8,838
Views
17
CrossRef citations to date
0
Altmetric
Invited Review

Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1727-1865 | Published online: 11 Jul 2020

References

  • Abarca, T. , & Alvarado , G. E. (2017). Pérdidas económicas en valor presente al año 2016 causadas por el vulcanismo en Costa Rica entre 1953 y 2016. Revista Geológica de América Central, 56, 37–50. https://doi.org/10.15517/rgac.v0i56.29235 
  • Abreu, M. C. , & Figueiredo, B. R. (2014). Mapeamento geoquímico de arsênio e metais pesados em solo da unidade Piririca, Vale do Ribeira (SP) [Paper presentation]. In Proceedings of the 41th Brazilian Geological Congress, João Pessoa, Paraíba, Brazil.
  • Adamson, J. K. , Miner, J. , & Rochat, P.-Y. (2017). Une évaluation de l’aquifère de la Plaine du Cul-de-Sac et de son potentiel pour desservir Canaan Rapport Final, Northwater International & Resodlo, S.A, 3–41.
  • Adan, G. (2010). Evaluación fisicoquímica de la contaminación por descargas de aguas residuales en la sub-cuencas media y baja del Río Turbio. Specialization degree work. Instituto Universitario Experimental Tecnológico Andrés Eloy Blanco.
  • Adan, G. E. , Marcó Parra, L. M. , Guédez, M. , Colmenarez, A. M. , Juana, A. , Torres, G. G. , Jesús Rojas, Y. S. , & Durán, R. (2014). Línea de tiempo de parámetros físico-químicos del agua del Río Rurbio para la gestión mediante el modelo ARCAL-RLA 010. Observador Del Conocimiento , 2 (6), 65–78.
  • ADEC (2010). Assessment level for soil, sediment and water. Australian Department of Environment and Conservation. http://www.esdat.net/Environmental%20Standards/Australia/WA/Assessment%20Levels%20-%202010.pdf.
  • Admiraal, M. , Couasnon, A. , Huijzenveld, T. , Hutten, R. , Schölvinck, O. , & van Veen, N. (2015). The Arsenic Project - A Multidisciplinary Project in Nicaragua . TU Delft.
  • Agriquem (2009). Análisis químico de suelos de la ciudad de Arica. Diagnóstico de la calidad química del suelo y subsuelo urbano ciudad de Arica, para aplicar en caso necesario medidas de gestión y de regulación. Agriquem y Gobierno Regional de Arica y Parinacota.
  • Aguilar, E. , Parra, M. , Cantillo, L. , & Gómez, A. (2000). Chronic arsenic toxicity in El Zapote - Nicaragua 1996. Medicina Cutánea Ibero-Latino-Americana , 28 (4), 168–173.
  • Aguilera, F. , Honores, C. , Lemus, M. , Neira, H. , Pérez, Y. , & Rojas, J. (2014). Evaluación del recurso geotérmico de la Región de Los Lagos (Informe Registrado No. IR-14-57). SERNAGEOMIN, Santiago de Chile, Chile.
  • Ahmad, A. , & Bhattacharya, P. (2019). Arsenic in drinking water: Is 10 μg/L a safe limit? Current Pollution Reports , 5 (1), 1–3. (https://doi.org/10.1007/s40726-019-0102-7
  • Ahmad, A. , Cornelissen, E. , van de Wetering, S. , van Dijk, T. , van Genuchten, C. , Bundschuh, J. , van der Wal, A. , & Bhattacharya, P. (2018). Arsenite removal in groundwater treatment plants by sequential permanganate-ferric treatment. Journal of Water Process Engineering , 26 , 221–229. https://doi.org/10.1016/j.jwpe.2018.10.014
  • Aiglsperger, T. H. (2015). Mineralogy and geochemistry of the platinum group elements (PGE), rare earth elements (REE) and scandium in nickel laterites [PhD Thesis]. Facultat de Geologia, Universitat de Barcelona.
  • Aiglsperger, T. , Proenza, J. A. , Lewis, J. F. , Labrador, M. , Svojtka, M. , Rojas-Purón, A. , Longo, F. , & Ďurišová, J. (2016). Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews , 73 , 127–147. https://doi.org/10.1016/j.oregeorev.2015.10.010
  • Akcil, A. , & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production , 14 (12-13), 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  • Alarcón, M. T. , Llorens, E. , & Poch, M. (2012). Remoción de arsénico para consumo humano en Latinoamérica. Centro de Investigación en Materiales Avanzados, S.C, Chihuahua, Mexico.
  • Alarcón-Herrera, M. T. , & Martín-Domínguez, A. (2018). Tecnologías y avances científicos. In L.M. Del Razo , J.M. Ledón , M.N. Velasco (Eds) Hacia el cumplimiento del derecho humano al agua. Arsénico y fluoruro en agua: Riesgos y perspectivas desde la Sociedad civil y la academia en México . Secretaría de Gobernación.
  • Alarcón-Herrera, M. T. , Flores-Montenegro, I. , Romero-Navar, P. , Martín-Domínguez, I. R. , & Trejo-Vázquez, R. (2001). Contenido de arsénico en el agua potable del Valle del Guadiana, México. Ingeniería Hidráulica en México , XVI (4), 63–70.
  • Alarcón-Herrera, M. T. , Bundschuh, J. , Nath, B. , Nicolli, H. , Gutiérrez, M. , Reyes-Gómez, V. M. , Nuñez, D. , Martin-Domínguez, I. R. , & Sracek, O. (2013). Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials , 262 , 960–969. https://doi.org/10.1016/j.jhazmat.2012.08.005
  • Ale-Mauricio, D. A. , Villa, G. , Gastañaga, M. , & del, C. (2018). [Urinaryse arnic concentrations in adult population of two districts from the Tacna Region, Peru, 2017]. Revista Peruana de Medicina Experimental y Salud Publica , 35 (2), 183–189. https://doi.org/10.17843/rpmesp.2018.352.3693
  • Alfaro de la Torre, C. , Deogracias Ortiz Pérez, M. , Alarcón, M. T. , Martínez Cruz, D. A. , & Ledón, J. M. (2018). Concentraciones de arsénico y fluoruro en agua subterránea. In L. M. Del Razo , J. M. Ledón , M. N. Velasco (Eds.), Hacia el cumplimiento del derecho humano al agua. Arsénico y fluoruro en agua: Riesgos y perspectivas desde la Sociedad civil y la academia en México (pp. 38–56). Secretaría de Gobernación.
  • Alfonso-Hernández, C. M. , Pérez Santana, S. , Brunori, C. , Morabito, R. , Delfanti, R. , & Papucci, C. (2004). Historical trend in heavy metal pollution in the sediments of Cienfuegos Bay (Cuba), defined by 210Pb and 137Cs geochronology. International Conference on Isotopes in Environmental Studies. Aquatic Forum, IAEA-CN-118/170, 313–314.
  • Alfonso-Hernández, C. M. , Gómez Batista, M. , & Díaz Asencio, M. (2012). Total arsenic in marine organisms from Cienfuegos Bay (Cuba). Food Chemistry , 130 (4), 973–976.
  • Alloway, B. , Centeno, J. A. , Finkelman, R. B. , Fuge, R. , Lindh, U. , & Smedley, P. (2016). In O. Selinus (Ed.), Essentials of medical geology . Springer.
  • Almagro, L. , & Custodio, E. (2004). Caracterización hidrogeoquímica de las aguas subterráneas de la Formación Chuy, en la franja costera del Este del Uruguay, fronteriza con Brasil. Boletín Geológico y Minero , 115 , 357–378.
  • Alonso, D.  L. & Castillo , E. (2014) Arsenic availability in a contaminated area of Vetas-California gold mining distrtrict - Santander, Colombia. In: One Century of the Discovery of Arsenicosis in Latin America (1914-2014) As2014: Proceedings of the 5th International Congress on Arsenic in the Environment, May 11-16, 2014, Buenos Aires, Argentina, 1:242–244.
  • Alonso, D. L. , Latorre, S. , Castillo, E. , & Brandão, P. F. B. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution , 186 , 272–281. https://doi.org/10.1016/j.envpol.2013.12.009
  • Alonso, D. L. , Pérez, R. , Okio, C. K. Y. A. , & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. Journal of Environmental Management , 264 , 110478–110410. https://doi.org/10.1016/j.jenvman.2020.110478
  • Alonso, R. N. , Jordan, T. E. , Tabbutt, K. T. , & Vandervoort, D. S. (1991). Giant evaporite belts of the Neogene central Andes. Geology , 19 (4), 401–404. https://doi.org/10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2
  • Altamirano Espinoza, M. (2005). Distribución de la contaminación natural por arsénico en el agua subterránea de la subcuenca suroeste del Valle de Sébaco-Matagalpa [MSc Thesis]. Universidad Nacional Autónoma de Nicaragua.
  • Altamirano Espinoza, M. , & Bundschuh, J. (2009). Natural arsenic groundwater contamination of the sedimentary aquifers of southwestern Sébaco valley, Nicaragua. In J. Bundschuh , M. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A. Mukherjee (Eds.), Natural Arsenic in Groundwaters of Latin America . CRC Press. pp. 109–122.
  • ANA (2016). Encarte da ANA reúne informações sobre Rio Doce antes e depois do rompimento da barragem de Mariana, Autoridad Nacional del Agua (ANA), Brazil. http://www2.ana.gov.br/Paginas/imprensa/noticia.aspx?id_noticia=12964
  • Andina (2018). Agua de pozos en Mórrope contiene arsénico 9 veces más de lo permitido. Andina (Agencia Peruana de Noticias). Retrieved from https://andina.pe/agencia/noticia-agua-pozos-morrope-contiene-arsenico-9-veces-mas-de-permitido-728855.aspx.
  • Andina (2019). Nueva planta de tratamiento de agua beneficiará a 33,000 pobladores de Jauja. Andina (Agencia Peruana de Noticias). Retrieved from https://andina.pe/agencia/noticia-nueva-planta-tratamiento-agua-beneficiara-a-33000-pobladores-jauja-753352.aspx.
  • Andreu, E. , Proenza, J. A. , Tauler, E. , Chavez, C. , & Espaillat, J. (2010). Gold and lodargyrite in the Gossan of Cerro de Maimón Deposit (Central Dominican Republic). Revista de la Sociedad Española de Mineralogía. Resumen SEM , 2010 (13), 41–42.
  • Andreu, E. , Torró, I. , Proenza, J. A. , Domenech, C. , García Casco, A. , Villanova de Benavent, C. , Chavez, C. , Espaillat, J. , & Lewis, J. F. (2015). Weathering profile of the Cerro de Maimón VMS deposit (Dominican Republic): Textures, mineralogy, gossan evolution and mobility of gold and silver. Ore Geology Reviews , 65 , 165–179. https://doi.org/10.1016/j.oregeorev.2014.09.015
  • Ángel, A. , & Fierro, J. (2012). Análisis y modelamiento del comportamiento de fluidos líquidos de pilas de escombros en minería de oro. Bogotá . Universidad Nacional de Colombia, Departamento de Geociencias.
  • ANVISA (2013). Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Resolução RDC 42, Agência Nacional de Vigilância Sanitária, Brazil.
