.1007/978-3-642-30197-1_238
  • Winkler, M. K. H., Bassin, J. P., Kleerebezem, R., Sorokin, D. Y., & van Loosdrecht, M. C. M. (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology, 94(6), 1657–1666. doi:10.1007/s00253-012-4126-9
  • Wu, J., Afridi, Z. U. R., Cao, Z. P., Zhang, Z. L., Poncin, S., Li, H. Z., Zuo, J. E., & Wang, K. J. (2016). Size effect of anaerobic granular sludge on biogas production: A micro scale study. Bioresource Technology, 202, 165–171. doi:10.1016/j.biortech.2015.12.006
  • Xu, H., Liu, Y., Gao, Y., Li, F., Yang, B., Wang, M., Ma, C., Tian, Q., Song, X., & Sand, W. (2018). Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population. Bioresource Technology, 269, 153–161. doi:10.1016/j.biortech.2018.08.100
  • Yang, Y., Yu, K., Xia, Y., Lau, F. T. K., Tang, D. T. W., Fung, W. C., Fang, H. P., & Zhang, T. (2014). Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 98(12), 5709–5718. doi:10.1007/s00253-014-5648-0
  • Zhang, B., Lens, P. N. L., Shi, W., Zhang, R., Zhang, Z., Guo, Y., Bao, X., & Cui, F. (2018). Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chemical Engineering Journal, 334, 2373–2382. doi:10.1016/j.cej.2017.11.151
  • Zhao, Z., Luo, J., Jin, B., Zhang, J., Li, B., Ma, B., An, X., Zhang, S., & Shan, B. (2018). Analysis of bacterial communities in partial nitritation and conventional nitrification systems for nitrogen removal. Scientific Reports, 8(1), 12930. doi:10.1038/s41598-018-30532-4
  • Zheng, Y.-M., & Yu, H.-Q. (2007). Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Research, 41(1), 39–46. doi:10.1016/j.watres.2006.09.015
  • Zhou, J., Zhao, H., Hu, M., Yu, H., Xu, X., Vidonish, J., Alvarez, P. J. J., & Zhu, L. (2015). Granular activated carbon as nucleating agent for aerobic sludge granulation: Effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior. Bioresource Technology, 198, 358–363. doi:10.1016/j.biortech.2015.08.155
  • Zhu, X., Kougias, P. G., Treu, L., Campanaro, S., & Angelidaki, I. (2017). Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions. Applied Microbiology and Biotechnology, 101(3), 1313–1322. doi:10.1007/s00253-016-8028-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.