  • Appelo, C. A. J. , van der Weiden, M. J. J. , Tournassat, C. , & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate con ferrihydrite and the mobilization of arsenic. Environmental Science & Technology , 36 (14), 3096–3103. https://doi.org/10.1021/es010130n
  • Arcega-Cabrera, F. , Garza, R. , Noreña, E. , & Oceguera, I. (2015). Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico. Bulletin of Environmental Contamination and Toxicology , 94 (1), 58–65. https://doi.org/10.1007/s00128-014-1416-1
  • Archer, J. , Hudson-Edwards, K. A. , Preston, D. , Howarth, R. J. , & Linge, K. (2005). Aqueous exposure and uptake of arsenic by riverside communities affected by mining contamination in the Rio Pilcomayo basin, Bolivia. Mineralogical Magazine , 69 (5), 719–736. https://doi.org/10.1180/0026461056950283
  • Arcia, J. (2018). Copper mine destroying forest in Panama’s Mesoamerican Biological Corridor . Forest Trackers, Global Forest Reporting Network. https://news.mongabay.com/2018/12/copper-mine-destroying-forests-in-panamas-mesoamerican-biological-corridor/
  • Arias, V. , Rodriguez, A. , Bardos, P. , & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of the Total Environment , 618 , 199–209. https://doi.org/10.1016/j.scitotenv.2017.10.245
  • Armienta, M. A. , & Segovia, N. (2008). Arsenic and fluoride in the groundwater of Mexico. Environmental Geochemistry and Health , 30 (4), 345–353. https://doi.org/10.1007/s10653-008-9167-8
  • Armienta, M. A. , Rodríguez, R. , Aguayo, A. , Ceniceros, N. , Villaseñor, G. , & Cruz, O. (1997). Arsenic contamination of groundwater at Zimapán. Hydrogeology Journal , 5 (2), 39–46. https://doi.org/10.1007/s100400050111
  • Armienta, M. A. , Villaseñor, G. , Rodríguez, R. , Ongley, L. K. , & Mango, H. (2001). The role of arsenic- bearing rocks in groundwater pollution at Zimapán Valley, México. Environmental Geology , 40 (4-5), 571–581. https://doi.org/10.1007/s002540000220
  • Armienta, M. A. , Amat, P. D. , Larios, T. , & López, D. L. (2008). América Central y México. In J. Bundschuh , AP. Carrera , M. Litter (Eds.), Distribución del Arsénico en las Regiones Ibérica e Iberoamericana (pp. 187–210.). Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.
  • Armienta, M. A. , Villaseñor, G. , Cruz, O. , Ceniceros, N. , Aguayo, A. , & Morton, O. (2012). Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zimapán, Central Mexico. Applied Geochemistry , 27 (11), 2225–2237. https://doi.org/10.1016/j.apgeochem.2012.01.015
  • Armienta, M. A. , Rodríguez, R. , Ceniceros, N. , Cruz, O. , Aguayo, A. , Morales, P. , & Cienfuegos, E. (2014). Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field. Renewable Energy , 63 , 236–254. https://doi.org/10.1016/j.renene.2013.09.018
  • Armienta, M. A. , Mugica, V. , Reséndiz, I. , & Gutiérrez, M. (2016). Arsenic and metals mobility in soils impacted by tailings at Zimapán, México. Journal of Soils and Sediments , 16 (4), 1267–1278. https://doi.org/10.1007/s11368-015-1244-x
  • Armienta, M. A. , Cardona, A. , Labastida, I. , Alfaro de la Torre, C. , & Ballinas Casarrubias, M. L. (2018). Situación de la presencia de arsénico y fluoruro en aguas subterráneas en México. In L.M. Del Razo , J.M. Ledón , M.N. Velasco (Eds.), Hacia el cumplimiento del derecho humano al agua. Arsénico y fluoruro en agua: Riesgos y perspectivas desde la sociedad civil y la academia (pp. 21–30). Secretaría de Gobernación.
  • Astudillo, F. , Baeza, L. , Barrera, J. , Carrasco, F. , Castillo, P. , Espinoza, F. , Figueroa, M. , Juan, L. , Miralles, C. , Muñoz, N. , & Ramírez, C. (2015). Base de datos de geoquímica de sedimentos de la Hoja Pisagua, regiones de Tarapacá y de Arica y Parinacota (No. Base de Datos 03). Sernageomin, Santiago de Chile, Chile.
  • ATSDR (2007). Toxicological profile for Arsenic. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, Georgia, U.S.A. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3
  • ATSDR (2019). Priority list of hazard substances. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Atlanta, Georgia, U.S.A. https://www.atsdr.cdc.gov/spl/index.html#2019spl
  • Aullón Alcaine, A. , Schulz, C. , Bundschuh, J. , Jacks, G. , Thunvik, R. , Gustafsson, J. P. , Mörth, C. M. , Sracek, O. , Ahmad, A. , & Bhattacharya, P. (2020). Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Science of the Total Environment , 715 , 136671. https://doi.org/10.1016/j.scitotenv.2020.136671
  • Avigliano, E. , Schenone, N. F. , Volpedo, A. V. , Goessler, W. , & Fernández Cirelli, A. (2015). Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): Aquatic pollution and consumption effect approach. Science of the Total Environment , 506-507 , 102–108. https://doi.org/10.1016/j.scitotenv.2014.10.119
  • Ayerza, A. (1917a). Arsenicismo regional endemico (keratodermia y melanodermia combinadas. Boletín de la Academia Nacional de Medicina , 2–3 , 11–24.
  • Ayerza, A. (1917b). Arsenicismo regional endémico (keratodermia y melanodermia combinadas (Continuación). Boletín de la Academia Nacional de Medicina , 2–3 , 41–55.
  • Ayerza, A. (1918). Arsenicismo regional endémico (keratodermia y melanodermia combinadas) (Continuación). Boletín de la. Academia Nacional de Medicina , 1–24.
  • Azevedo, L. S. , Pestana, I. A. , Meneguelli-Souza, A. C. , De Souza Ramos, B. , Pessanha, D. R. , Caldas, D. , Almeida, M. G. , & Souza, C. M. M. (2018). Risk of exposure to total and inorganic arsenic by meat intake among different age groups from Brazil: A probabilistic assessment. Environmental Science and Pollution Research International , 25 (35), 35471–35478. https://doi.org/10.1007/s11356-018-3512-y
  • Baeyens, W. , Mirlean, N. , Bundschuh, J. , Winter, N. , Baisch, P. , Silva Júnior, F. M. R. , & Gao, Y. (2019). Arsenic enrichment in sediments and beaches of Brazilian coastal waters. A review. Science of the Total Environment , 681 , 143–154. https://doi.org/10.1016/j.scitotenv.2019.05.126
  • Baeza, L. , Juan, L. , Astudillo, F. , Barrera, J. , Carrasco, F. , Castillo, P. , Espinoza, F. , Figueroa, M. , Miralles, C. , Muñoz, N. , Ramírez, C. , & Salinas, P. (2014). Base de datos de geoquímica de sedimentos de la Hoja Arica, región de Arica y Parinacota (02), Base de Datos. Sernageomin, Servicio Nacional de Geología y Minería, Santiago de Chile, Chile.
  • Bardach, A. E. , Ciapponi, A. , Soto, N. , Chaparro, M. R. , Calderón, M. , Briatore, A. , Cadoppi, N. , Tassara, R. , & Litter, M. (2015). Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. Science of the Total Environment , 538 , 802–816. https://doi.org/10.1016/j.scitotenv.2015.08.070
  • Barrera, J. , Roth, T. , & Juan, L. (2017). Línea base geoquímica de sedimentos fluviales de la cuenca del Río Aysén, XI Región Aysén del General Carlos Ibáñez del Campo, Chile, Informe Registrado IR-17-67. Servicio Nacional de Geología y Minería, Santiago de Chile, Chile.
  • Basu, N. , Abare, M. , Buchanan, S. , Cryderman, D. , Nam, D. H. , Sirkin, S. , Schmitt, S. , & Hu, H. (2010). A combined ecological and epidemiologic investigation of metal exposures amongst Indigenous peoples near the Marlin Mine in Western Guatemala. Science of the Total Environment , 409 (1), 70–77. https://doi.org/10.1016/j.scitotenv.2010.09.041
  • Batista, B. L. , Souza, J. M. , De Souza, S. S. , & Barbosa, F. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials , 191 (1-3), 342–348. https://doi.org/10.1016/j.jhazmat.2011.04.087
  • Battistel, D. , Roman, M. , Marchetti, A. , Kehrwald, N. M. , Radaelli, M. , Balliana, E. , Toscano, G. , & Barbante, C. (2018). Anthropogenic impact in the Maya Lowlands of Petén, Guatemala, during the last 5500 years. Journal of Quaternary Science , 33 (2), 166–176. https://doi.org/10.1002/jqs.3013
  • Bécher-Quinodóz, F. N. , Blarasin, M. T. , & Panarello, H. O. (2015). Modelado geoquímico e isotópico de las relaciones agua superficial-subterránea. Revista de la Asociación Geológica Argentina , 72 , 506–518.
  • Bejarano-Sifuentes, G. , & Nordberg, E. (2003). Mobilisation of arsenic in the Rio Dulce alluvial cone, Santiago del Estero Province, Argentina. TRITA-LWR Master Thesis, Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden.
  • Benavides, J. (2006). Iron oxide-copper-gold deposits of the Mantoverde area, northern Chile: Ore genesis and exploration guidelines [PhD Thesis]. Queen’s University, Canada.
  • Berry, K. L. E. , Seemann, J. , Dellwig, O. , Struck, U. , Wild, C. , & Leinfelder, R. R. (2013). Sources and spatial distribution of heavy metals in scleractinian coral tissues and sediments from the Bocas de Toro Archipelago, Panama. Environmental Monitoring and Assessment , 185 (11), 9089–9099. https://doi.org/10.1007/s10661-013-3238-8
  • Bhattacharya, P. , Claesson, M. , Bundschuh, J. , Sracek, O. , Fagerberg, J. , Jacks, G. , Martin, R. A. , Storniolo, A. R. , & Thir, J. M. (2006). Distribution and mobility of arsenic in the Río Dulce Alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment , 358 (1-3), 97–120. https://doi.org/10.1016/j.scitotenv.2005.04.048
  • Bia, G. , Borgnino, L. , Gaiero, D. , & García, M. G. (2015). Arsenic-bearing phases in south Andean volcanic ashes: Implications for As mobility in aquatic environments. Chemical Geology , 393-394 , 26–35. https://doi.org/10.1016/j.chemgeo.2014.10.007
  • Bia, G. , García, M. G. , & Borgnino, L. (2017). Changes in the As solid speciation during weathering of volcanic ashes. A XAS study on Patagonian ashes and Chaco-Pampean loess. Geochimica et Cosmochimica Acta , 212 (1), 119–132. https://doi.org/10.1016/j.gca.2017.06.016
  • Bidone, E. D. , Castilhos, Z. C. , Bertolino, L. C. , Santos, M. C. B. , Silva, R. S. V. , & Cesar, R. G. (2014). Arsenic in soils and sediments from Paracatu, Brazil. In M. I. Litter , H. B. Nicolli , J. M. Meichtry , N. Quici , J. Bundschuh , P. Bhattacharya , R. Naidu , (Eds.), V International Congress of Arsenic in the Environment – As2014 (pp. 113–115). CRC Press.
  • Bidone, E. , Cesar, R. , Santos, M. C. , Sierpe, R. , Silva-Filho, E. V. , Kutter, V. , Dias da Silva, L. I. , & Castilhos, Z. (2018). Mass balance of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais State, Brazil). Environmental Science and Pollution Research , 25 (9), 9085–9910. https://doi.org/10.1007/s11356-018-1215-z
  • Birkle, P. , Bundschuh, J. , & Sracek, O. (2010). Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research , 44 (19), 5605–5617. https://doi.org/10.1016/j.watres.2010.05.046
  • Blanco, M. C. , Paoloni, J. D. , Morrás, H. J. M. , Fiorentino, C. E. , & Sequeira, M. (2006). Content and distribution of arsenic in soils, sediments and groundwater environments of the southern Pampa Region, Argentina. Environmental Toxicology , 21 (6), 561–574. https://doi.org/10.1002/tox.20219
  • Blanco, M. C. , Paoloni, J. D. , Morrás, H. , Fiorentino, C. , Sequeira, M. E. , Amiotti, N. N. , Bravo, O. , Díaz, S. , & Espósito, M. (2012). Partition of arsenic in soils sediments and the origin of naturally elevated concentrations in groundwater of the southern Pampa region (Argentina). Environmental Earth Sciences , 66 (7), 2075–2084. https://doi.org/10.1007/s12665-011-1433-x
  • Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of the Total Environment , 369 (1-3), 307–332. https://doi.org/10.1016/j.scitotenv.2006.05.004
  • Bonotto, D. M. , & Elliot , T.  (2017). Trace elements, REEs and stable isotopes (B, Sr) in GAS groundwater, São Paulo State, Brazil. Environtal Earth Sciences, 76, 265 https://doi.org/10.1007/s12665-017-6590-0
  • Borba, R. P. , Figueiredo, B. R. , Rawlins, B. , & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology , 44 (1), 39–52. https://doi.org/10.1007/s00254-002-0733-6
  • Borba, R. P. , & Figueiredo, B. R. (2004). A influência das condições geoquímicas na oxidação da arsenopirita e na mobilidade do arsênio em ambientes superficiais tropicais. Revista Brasileira de Geociências , 34 (4), 489–500. https://doi.org/10.25249/0375-7536.2004344489500
  • Borgoño, J. , & Greiber, R. (1972). Epidemiological study of arsenicism in the city of Antofagasta. Trace Substances in Environmental Health , 5 , 13–24.
  • Bortnikov, N. S. , Kramer, K. L. , Genkin, A. D. , & Kul'nev, A. S. (1989). The mineralogy and conditions of formation of the Delita gold deposit, Cuba. International Geology Review , 31 (11), 1158–1171. https://doi.org/10.1080/00206818909465968
  • Borzi, G. E. , García, L. , & Carol, E. S. (2015). Geochemical processes regulating F−, As and NO3 − content in the groundwater of a sector of the Pampean Region, Argentina. Science of the Total Environment , 530-531 , 154–162. https://doi.org/10.1016/j.scitotenv.2015.05.072
  • BP (2019). Statistical Review of World Energy 2019–68th Edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (Accessed February 4, 2020).
  • Brazil (2002). Ministério da Agricultura, Pecuária e Abastecimento. Portaria (31). Diário Oficial da União.
  • Brazil (2011). Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Ministério da Saúde. Portaria (2.914). Diário Oficial da União.
  • Bundschuh, J. , Farias, B. , Martin, R. , Storniolo, A. , Bhattacharya, P. , Cortes, J. , Bonorino, G. , & Albouy, R. (2004). Groundwater arsenic in the Chaco-Pampean Plain, Argentina. Applied Geochemistry , 19 (2), 231–243. https://doi.org/10.1016/j.apgeochem.2003.09.009
  • Bundschuh, J. , Litter, M. , Ciminelli, V. , Morgada, M. E. , Cornejo, L. , Garrido Hoyos, S. , Hoinkis, J. , Alarcón-Herrera, M. T. , Armienta, M. A. , & Bhattacharya, P. (2010). Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Iberoamerica – A critical analysis. Water Research , 44 (19), 5828–5845. https://doi.org/10.1016/j.watres.2010.04.001
  • Bundschuh, J. , Bhattacharya, P. , Sracek, O. , Mellano, M. F. , Ramírez, A. E. , Storniolo, A. , Martín, R. A. , Cortés, J. , Litter, M. I. , & Jean, J.-S. (2011). Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health, Part A , 46 (11), 1297–1214. https://doi.org/10.1080/10934529.2011.598838
  • Bundschuh, J. , Litter, M. I. , Parvez, F. , Román-Ross, G. , Nicolli, H. B. , Jean, J.-S. , Liu, C.-W. , López, D. , Armienta, M. A. , Guilherme, L. R. G. , Cuevas, A. G. , Cornejo, L. , Cumbal, L. , & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment , 429 , 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024
  • Bundschuh, J. , Nath, B. , Bhattacharya, P. , Liu, C.-W. , Armienta, M. A. , Moreno López, M. V. , Lopez, D. L. , Jean, J.-S. , Cornejo, L. , Fagundes, L. , Macedo, L. , & Tenuta Filho, A. (2012). Arsenic in the human food chain: The Latin American perspective. Science of the Total Environment , 429 , 92–106. https://doi.org/10.1016/j.scitotenv.2011.09.069
  • Bundschuh, J. , Maity, J. P. , Mushtaq, S. , Vithanage, M. , Seneweera, S. , Schneider, J. , Bhattacharya, P. , Khan, N. I. , Hamawand, I. , Guilherme, L. R. G. , Reardon-Smith, K. , Parvez, F. , Morales-Simfors, N. , Ghaze, S. , Pudmenzky, C. , Kouadio, L. , & Chen, C. Y. (2017). Medical geology in the framework of the sustainable development goals. Science of the Total Environment , 581-582 (58), 87–104. https://doi.org/10.1016/j.scitotenv.2016.11.208
  • Burger, J. , Jeitner, C. , Schneider, L. , Vogt, R. , & Gochfeld, M. (2009). Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil. Journal of Environmental Science and Health, Part A , 73 (1), 33–40. https://doi.org/10.1080/15287390903248877
  • Bustos Rodriguez, H. , Oyola Lozano, D. , Rojas Martínez, Y. A. , Pérez Alcázar, G. A. , Flege, S. , Balogh, A. G. , Cabri, L. J. , & Tubrett, M. (2007). Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia. Hyperfine Interactions , 175 (1-3), 195–206. https://doi.org/10.1007/s10751-008-9603-2
  • Cabassi, J. , Capecchiacci, F. , Magi, F. , Vaselli, O. , Tassi, F. , Montalvo, F. , Esquivel, I. , Grassa, F. , & Caprai, A. (2019). Water and dissolved gas geochemistry at Coatepeque, Ilopango and Chanmico volcanic lakes (El Salvador, Central America). Journal of Volcanology and Geothermal Research , 378 , 1–15. https://doi.org/10.1016/j.jvolgeores.2019.04.009
  • Cacciabue, L. , Dietrich, S. , Sierra, L. , Bea, S. A. , Weinzettel, P. A. , & García, M. G. (2016). Study of arsenic availability in Pampean loess sediments using a sequential extraction procedure. In Arsenic Research and Global Sustainability. Proceedings of the Sixth International Congress on Arsenic in the Environment - As2016, June 19-23, 2016, CRC Press. p. 167.
  • Cacua, I. (2004). Caracterización físico-química y microbiológica para aguas subterráneas en zona de influencia del Acueducto Metropolitano de Bucaramanga e implementación de los métodos de análisis para arsénico, selenio y flúor . Bucaramanga, Universidad Industrial de Santander, Bucaramanga, Santander.
  • Cagnin, R. C. , Quaresma, V. S. , Chaillou, G. , Franco, T. , & Bastos, A. C. (2017). Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Science of the Total Environment , 607-608 , 304–316. https://doi.org/10.1016/j.scitotenv.2017.06.162
  • Calarge, L. M. , Meunier, A. , Lanson, B. , & Formoso, M. L. L. (2006). Chemical signature of two Permian volcanic ash deposits whitin a bentonite bed from Melo, Uruguay. Anais da Academia Brasileira de Ciências , 78 (3), 525–541. https://doi.org/10.1590/S0001-37652006000300012
  • Caldas, D. , Pestana, I. A. , Almeida, M. G. , Henry, F. C. , Salomão, M. S. M. B. , & Souza, C. M. M. (2016). Risk of ingesting As, Cd, and Pb in animal products in north Rio de Janeiro State. Chemosphere , 164 , 508–515. https://doi.org/10.1016/j.chemosphere.2016.08.130
  • Campaner, V. P. , & Silva, W. L. (2009). Processos físico-químicos em drenagem ácida de mina em mineração de carvão no sul do Brasil. Química Nova , 32 (1), 146–152. https://doi.org/10.1590/S0100-40422009000100028
  • Campaner, V. P. , Luiz-Silva, W. , & Machado, W. (2014). Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Anais da Academia Brasileira de Ciencias , 86 (2), 539–554. https://doi.org/10.1590/0001-37652014113712
  • Campos, M. L. , Guilherme, L. R. G. , Lopes, R. S. , Antunes, A. S. , Marques, J. J. G. S. M. , & Curi, N. (2007). Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira de Ciência Do Solo , 31 (6), 1311–1308. https://doi.org/10.1590/S0100-06832007000600010
  • Campos, M. L. , Guilherme, L. R. G. , Antunes, A. S. , & Borges, K. S. C. (2013). Teor de arsênio e adsorção competitiva arsênio/fosfato e arsênio/sulfato em solos de Minas Gerais, Brasil. Ciência Rural , 43 (6), 985–991. https://doi.org/10.1590/S0103-84782013005000057
  • Campos, V. (2002). Arsenic in groundwater affected by phosphate fertilizers at São Paulo, Brazil. Environmental Geology , 42 (1), 83–87. https://doi.org/10.1007/s00254-002-0540-0
  • Cano de los Ríos, M. P. (2010). Contaminación del agua por metales pesados en presas del municipio de Chihuahua Chihuahua, Chih., Mexico. Bachelor Thesis, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico.
  • Cardenas, R. , Miranda, H. , & Krutzelmann, H. (2018). Technical report on the Pueblo Viejo Mine, Sanchez Ramirez Province, Dominican Republic. Technical Report (43-101), 1–29.
  • Carling, G. T. , Díaz, X. , Ponce, M. , Perez, L. , Nasimba, L. , Pazmino, E. , Rudd, A. , Merugu, S. , Fernandez, D. P. , Gale, B. K. , & Johnson, W. P. (2013). Particulate and dissolved trace element concentrations in three southern Ecuador rivers impacted by artisanal gold mining. Water, Air, & Soil Pollution , 224 (2), 1415. https://doi.org/10.1007/s11270-012-1415-y
  • Carrillo-Chávez, A. , Drever, J. , & Martínez, M. (2000). Arsenic content and ground water geochemistry of the San Antonio-El Triunfo, El Carrizal and Los Planes aquifers in southermost Baja California México. Environmental Geology , 39 (11), 1295–1303. https://doi.org/10.1007/s002540000153
  • Carrillo-Chávez, A. , Salas-Megchún, E. , Levresse, G. , Muñoz-Torres, C. , Pérez-Arvizu, O. , & Gerke, T. (2014). Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metals in the surface environment. Journal of Geochemical Exploration , 144 , 28–36. https://doi.org/10.1016/j.gexplo.2014.03.017
  • Carvalho, G. O. , Pinhero, A. A. , Sousa, D. M. , Padilha, J. A. , Souza, J. S. , Galvão, P. M. , Paiva, T. C. , Freire, A. S. , Santelli, R. E. , Malm, O. , & Torres, J. P. M. (2018). Metals and arsenic in water supply for riverine communities affected by the largest environmental disaster in Brazil: The dam collapse on Doce River. Orbital. The Electronic Journal of Chemistry , 10 , 299–307.
  • Castro de Esparza, M. L. (2009). The presence of arsenic in drinking water in Latin America and its effect on public health. In J. Bundschuh , M. A. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A.B. Mukherjee , (Eds.), Natural arsenic in groundwater of Latin America (pp. 17–29). CRC Press.
  • Castro-Larragoitia, J. , Krama, U. , & Puchelt, H. (1997). 200 years of mining acitivities at La Paz/San Luis Potosí/Mexico - Consequences for environment and geochemical exploration. Journal of Geochemical Exploration , 58 (1), 81–91. https://doi.org/10.1016/S0375-6742(96)00054-4
  • Castro-Larragoitia, J. , Kramar, U. , Monroy, M. , Viera, F. , & García, E. (2013). Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: Sources, pathways and fate. Environmental Earth Sciences , 69 (6), 1915–1929. https://doi.org/10.1007/s12665-012-2024-1
  • CCME (2002). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. In: Canadian Environment Quality Guidelines, Canadian Council of Ministers of the Environment (CCME). http://ceqg-rcqe.ccme.ca/en/index.html#void
  • CCME (2019). Soil Quality Guidelines for the Protection of Environmental and Human Health, Canadian Council of Ministers of the Environment. http://st-ts.ccme.ca/en/index.html
  • Cebrián, M. E. , Albores, A. , García-Vargas, G. , Del Razo, L. M. , & Ostrosky-Wegman, P. (1994). Chronic arsenic poisoning in humans: The case of Mexico. In J. O. Nriagu (Ed.), Arsenic in the environment, Part II: Human health and ecosystem effects (pp. 93–107). John Wiley & Sons, Inc.
  • CEICOM (2010a). Análisis de la calidad de agua y su relación con la salud y calidad de vida de los pobladores del Río San Sebastián, en la zona de minas San Sebastián, Municipio de Santa Rosa de Lima, Departamento de La Unión, El Salvador. Unpublished report, Centro de Investigación sobre Inversión y Comercio (CEICOM), San Salvador, El Salvador.
  • CEICOM (2010b). Determinación de metales pesados en suelos, sedimentos y semilla de maíz, en áreas agrícolas expuestas a desechos de minería metálica, y su repercusión en la cadena alimenticia. El Divisadero, Morazán, El Salvador. Unpublished report, Centro de Investigación sobre Inversión y Comercio (CEICOM), San Salvador, El Salvador.
  • CENMA (2014). Diagnóstico regional de suelos abandonados con potencial presencia de contaminantes. Informe Final Versión 4, Centro Nacional del Medio Ambiente (CENMA), Santiago de Chile, Chile.
  • Cervantes-Guerra, Y. , Almaguer Carmenates, Y. , Pierra Conde, A. , Orozco Melgar, G. , & Gursky, J. H. (2011). Metales traza en sedimentos de la bahía de Cayo Moa (Cuba): Evaluación preliminar de la contaminación. Minería y Geología , 27 (4), 1–19.
  • Cervantes-Guerra, Y. , Pierra Conde, A. , Rodríguez Infante, A. , Almaguer Carmenates, Y. , Gursky, J. H. , Van Caneghem, J. , & Vandecasteele, C. (2017). Metal accumulation in surface sediment of the urban and industrial coastal area. Minería y Geología , 33 (2), 235–250.
  • Cha, J. D. , Lourenço, D. B. , & Korkes, F. (2018). Analysis of the association between bladder carcinoma and arsenic concentration in soil and water in southeast Brazil. International Braz j Urol , 44 (5), 906–913. https://doi.org/10.1590/s1677-5538.ibju.2017.0543
  • Chávez, A. , Pérez, C. , Tovar, E. , & Gramilla, M. (1964). Estudios en una comunidad con arsenicismo crénico endémico. Salud Pública de México , 6 , 421–433.
  • Chong, G. , Pueyo, J. J. , & Demergasso, C. (2010). The borate deposits in Chile. Andean Geology , 27 , 99–119.
  • Chung, J. Y. , Yu, S. D. , & Hong, Y. S. (2014). Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health = Yebang Uihakhoe Chi , 47 (5), 253–257. https://doi.org/10.3961/jpmph.14.036
  • CIRA/UNAN-Managua (2011a). Resultados de análisis para el Programa de Maestría. Jinotega, Nicaragua . CIRA/UNAN-Managua.
  • CIRA/UNAN-Managua (2011b). Datos internos del Laboratorio de Contaminantes Metálicos (Río Coco) . CIRA/UNAN-Managua.
  • CIRA/UNAN-Managua (2011c). Datos internos del Laboratorio de Contaminantes Metálicos (Masaya). CIRA/UNAN-Managua.
  • CIRA/UNAN-Managua (2012). Contribución al establecimiento de la línea de base ambiental del Rio San Juan de Nicaragua-2012 . CIRA/UNAN-Managua.
  • CIRA/UNAN-Managua (2016). Project CIRA/UNAN Nicaragua and CSRSR Taiwan .
  • CIRA/UNAN-Managua , & Altamirano Espinoza, M. (2017). Estudio de la contaminación natural por arsénico en las aguas subterráneas de la comunidad rural “La Fuente”, para sugerir y promover el uso de fuentes alternativas de agua segura. Municipio de La Paz Centro, León, Nicaragua. CIRA/UNAN-Managua, Managua, Nicaragua.
  • CIRA/UNAN-Managua , & Delgado Quezada, V. (2019a). Tiscapa, arsenic analysis. CIRA/UNAN- Managua .,
  • CIRA/UNAN-Managua , & Delgado Quezada, V. (2019b). Resultados analíticos de arsénico en la microcuenca del Río Dipilto .
  • CIRA/UNAN-Managua , Sarria Sacasa, K. , del, C. , & Lacayo Membreño, J. (1999). Determinación de metales pesados en sedimentos del Lago Cocibolca, Nicaragua. Managua. CIRA/UNAN-Managua, Departamento de Micropoluentes - Sección Adsorción Atómica, Managua, Nicaragua.
  • CIRA/UNAN-Managua , Calderón Palma, H. L. , & Flores Meza, Y. (2010). Evaluación de la dinámica de la Laguna de Apoyo mediante trazadores isotópicos y geoquímicos . CIRA/UNAN-Managua.
  • CIRA/UNAN-Managua , Rivas Navarrete, K. , Rojas Cerda, K. , & Altamirano Espinoza, M. (2017). Informar a los pobladores de El Descanso (La Breña Tres), Municipio de Nandaime, sobre la calidad física, química y microbiológica de sus fuentes de agua, Departamento de Granada. Informe final Fondos de Proyectos de Investigación (FPI) UNAN-Managua, Managua, Nicaragua.
  • Codex Alimentarius Commission (2014). Thirty-seventh Session CICG, Geneva, Switzerland, 14–18 July 2014, http://www.fao.org/news/story/en/item/238558/icode/
  • Código Alimentario Argentino (2012). Bebidas hídricas, aguas y aguas gasificadas. Capítulo XII. http://www.anmat.gov.ar/alimentos/codigoa/CAPITULO_XII.pdf.
  • Colina Blanco, A. (2015). Remoción de arsénico en aguas contaminadas utilizando fibras vegetales funcionalizadas con un polímero policatiónico como intercambiador iónico [Licenciate Thesis]. University of Costa Rica.
  • CONAMA (2005). Conselho Nacional do Meio Ambiente N° 357/2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Publicação DOU (053), 58–63.
  • CONAMA (2008). Conselho Nacional do Meio Ambiente N° 396/2008.Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. Publicação DOU (66), 66–68.
  • CONAMA (2009). Conselho Nacional do Meio Ambiente. Resolução N° 420, de 28 de dezembro de 2009 [internet]. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF: Diário Oficial [da] União (249), 81-84. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
  • Coomar, P. , Mukherjee, A. , Bhattacharya, P. , Bundschuh, J. , Verma, S. , Fryar, A. E. , Ramos Ramos, O. E. , Ormachea Muñoz, M. , Gupta, S. , Mahanta, C. , Quino, I. , & Thunvik, R. (2019). Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Science of the Total Environment , 689 , 1370–1387. https://doi.org/10.1016/j.scitotenv.2019.05.444
  • Corguinha, A. P. B. , Souza, G. A. , Gonçalves, V. C. , Carvalho, C. A. , Lima, W. E. A. , Martins, F. A. D. , Yamanaka, C. H. , Francisco, E. A. B. , & Guilherme, L. R. G. (2015). Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. Journal of Food Composition and Analysis , 37 , 143–150. https://doi.org/10.1016/j.jfca.2014.08.004
  • Cornejo, A. E. , López-López, R. A. , Ruiz-Picos, J. E. , Sedeño-Días, B. , Armitage, B. , Arefina, C. , Nieto, A. , Tuñon, M. , Molinar, T. , Abrego, E. , Pérez, A. R. , Tuñon, J. , Magué, A. , Rodríguez, J. , Pineda, J. , Cubilla, J. , & Quintero, A. (2017). Diagnóstico de la condición ambiental de los afluentes superficiales de Panamá. Instituto Conmemorativo Gorgas de Estudios de la Salud, Ministerio de Ambiente, Panama.
  • Corral, I. , Corbella, M. , Gómez-Gras, D. , & Griera, A. (2018). Trace-metal content of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama): Implication for exploration. Boletín de la Sociedad Geológica Mexicana , 70 (2), 549–565. https://doi.org/10.18268/BSGM2018v70n2a14
  • Cortecci, G. , Boschetti, T. , Mussi, M. , Lameli, C. H. , Mucchino, C. , & Barbieri, M. (2005). New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal , 39 (6), 547–571. https://doi.org/10.2343/geochemj.39.547
  • Costa, L. , Mirlean, N. , Quintana, G. , Adebayo, S. , & Johannesson, K. (2019). Distribution and geochemistry of arsenic in sediments of the world’s largest choked estuary: The Patos Lagoon, Brazil. Estuaries and Coasts , 42 (7), 1896–1911. https://doi.org/10.1007/s12237-019-00596-0
  • Costa, R. V. F. , Leite, M. G. P. , Mendonça, F. P. C. , & Nalini, H. A. Jr. (2015). Geochemical mapping of arsenic in surface waters and stream sediments of the Quadrilátero Ferrífero, Brazil. Rem: Revista Escola de Minas , 68 (1), 43–51. https://doi.org/10.1590/0370-44672015680077
  • CPRM (2015). Monitoramento especial do Rio Doce. Relatório 02: Geoquímica. Segunda campanha de campo 12 a 23 de novembro de 2015. Companhia de Pesquisa de Recursos Minerais (CPRM), Belo Horizonte, Brazil. http://portal1.snirh.gov.br/arquivos/Doce/CPRM/relatorios/RT_02_2015_MONIT_ESP_BACIA_RIO_DOCE_v4_5.pdf
  • Cristiano, E. , Hu, Y. J. , Siegfried, M. , Kaplan, D. , & Nitsche, H. (2011). A comparison of point of zero charge measurement methodology. Clays and Clay Minerals , 59 (2), 107–115. https://doi.org/10.1346/CCMN.2011.0590201
  • Cumbal, L. H. , Bundschuh, J. , Aguirre, V. , Murgueitio, E. , Tipán, I. , & Chávez, C. (2009). The origin of arsenic in sediments from Papallacta Lake area in Ecuador. In J. Bundschuh , M. A. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A. B. Mukherjee (Eds.), Natural Arsenic in Groundwaters of Latin America (pp. 81–90). CRC Press.
  • Cumbal, L. , Vallejo, P. , Rodriguez, B. , & Lopez, D. (2010). Arsenic in geothermal sources at the north-central Andean region of Ecuador: Concentrations and mechanisms of mobility. Environmental Earth Sciences , 61 (2), 299–310. https://doi.org/10.1007/s12665-009-0343-7
  • D’Urso, C. , Rodríguez Areal, M. , Marchisio, P. , López, J. , Sales, A. , Rodríguez, G. , & Rodríguez, M. (2013). Caracterización hidroquímica del Valle de Tafí, Provincia de Tucumán, República Argentina. Acta Geológica Lilloana , 25 , 9–20.
  • Daesslé, L. W. , Lugo-Ibarra, K. C. , Tobschall, H. J. , Melo, M. , Gutiérrez-Galindo, E. A. , García- Hernández, J. , & Álvarez, L. G. (2009). Accumulation of As, Pb, and Cu associated with the recent sedimentary processes in the Colorado Delta, south of the United States-Mexico boundary. Archives of Environmental Contamination and Toxicology , 56 (4), 680–692. https://doi.org/10.1007/s00244-008-9218-2
  • Daniele, L. , Cannatelli, C. , Buscher, J. T. , & Bonatici, G. (2019). Chemical composition of Chilean bottled waters: Anomalous values and possible effects on human health. Science of the Total Environment , 689 , 526–533. https://doi.org/10.1016/j.scitotenv.2019.06.165
  • da Silva Júnior, E. C. , Martins, G. C. , de Oliveira Wadt, L. H. , da Silva, K. E. , de Lima, R. M. B. , Batista, K. D. , Guedes, M. C. , de Oliveira Junior, R. C. , Reis, A. R. , Lopes, G. , de Menezes, M. D. , Broadley, M. R. , Young, S. D. , & Guilherme, L. R. G. (2019). Natural variation of arsenic fractions in soils of the Brazilian Amazon. Science of the Total Environment , 687 , 1219–1231. https://doi.org/10.1016/j.scitotenv.2019.05.446
  • Datta, B. K. , Bhar, M. K. , Patra, P. H. , Majumdar, D. , Dey, R. R. , Sarkar, S. , Mandal, T. K. , & Chakraborty, A. K. (2012). Effect of environmental exposure of arsenic on cattle and poultry in Nadia district, West Bengal, India. Toxicology International , 19 (1), 59–62. https://doi.org/10.4103/0971-6580.94511
  • Davila, R. B. , Fontes, M. P. F. , Pacheco, A. A. , & Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment , 709 , 136151. https://doi.org/10.1016/j.scitotenv.2019.136151
  • De Carlo, E. H. , Tomlinson, M. S. , deGelleke, L. E. , & Thomas, S. (2014). Distribution and abundance of arsenic in the soil and Sediments of Oahu, Hawaii. Aquatic Geochemistry , 20 (2-3), 87–113. https://doi.org/10.1007/s10498-013-9212-9
  • De Gregori, I. , Fuentes, E. , Rojas, M. , Pinochet, H. , & Potin-Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring: Jem , 5 (2), 287–295. https://doi.org/10.1039/b211469k
  • de Meyer, C. M. C. , Rodríguez, J. M. , Carpio, E. A. , García, P. A. , Stengel, C. , & Berg, M. (2017). Arsenic, manganese and aluminum contamination in groundwater resources of western Amazonia, Peru. Science of the Total Environment , 607-608 , 1437–1450. https://doi.org/10.1016/j.scitotenv.2017.07.059
  • Decreto N° 883 (1995). Normas para la clasificación y el control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos. In Gaceta Oficial de la República de Venezuela (5.02. Extraordinario del 18 de Diciembre de 1995).
  • Degray, A. , & Miles, C. (2014). An analysis of the hydrological and socioeconomic impacts of the Cerro Quema open pit mine (Final Report.). ENVR 451, Panama, 1–59.
  • Delgado Quezada, V. , Altamirano Espinoza, M. , & Bundschuh, J. (2020). Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. Science of the Total Environment , 716 , 136527. https://doi.org/10.1016/j.scitotenv.2020.136527
  • Del Razo, L. M. , Corona, J. C. , García-Vargas, G. , Albores, A. , & Cebrián, M. E. (1993). The oxidation states of arsenic in well water from a chronic arsenicism area of northern Mexico. Environmental Pollution , 80 (1), 91–94. https://doi.org/10.1016/0269-7491(90)90111-O
  • Deschamps, E. , Ciminelli, V. S. T. , Lange, F. T. , Matschullat, J. , Raue, B. , & Schmidt, H. (2002). Soil and sediment geochemistry of the Iron Quadrangle, Brazil: The case of arsenic. Journal of Soils and Sediments , 2 (4), 216–222. https://doi.org/10.1007/BF02991043
  • Deschamps, E. , & Matschullat, J. (2007). Arsênio antropogênico e natural. Um estudo em regiões do Quadrilátero Ferrífero. Belo Horizonte . Fundacao Estadual do Meio Ambiente.
  • DGA (2017). Información oficial hidrometeorológica y de calidad de aguas en línea (octubre 2010 - noviembre 2017). Dirección General de Aguas, data. http://snia.dga.cl/BNAConsultas/.
  • Díaz, S. L. , Blanco, M. D. C. , Schmidt, E. S. , Amiotti, N. M. , & Espósito, M. E. (2015). Geodisponibilidad de arsénico, hierro y sodio en suelos de la cuenca El Divisorio [Buenos Aires, Argentina]. Ciencia Del Suelo , 33 (2), 303–312.
  • Díaz, S. L. , Espósito, M. E. , Blanco, M. C. , Amiotti, N. M. , Schmidt, E. S. , Sequeira, M. E. , Paoloni, J. D. , & Nicolli, H. B. (2016). Control factors of the spatial distribution of arsenic and other associated elements in loess soils and waters of the southern Pampa (Argentina). CATENA , 140 , 205–216. https://doi.org/10.1016/j.catena.2016.01.013
  • Dietrich, S. , Bea, S. A. , Weinzettel, P. , Torres, E. , & Ayora, C. (2016). Occurrence and distribution of arsenic in the sediments of a carbonate-rich unsaturated zone. Environmental Earth Sciences , 75 (2), 90. https://doi.org/10.1007/s12665-015-4892-7
  • Dolci, N. N. , Sá, F. , da Costa Machado, E. , Krul, R. , & Neto, R. R. (2017). Trace elements in feathers and eggshells of brown booby Sula leucogaster in the Marine National Park of Currais Islands, Brazil. Environ Monit Assess , 189 (10), 496 https://doi.org/10.1007/s10661-017-6190-1
  • Domínguez, J. P. , Moya, M. , Rodríguez, E. , Panameño, P. , & Linares, J. (2015). Evaluación final de riesgos y propuesta de medidas de remediación en 15 pasivos ambientales mineros de El Salvador. Reporte de consultoría presentado al Ministerio de Economía de El Salvador por la firma Biosistemas, S.A. de C.V., Fundación Maquilishuatl, FIAES, MINEC, San Salvador, El Salvador.
  • Donohue, J. M. , & Abernathy, C. O. (1999). Exposure to inorganic arsenic from fish and shellfish. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic exposure and health effects (pp. 89–98). Oxford, UK: Elsevier.
  • Dótor-Almazán, A. , Armienta-Hernández, M. A. , Talavera-Mendoza, O. , & Ruiz, J. (2017). Geochemical behavior of Cu and sulfur isotopes in the tropical mining region of Taxco, Guerrero (southern Mexico). Chemical Geology , 471 , 1–12. https://doi.org/10.1016/j.chemgeo.2017.09.005
  • Dudka, S. W. , & Mille, P. (1999). Permissible concentrations of arsenic and lead in soils based on risk assessment. Water, Air, and Soil Pollution , 113 (1/4), 127–132. https://doi.org/10.1023/A:1005028905396
  • EC (2015). Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official Journal of the European Union , 161 (14), 1993–1995.
  • EFSA (2009). Scientific opinion on arsenic in food. EFSA Journal , 7 (10), 1351–1550.
  • EFSA (2010). EFSA Panel on Contaminants in the Food Chain. (CONTAM); Scientific opinion on lead in food. EFSA Journal , 8 (4), 1570.
  • EFSA (2014). Dietary exposure to inorganic arsenic in the European population. EFSA Journal , 12 (3), 3597.
  • Eisen-Cuadra, A. , Christian, A. D. , Dorval, E. , Broadaway, B. , Herron, J. , & Hanningan, R. E. (2013). Metal geochemistry of a brackish lake: Étang Saumâtre, Haiti. In P. Censi , T. Darrah , Y. Erel (Eds.), Medical geochemistry (pp. 149–166). Springer.
  • El Mostrador (2011). Escuela La Greda será clausurada tras confirmarse presencia de arsénico y plomo en los niños - El Mostrador. https://www.elmostrador.cl/noticias/pais/2011/07/29/escuela-la-greda-cerrara-definitivamente-tras-confirmarse-presencia-de-arsenico-y-plomo-en-los-ninos/
  • El País (2019). Récord de visitantes en el litoral de termas. https://www.elpais.com.uy/informacion/record-visitantes-litoral-termas.html
  • EMBRAPA (2015). Tragédia em Mariana: Produção agropecuária em áreas atingidas está comprometida. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). https://ww.embrapa.br/busca-de-noticias/-/noticia/8410974/tragedia-em-mariana-producao-agropecuaria-em-areas-atingidas-esta-comprometida
  • ENACAL (2008). Gobierno Sandinista hace realidad el agua potable para Juigalpa. Empresa Nicaragüense de Acueductos y Alcantarillados (ENACAL), Managua, Nicaragua. https://www.enacal.com.ni/proyecto/15-02-2017-1.html
  • ENACAL (2011). Proyecto Programa de Abastecimiento de Agua Potable y Alcantarillado Sanitara para San Juan del Sur. ENACAL, Managua, Nicaragua. https://www.enacal.com.ni/proyecto/04-04-2018-6.html.
  • ENACAL (2013). Establecimiento de la línea de base sobre la calidad actual del agua y sedimentos de la laguna de Masaya - Año 2012/2013. Empresa Nicaragüense de Acueductos y Alcantarillados (ENACAL), CIRA/UNAN-Managua, Managua, Nicaragua.
  • ENVIRON (2011). Preliminary hydrological assessment for the development of an industrial park in Haiti. Project (01-27631), Inter-American Development Bank and the ENVIRON International Corporation, Washington, DC, U.S., 1-31. doi.org/ https://doi.org/10.1007/978-94-007-4372-4_9
  • Ersbøll, A. K. , Monrad, M. , Sørensen, M. , Baastrup, R. , Hansen, B. , Bach, F. W. , Tjønneland, A. , Overvad, K. , & Raaschou-Nielsen, O. (2018). Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. Environment International , 120 , 72–80. https://doi.org/10.1016/j.envint.2018.07.040
  • Espinosa, A. , Güiza, S. (2005). Mapa de concentración puntual de arsénico en aguas. Plancha 209 Zipaquirá - Atlas Geoquímico de Colombia. Bogotá. Instituto Colombiano de Geología y Minería, Ingeominas. http://recordcenter.sgc.gov.co/B11/22006010002740/documento/pdf/2105027401101000.pdf
  • Espinosa, E. , Armienta, M. A. , Cruz, O. , Aguayo, A. , & Ceniceros, N. (2009). Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetalic mining zone of México. Environmental Geology , 58 (7), 1467–1477. https://doi.org/10.1007/s00254-008-1649-6
  • Espinoza, F. , Astudillo, F. , Baeza, L. , Carrasco, F. , Castillo, P. , Lacassie, J. , Miralles, C. , Muñoz, N. , & Ramírez, C. (2016). Base de datos de geoquímica de sedimentos de la Hoja La Serena, región de Coquimbo. Base de Datos (04), Sernageomin, Monografías. Servicio Nacional de Geología y Minería, Santiago de Chile, Chile.
  • Esteller, M. , Domínguez, E. , Garrido, S. , & Avilés, M. (2015). Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico. Environmental Earth Sciences , 74 (4), 2893–2906. https://doi.org/10.1007/s12665-015-4315-9
  • Estrada Guevara, M. (2012). Calidad del agua y manejo de sus diferentes niveles para el óptimo rendimiento del cultivo del arroz, en el Valle de Sébaco, durante el periodo Julio-Diciembre 2011. MSc Thesis, Universidad Nacional Autónoma de Nicaragua, Managua, Nicaragua.
  • EU (2013). Commission Regulation (EU) No 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities Text with EEA relevance; European Union (EU), Brussles, Belgium. http://extwprlegs1.fao.org/docs/pdf/eur129053.pdf.
  • FAO (2012). The state of world fisheries and aquaculture . Food and Agriculture Organization of the United Nations. www.fao.org/3/a-i2727e.pdf
  • FAO/WHO Codex Alimentarius (1995). General Standard for Contaminants and Toxins in Food and Feed. Adopted in 1995. (CXS 193-1995) Revised in 1997, 2006, 2008, 2009. Amended in 2010, 2012, 2013, 2014, 2015.
  • Fariña, S. , Schmidt, G. , & Vassolo, S. (2007). Uso sostenible del sistema acuífero Guaraní en la Región Oriental del Paraguay SEAM/BGR, 2007. Geología e Hidrogeología. Proyecto SAG-PY (2), Asunción, Uruguay.
  • Fariña, S. , Larroza, F. , Báez, J. , Cabral, N. , & Mallen, G. (2018). Mapa hidrogeológico del sistema acuífero Yrenda-Toba-Tarijeño (SAYTT) en la República de Paraguay [Paper presentation]. XIV Congreso Latinoamericano de Hidrología Subtérranea y X Congreso Argentino de Hidrogeología, Argentina. Universidad de Salta, 1–9.
  • Farnfield, H. R. , Marcilla, A. L. , & Ward, N. I. (2012). Arsenic speciation and trace element analysis of the volcanic Rio Agrio and the geothermal waters of Copahue, Argentina. Science of the Total Environment , 433 , 371–378. https://doi.org/10.1016/j.scitotenv.2012.05.098
  • Fernandes, A. R. , Souza, E. S. , de, de Souza Braz, A. M. , Birani, S. M. , & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the eastern Amazon, Brazil. Journal of Geochemical Exploration , 190 , 453–463. https://doi.org/10.1016/j.gexplo.2018.04.012
  • Fernández, Z. (2009). Plan de MIZC para minimizar el azolvamiento en la bahía de Cayo Moa [MSc Thesis]. Universidad de Oriente.
  • Figueiredo, B. R. , Cunha, F. G. , Paoliello, M. M. B. , Capitani, E. M. , Sakuma, A. , & Enzweiler, J. (2003). Environment and human exposure to lead, cadmium and arsenic in the Ribeira Valley, southeastern Brazil. Proceedings of the 6th International Symposium on Environmental Geochemistry, Edinburgh, Scotland.
  • Figueiredo, B. R. , Borba, R. P. , & Angélica, R. S. (2007). Arsenic occurrence in Brazil and human exposure. Environmental Geochemistry and Health , 29 (2), 109–118. https://doi.org/10.1007/s10653-006-9074-9
  • Findley, M. , & Côte, M. (2011). Environment assessment of the USAID/Haiti North Park Power Project. Report of the environmental assessment of the USAID/Haiti North Park Power Project.
  • Fiorentino, C. E. , Paoloni, J. D. , Sequeira, M. E. , & Arosteguy, P. (2007). The presence of vanadium in groundwater of southeastern extreme the Pampean region Argentina: Relationship with other chemical elements. Journal of Contaminant Hydrology , 93 (1-4), 122–129. https://doi.org/10.1016/j.jconhyd.2007.02.001
  • Flores Rojas, K. J. (2010). Porfido de Cobre del Proyecto Petaquilla área de Botija-Panama. Thesis. Universidad Nacional de Ingeniería, Lima, Peru.
  • Freire, C. , Koifman, R. J. , Fujimoto, D. , Souza, V. C. O. , Barbosa, F., Jr. , & Koifman, S. (2015). Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil. Chemosphere , 128 , 70–78. https://doi.org/10.1016/j.chemosphere.2014.12.083
  • Freitas, E. T. F. , Montoro, L. A. , Gasparon, M. , & Ciminelli, V. S. T. (2015). Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite. Chemosphere , 138 , 340–347. https://doi.org/10.1016/j.chemosphere.2015.05.101
  • Freitas, L. A. , Rambo, C. L. , Franscescon, F. , Barros, A. F. P. , Lucca, G. S. , Siebel, A. M. , Scapinello, J. , Lucas, E. M. , & Magro, J. D. (2017). Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Revista Ambiente & Agua , 12 (4). https://doi.org/10.4136/ambi-agua.2036
  • Fuentes, G. , Viñals, J. , & Herreros, O. (2009). Hydrothermal purification and enrichment of Chilean copper concentrates. Part 2: The behavior of the bulk concentrates. Hydrometallurgy , 95 (1-2), 113–120. https://doi.org/10.1016/j.hydromet.2008.05.004
  • Gao, Y. , Baisch, P. , Mirlean, N. , da Silva, F. M. R., Jr. Van Larebeke, N. , Baeyens, W. , & Leermakers, M. (2018). Arsenic speciation in fish and shellfish from the North Sea (Southern Bight) and Açu Port area (Brazil) and health risks related to seafood consumption. Chemosphere , 191 , 89–96. https://doi.org/10.1016/j.chemosphere.2017.10.031
  • Garcés, Y. , Betanzon, A. , Lopeztegui, L. , & Artiles, A. (2012). Hydrological characteristics of Cienfuegos Bay, Cuba, related to the presence of the invasive green mussel Perna viridis . International Journal of Marine Science , 2 (2), 12–17. https://doi.org/10.5376/ijms.2012.02.0002
  • García, A. , Armienta, M. A. , & Cruz, O. (2001). Sources, distribution and fate of arsenic along the Toliman River, Zimapán, México. In Acreman M.C. (Ed.), Hydro-ecology: Linking hydrology and aquatic ecology , vol. 266, pp. 57–64. IAHS.
  • García, D. , Prieto, G. , Páez, I. , Rojas, A. M. , García, G. (2010). Evaluación geoquímica para geología médica en la depresión Momposina. Instituto Colombiano de Geología y Minería – Ingeominas, Bogotá, Colombia. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=49163
  • García, M. E. , Betancourt, O. , Cueva, E. , Jean Remy, D. , & Gimaraes, J. R. (2012). Mining and seasonal variation of the metal’s concentration in the Puyango River basin—Ecuador. Journal of Environmental Protection , 03 (11), 1542–1550. https://doi.org/10.4236/jep.2012.311170
  • García, M. G. , Borgnino, L. , Bia, G. , & Depetris, P. J. (2014). Mechanisms of arsenic and fluoride release from Chaco-Pampean sediments (Argentina). International Journal of Environment and Health , 7 (1), 41–57. https://doi.org/10.1504/IJENVH.2014.060122
  • García-Guinea, J. , & Harffy, M. (1998). Bolivian mining pollution: Past, present and future. Ambio , 27 (5), 251–253.
  • García-Meza, J. V. , Ramos, E. , Carrillo-Chávez, A. , & Duran-de-Bazúa, C. (2004). Mineralogical and chemical characterization of historical mine tailings from the Valenciana mine, Guanajuato, Mexico: Environmental implications. Bulletin of Environmental Contamination and Toxicology , 72 (1), 170–177. https://doi.org/10.1007/s00128-003-0256-1
  • García-Meza, J. V. , Carrillo-Chávez, A. , & Morton-Bermea, O. (2006). Sequential extractions on mine tailings samples after and before bioassays: Implications on the speciation of metals during microbial re-colonization. Environmental Geology , 49 (3), 437–448. https://doi.org/10.1007/s00254-005-0101-4
  • Gastmans, D. , Veroslavski, G. , Kiang Chang, H. , Marmisolle, J. , & Oleaga, A. (2010). Influence of hydrostratigraphic framework in arsenic occurrence in groundwater along the Uruguay River thermal corridor (Argentine-Brazil-Uruguay). Geociencias , 29 (1), 105–120.
  • Gastmans, D. , Chang, H. K. , & Hutcheon, I. (2010). Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Applied Geochemistry , 25 (1), 16–36. https://doi.org/10.1016/j.apgeochem.2009.09.024
  • Gavilán García, I. C. , Fernández Villagómez, G. , Menchaca Pérez, A. , Barraza Torres, A. , & Gavilán García, A. (2017). Policy proposal for metals speciation in tailings contaminated soils: A case study in Chihuahua, Mexico. Journal of the Mexican Chemical Society , 61 (1), 14–22. https://doi.org/10.29356/jmcs.v61i1.123
  • GEMG (2015). Relatório: Avaliação dos efeitos e desdobramentos do rompimento da Barragem de Fundão em Mariana-MG - Decreto nº 46.892/2015, Secretaria de Estado de Desenvolvimento Regional, Política Urbana e Gestão Metropolitana, Governo de Estado de Minas Gerais, Brazil. http://www.saudeesustentabilidade.org.br/wp-content/uploads/2017/04/RELAT%C3%93RIO_GREENPEACE_18.04.17_FINAL.pdf
  • Genie Zepeda, E. , & González Zambrana, R. (2017). Efectos a la salud por exposición crónica a arsénico en agua de bebida en habitantes adultos de comunidades rurales del Municipio Larreynaga-Malpaisillo. Monografía, UNAN-León, Facultad de Ciencias Médicas, León, Nicaragua.
  • George, C. M. , Sima, L. , Arias, M. H. , Mihalic, J. , Cabrera, L. Z. , Danz, D. , Checkley, W. , & Gilman, R. H. (2014). Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bulletin of the World Health Organization , 92 (8), 565–572. https://doi.org/10.2471/BLT.13.128496
  • GIAIA (2016). Relatório técnico – determinação de metais na bacia do Rio Doce (período: Dezembro 2015 a abril 2016); Grupo Independente para Avaliação de Impacto Ambiental (GIAIA), May 2016. http://giaia.eco.br/wp-content/uploads/2016/06/Relatorio–GIAIA_Metais_Vivian_revisto5.pdf
  • Gillispie, E. C. , Sowers, T. D. , Duckworth, O. W. , & Polizzotto, M. L. (2015). Soil pollution due to irrigation with arsenic-contaminated groundwater: Current state of science. Current Pollution Reports , 1 (1), 1–12. https://doi.org/10.1007/s40726-015-0001-5
  • Ghosh, A. , Awal, M. A. , Majumder, S. , Sikder, M. H. , & Rao, D. R. (2012). Arsenic residues in broiler meat and excreta at arsenic prone areas of Bangladesh. Bangladesh Journal of Pharmacology , 7 (3), 178–185. https://doi.org/10.3329/bjp.v7i3.11435
  • Giménez, M. C. , Blanes, P. S. , Buchhamer, E. E. , Osicka, R. M. , Morisio, Y. , & Farías, S. S. (2013). Assessment of heavy metals concentration in arsenic contaminated groundwater of the Chaco Plain, Argentina. ISRN Environmental Chemistry , 2013 , 1–12. https://doi.org/10.1155/2013/930207
  • Gómez, C. A. (2002). Monitoreo y atención de intoxicados con arsénico en El Zapote, Municipio de San Isidro - Departamento de Matagalpa, Nicaragua 1994–2002 . UNICEF.
  • Gomez, M. L. , Aranibar, J. N. , Wuilloud, R. G. , Rubio, M. C. , Martinez, D. E. , Soria, N. D. , Monasterio, R. , Villagra, P. , & Goirán, S. B. (2014). Hydrogeology and hydrogeochemical modeling in phreatic aquifer of NE Mendoza, Argentina. Journal of Iberian Geology , 40 (3), 521–538. https://doi.org/10.5209/rev_JIGE.2014.v40.n3.43302
  • Gomez, L. , Canizo, B. , Lana, B. , Zalazar, G. , Wuilloud, R. , & Aravena, R. (2019). Hydrochemical processes, variability and natural background levels of arsenic in groundwater of northeastern Mendoza, Argentina. Journal of Iberian Geology , 45 (3), 365–382. https://doi.org/10.1007/s41513-018-00099-0
  • Gong, Q. , Chen, P. , Shi, R. , Gao, Y. , Zheng, S. A. , Xu, Y. , Shao, C. , & Zheng, X. (2019). Health assessment of trace metal concentrations in organic fertilizer in northern China. International Journal of Environmental Research and Public Health , 16 (6), 1031. https://doi.org/10.3390/ijerph16061031
  • González, L. , Rodríguez, G. , Muñoz, R. (2005). Plancha 144 Anexo 144-4 Mapa de concentración puntual sedimentos activos finos de As. Bogotá: Instituto Colombiano de Geología y Minería, Ingeominas. http://recordcenter.sgc.gov.co/B12/23008010002782/mapa/pdf/2105027821300003.pdf.
  • Gonzálaez- Hita, L. , Sá nchez, L. , & Mata. I. (1991). Estudio hidrogeoquímico e isotópico del acuífero granular de la Comarca Lagunera. Instituto Mexicano de Tecnología del Agua. Technical Report (unpublished).
  • González Hita, L. , Sánchez Díaz, F. , & Mata Arellano, I. (1995). Estudio hidrogeoquímico e isotópico del acuífero granular de la Comarca Lagunera, México. In L. González-Hita , L. Sánchez , & I. Mata . Estudios de Hidrogeología Isotópica en América Latina 1994 – Isotope Hydrology Investigations in Latin America 1994 . IAEA- TECDOC-835, IAEA. pp. 337–376.
  • González-Martínez, F. , Sánchez-Rodas, D. , Cáceres, D. , Martínez, M. , Quiñones, L. , & Johnson-Restrepo, B. (2018). Arsenic exposure, profiles of urinary arsenic species, and polymorphism effects of glutathione-s-transferase and metallothioneins. Chemosphere , 212 , 927–936. https://doi.org/10.1016/j.chemosphere.2018.08.139
  • González Rodríguez, B. & PIENSA-UNI ( 2016). Mecanismos de contaminación de arsénico en comunidades rurales de Nicaragua. Caso de estudio: Muy Muy, Matagalpa. Report, Managua, Nicaragua.
  • Goso, C. , Manganelli, A. , Fernández-Turiel, J. L. , García Valles, M. , Gimeno, D. , & Pérez, C. (2006). Contaminación por arsénico en aguas del acuífero Mercedes (Uruguay). Nota Breve, Revista SUG , 13 , 65–66.
  • Goso, C. , Fernández-Turiel, J. L. , Guerequiz, R. , García Valles, M. , Gimeno, D. , Mañay, N. , & Manganelli, A. (2008). Arsénico en algunos acuíferos del Uruguay. Nota Breve. Revista SUG , 15 , 98–99.
  • Goso, H. (1972). El Cuaternario Uruguayo (Uruguayan Quaternary). Proyecto, Estudio Levantamiento de Suelos. Ed. Mimeogr.
  • Goyenechea, M. (1917). Sobre la nueva enfermedad descubierta en Bell-Ville. Revista Médica de Rosario , 1917 (7), 485.
  • Grandia, F. , Salas, J. , Arcos, D. , Archambault, A. , & Cottard, F. (2009). Impacto del drenaje ácido de explotaciones mineras en la cuenca del Río Margajita y Embalse de Hatillo (República Dominicana). Boletín Geológico y Minero , 120 (4), 595–606.
  • GRUN & ANA (2010). Ley General de Aguas N° 620 y Reglamento de la Ley General de Aguas Nacionales, Mapa de Cuencas, Decreto (44). Published in: La Gaceta No. 169, 4 September 2007, Gobierno de Reconciliación y Unidad Nacional (GRUN) y Autoridad Nacional del Agua (ANA) Managua, Nicaragua.
  • Guilherme, L. R. G. , Ono, F. B. , Cantoni, M. , Abreu, C. A. , Coscione, A. R. , Tappero, R. , & Sparks, D. (2014). Bioaccessibility of arsenic in a gold mine area in Brazil: Why is it so low? In M. I. Litter , H. B. Nicolli , M. Meichtry , N. Quici , J. Bundschuh , P. Bhattacharya , R. Naidu , (Eds.), One Century of the Discovery of Arsenicosis in Latin America (1914–2014) – As2014. Proceedings of the 5th International Congress on Arsenic in the Environment.
  • Gutiérrez, M. , & Carreón, E. (2008). Contenido de As, Ba, y Cu en sedimentos y su asociación con depósitos minerales en el noreste de Chihuahua. Medio Ambiente Desarrollo Sustentable , 11 , 108–117.
  • Gutiérrez, M. , Martinez-Pina, C. , Luo, J. , & Mickus, K. (2008). Geochemical processes contributing to the contamination of soil and surface waters in the Rio Conchos basin, Mexico. Geosphere , 4 (3), 600–611. https://doi.org/10.1130/GES00160.1
  • Gutiérrez, S. (2007). Caracterización química de las patinas negras utilizadas en la momificación de las momias negras de la cultura Chinchorro [Thesis]. Universidad de Tarapacá. Arica, Chile. Chile.
  • Gutiérrez-Ojeda, C. (2009). Determining the origin of arsenic in the Lagunera region aquifer, Mexico using geochemical modeling. In J. Bundschuh , M. A. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A. B. Mukherjee (Eds.), Natural arsenic in groundwater of Latin America (pp. 163–170.). CRC Press.
  • Gutiérrez-Ruiz, M. , Romero, F. M. , & González-Hernández, G. (2007). Suelos y sedimentos afectados por la dispersión de jales inactivos de sulfuros metálicos en la zona minera de Santa Bárbara, Chihuahua, México. Revista Mexicana de Ciencias Geológicas , 24 , 170–184.
  • Hagström, A. , & Rydstedt, A. (2015). A hydrochemical Investigation and socioeconomic assessment in Rio Zapomeca River basin focusing on arsenic contamination [MSc Thesis]. Lund University.
  • Hall, G. E. M. , Pelchat, J. C. , & Gauthier, G. (1999). Stability of inorganic arsenic (III) and arsenic(V) in water samples. Journal of Analytical Atomic Spectrometry , 14 (2), 205–213. https://doi.org/10.1039/a807498d
  • Hammarlund, L. , & Piñones, J. (2009). Arsenic in geothermal waters of Costa Rica. TRITA-LWR (Master Thesis). A Minor Field Study. KTH, Stockholm, Sweden.
  • Hatje, V. , Macedo, S. M. , Jesus, R. M. , Cotrim, G. , Garcia, K. S. , Queiroz, A. F. , & Ferreira, S. L. C. (2010). Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Marine Pollution Bulletin , 60 (12), 2225–2232. https://doi.org/10.1016/j.marpolbul.2010.08.014
  • Hauser, A. (1997). Catastro y caracterización de las fuentes de aguas minerales y termales de Chile. Boletín 50, Servicio Nacional de Geología y Minería, ISSN, 0020–3939.
  • Heinzen, W. , Velozo, C. , Carrión, R. , Cardozo, L. , Madracho, H. , & Massa, E. (1986). Carta hidrogeológica del Uruguay, 1:200000, DINAMIGE, Montevideo, Uruguay.
  • Heinzen, W. , Carrión, R. , Massa, E. , Pena, S. , Stapff, M. (2003). Mapa hidrogeológico del Uruguay. DINAMIGE. http://www.dinamige.gub.uy/ch25.htm
  • Herbel, M. , & Fendorf, S. (2006). Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology , 228 (1-3), 16–32. https://doi.org/10.1016/j.chemgeo.2005.11.016
  • Hernández, M. , & Marrugo, J. (2016). Trihalomethanes and arsenic in drinking water in Chinú and Corozal municipalities in Colombia: Health risk assessment. Ingeniería y Desarrollo , 34 , 88–115. Retrieved from http://www.scielo.org.co/pdf/inde/v34n1/v34n1a05.pdf (accessed January 2020).
  • Hernández, W. , Marcó, L. , Torres, D. , & Romero, P. (2018). Variabilidad espacial del pH y del contenido de Fe2O3 en suelos de la cuenca del Río Tabure del Estado Lara. Ciencia y Tecnología , 11 (1), 18–27. https://doi.org/10.18779/cyt.v11i1.202
  • Hernández-García, Y. (2007). Metales pesados y arsénico en agua y sedimento de embalses artificiales del Estado de Chihuahua México. Chihuahua, Chih., Mexico. MSc Thesis, Facultad de Zootecnia y Ecología. Universidad Autónoma de Chihuahua, Chihuahua, Mexico.
  • Hernández-Garcia, Y. , Sosa-Cerecedo, M. , Moreno, M. , Alcalá, J. , & Puga, S. R. (2008). Evaluación de la contaminación por metales pesados y arsénico en el sedimento en embalses del Estado de Chihuahua, México. Revista Latinoamericana de Recursos Naturales , 8 , 89–94.
  • Herrera-Murillo, J. , Mora-Campos, D. , Suarez-Serrano, A. , Villalobos-Cháves, M. , Salas-Jiménez, P. , Gamboa-Jiménez, A. , & Anchía-Leitón, D. (2017). Determinación de los niveles de arsénico presentes en sistemas de abastecimiento de agua de las regiones Chorotega y Huetar norte de Costa Rica, América Central. Costa Rica. Universidad Nacional de Costa Rica, San José, Costa Rica.
  • Hirata, R. , Gesicki, A. , Sracek, O. , Bertolo, R. , Giannini, P. C. , & Aravena, R. (2011). Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo State, Brazil. Journal of South American Earth Sciences , 31 (4), 444–456. https://doi.org/10.1016/j.jsames.2011.03.006
  • Hu, Z. , & Gao, S. (2008). Upper crustal abundances of trace elements: A revision and update. Chemical Geology , 253 (3-4), 205–221. https://doi.org/10.1016/j.chemgeo.2008.05.010
  • IAEA & CIRA/UNAN-Managua (2010). Proyecto de Nacional de Cooperación Técnica NIC/8/012. Aplicación de técnicas nucleares en el Plan de Gestión de la Cuenca 69 de los Grandes Lagos de Nicaragua (Informe Final). OIEA and CIRA/UNAN-Managua.
  • IBAMA (2015). Laudo técnico preliminar. Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Brazil. http://www.ibama.gov.br/phocadownload/barragemdefundao/laudos/laudo_tecnico_preliminar_Ibama.pdf.
  • IDEAM (2010). Estudio Nacional de Agua. Cap. 5 Estimación de la demanda de agua. http://documentacion.ideam.gov.co/openbiblio/bvirtual/021888/CAP5.pdf.
  • IGAM (2016). Monitoramento da qualidade das águas superficiais do Rio doce no Estado de Minas Gerais. Relatório técnico: Acompanhamento da Qualidade das Águas do Rio Doce após o Rompimento da Barragem da Samarco no Distrito de Bento Rodrigues – Mariana/MG. Governo do Estado de Minas Gerais. Sistema Estadual de Meio Ambiente, Instituto Mineiro de Gestão das Águas (IGAM). http://portal1.snirh.gov.br/arquivos/Doce/IGAM/relatorios/RelatorioTecnico_01fev2016.pdf.
  • INAA (1996). Informe de actividades de investigación de pozos perforados y excavados en comunidades rurales de San Isidro Matagalpa. Instituto Nicaragüense de Acueductos y Alcantarillados. Nicaragua.
  • INCA (2018). Inventario Nacional de Calidad del Agua. www.gapmaps.org.
  • INEI Perú (2017). Población y vivienda, Instituto Nacional de Estadística e Informática del Perú.
  • INETER (2010). Estudio de Caracterización Hidrogeológica e Hidrogeoquímica de la Subcuenca Mayales.
  • INETER, IAEA, & CIRA/UNAN-Managua (2011). Evaluación del impacto de la calidad del agua del Lago Xolotlán sobre el Río Tipitapa y el área inmediata en el Lago Cocibolca. Estación lluviosa Octubre 2010 y Seca Abril 2011. Managua, Nicaragua.
  • INETER, ANA, UNI, & GIZ (2014). Delimitación de cuencas hidrográficas en Nicaragua bajo la metodología de Pfafstetter . INETER.
  • Ingeominas (1987). Recursos Minerales de Colombia, Tomo I, 2a Ed. Bogotá. Publicaciones Geológicas Especiales de Ingeominas, Instituto Colombiano de Geología y Minería.
  • Ingeominas (2009). Mapa de Anomalías Geoquímicas de Colombia. Bogotá. Instituto Colombiano de Geología y Minería. Ingeominas. http://recordcenter.sgc.gov.co/B11/22006100024453/documento/pdf/2105244531101000.pdf.
  • INSAPROMA (2014). Proyecto de Fortalecimiento de la Capacidad Institucional en el Manejo Integral de los Residuos Sólidos a Nivel Nacional en la República Dominicana. https://insaproma.com/wp-content/uploads/2016/10/Situación-actual-de-disposición-final-de-la-basura.pdf
  • ISS (2017). Avaliação dos riscos em saúde da população de Barra Longa/MG afetada pelo desastre. Instituto Saúde e Sustentabilidade, Brazil. http://www.saudeesustentabilidade.org.br/wp-content/uploads/2017/04/RELAT%C3%93RIO_GREENPEACE_18.04.17_FINAL.pdf
  • Jannas, R. R. , Beane, R. E. , Ahler, B. A. , & Brosnahan, D. R. (1990). Gold and copper mineralization at the El Indio deposit, Chile. Journal of Geochemical Exploration , 36 (1-3), 233–266. https://doi.org/10.1016/0375-6742(90)90057-H
  • Jara-Marini, M. E. , & García-Rico, L. (2006). Distribution of arsenic in three geochemical fractions of surface sediments from coastal sites of Sonora, Gulf of California, Mexico. Bulletin of Environmental Contamination and Toxicology , 76 (4), 677–683. https://doi.org/10.1007/s00128-006-0973-3
  • Jayasumana, C. , Fonseka, S. , Fernando, A. , Jayalath, K. , Amarasinghe, M. , Siribaddana, S. , Gunatilake, S. , Paranagama, P. (2015). Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. SpringerPlus, 4, 90. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348354/.
  • Joseph, T. , Dubey, B. , & McBean, E. A. (2015). A critical review of arsenic exposures for Bangladeshi adults. Science of the Total Environment , 527-528 , 540–551. https://doi.org/10.1016/j.scitotenv.2015.05.035
  • Kader, M. , Lamb, D. T. , Megharaj, M. , & Naidu, R. (2016). Sorption parameters as a predictor of arsenic phytotoxicity in Australian soils. Geoderma , 265 , 103–110. https://doi.org/10.1016/j.geoderma.2015.11.019
  • Kazi, T. G. , Shah, A. Q. , Afridi, H. I. , Shah, N. A. , & Arain, M. B. (2013). Hazardous impact of organic arsenical compounds in chicken feed on different tissues of broiler chicken and manure. Ecotoxicology and Environmental Safety , 87 , 120–123.
  • Khan, K. M. , Chakraborty, R. , Bundschuh, J. , Bhattacharya, P. , & Parvez, F. (2020). Health effects of arsenic exposure in Latin America: An overview of the past eight years of research . Science of the Total Environment , 710 , 136071. https://doi.org/10.1016/j.scitotenv.2019.136071
  • Kirchheim, R. , Gastmans, D. , Chang, H. K. , & Gilmore, T. E. (2019). The use of isotopes in evolving groundwater circulation models of regional continental aquifers: The case of the Guarani Aquifer System. Hydrological Processes , 33 (17), 2266–2278. https://doi.org/10.1002/hyp.13476
  • Kirchmer, C. J. , & Castro, M. L. (1979). Tratamiento para la remoción de arsénico en aguas con alto contenido de Magnesio - Río Locumba, Perú. ACODAL , 89 , 11–30.
  • Knee, K. L. , & Encalada, A. C. (2014). Land use and water quality in a rural cloud forest region (Intag, Ecuador), River. River Research and Applications , 30 (3), 385–401. https://doi.org/10.1002/rra.2634
  • Kumar, R. , Patel, M. , Singh, P. , Bundschuh, J. , Pittman, C. U., Jr. , Trakal, L. , & Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America . Science of the Total Environment , 694 , 133427. https://doi.org/10.1016/j.scitotenv.2019.07.233
  • La Gaceta (2005). Reglamento para la Calidad del Agua Potable. Decreto No 32327-S, La Gaceta (84). https://www.ministeriodesalud.go.cr/gestores_en_salud/comision_agua_segura/legislacion/CAS_reglamento_calidad_agua_potable.pdf
  • Lacassie, J. , Astudillo, F. , Baeza, L. , Barrera, J. , Carrasco, F. , Castillo, P. , Espinoza, F. , Figueroa, M. , Muñoz, N. , Ramírez, C. , & Salinas, P. (2014). Base de Datos de Geoquímica de sedimentos de la Hoja Iquique, región de Tarapacá (01), Base de Datos. Sernageomin, Servicio Nacional de Geología y Minería, Santiago de Chile, Chile.
  • Lacayo Romero, M. , Cruz, A. , Lacayo, J. , Calero, S. , & Fomsgaard, I. (1991). Arsénico total en sedimentos, peces y agua en el Lago Xolotlán (Managua). Presented at: Taller Regional de Limnología Aplicada al Lago Xolotlán para su Recuperación y Aprovechamiento, 8-10 July 1991, Centro para la Investigaciones en Recursos Acuáticos (CIRA), Managua, Nicaragua.
  • Lagomarsino, C. , Quiroz, C. , & Tapia, J. (2018). Geoquímica de As, Cu y Mo en cuencas contrastantes de Chile. XV Congreso Geológico Chileno, Concepción, Chile.
  • Larroza, F. , & Fariña, S. (2005). Caracterización hidrogeológica del Sistema Acuífero Yrenda (SAY) en Paraguay: Recurso compartido con Argentina y Bolivia [Paper presentation]. IV Congreso Argentino de Hidrogeología, Río Cuarto, Córdoba. Argentina, II, 125–134.
  • LAVELIN (2008). Proyecto de Protección Ambiental y Desarrollo Sostenible del Sistema Acuífero Guaraní. Hidroquímica, resultados finales de laboratorio (SNC LAVALIN). Zona Operativa Sur. Protocolo Base, Anexo 5.
  • Lemos, M. J. N. , Nascimento, E. S. , Maihara, V. A. , Silva, P. S. C. , & Landgraf, M. (2014). Evaluation of As, Se and Zn in octopus samples in different points of sales of the distribution chain in Brazil. Journal of Radioanalytical and Nuclear Chemistry , 301 (2), 573–579. https://doi.org/10.1007/s10967-014-3167-1
  • Lemus, C. , Honores, C. , Aguilera, F. , Pérez, Y. , Morales, D. , Cáceres, D. , & Neira, H. (2015). Evaluación de los recursos geotérmicos de la Región de Los Ríos. Informe Registrado (IR-15-59). SERNAGEOMIN, Santiago de Chile, Chile.
  • Levy Brooks, Y. (2016). Contaminación orgánica e inorgánica de la bahía de Bluefields y evaluación del riesgo por la ingesta de mercurio y plomo a través del consumo de peces y ostiones, 2011–2012. Universidad Nacional Autónoma de Nicaragua. MSc Thesis.
  • Lewis, J. F. , Escuder-Viruete, J. , Hernaiz-Huerta, P. P. , Gutiérrez, G. , Draper, G. , & Pérez-Estaún, A. (2002). Subdivisión geoquímica del arco de Isla Circum-Caribeño, Cordillera Central Dominicana: Implicaciones para la formación, acreción y crecimiento cortical en un ambiente intraoceánico. Acta Geologica Hispanica , 37 , 81–122.
  • Leybourne, M. I. , & Cameron, E. M. (2008). Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry-Cu deposits, Atacama Desert, Chile. Chemical Geology , 247 (1-2), 208–228. https://doi.org/10.1016/j.chemgeo.2007.10.017
  • Libbey, R. B. , Williams-Jones, A. E. , Melosh, B. L. , & Backeberg, N. R. (2015). Characterization of geothermal activity along the North American - Caribbean Plate boundary in Guatemala: The Joaquina geothermal field. Geothermics , 56 , 17–34. https://doi.org/10.1016/j.geothermics.2015.03.002
  • Lima, L. , López-Heras, I. , Pedrero, Z. , Olivares Rieumont, S. , Madrid, Y. , Cámara, C. , & De la Rosa, D. (2013). Levels of arsenic, mercury and selenium in Clarias gariepinus from Sagua la Grande River. Annales de Limnologie - International Journal of Limnology , 49 (2), 113–119. https://doi.org/10.1051/limn/2013046
  • Limbozzi, F. (2011). Elementos traza en el agua subterránea. Rol de la zona no saturada como fuente de aporte de flúor. PhD Thesis, Universidad Nacional del Sur, Bahia Blanca, Argentina.
  • Limón-Pacheco, J. H. , Jiménez-Córdova, M. I. , Cárdenas-González, M. , Sánchez Retana, I. M. , Gonsebatt, M. E. , & Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Annals of Global Health , 84 (2), 257–217. https://doi.org/10.29024/aogh.913
  • Litter, M. I. , Armienta, M. A. , & Farías, S. S. (Eds.). (2009). Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. CYTED. http://www.cnea.gov.ar/xxi/ambiental/iberoarsen/default.asp.
  • Litter, M. I. , Alarcón-Herrera, M. T. , Arenas, M. J. , Armienta, M. A. , Avilés, M. , Cáceres, R. E. , Cipriani, H. N. , Cornejo, L. , Dias, L. E. , Fernández Cirelli, A. , Farfán, E. M. , Garrido, S. , Lorenzo, L. , Morgada, M. E. , Olmos-Márquezd, M. A. , & Pérez-Carrera, A. (2012). Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Science of the Total Environment , 429 , 107–121. https://doi.org/10.1016/j.scitotenv.2011.05.004
  • Litter, M. I. , Ingallinella, A. M. , Olmos, V. , Savio, M. , Difeo, G. , Botto, L. , Farfán Torres, E. M. , Taylor, S. , Frangie, S. , Herkovits, J. , Schalamuk, I. , González, M. J. , Berardozzi, E. , García Einschlag, F. S. , Bhattacharya, P. , & Ahmad, A. (2019a). Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment , 676 , 756–766. https://doi.org/10.1016/j.scitotenv.2019.04.262
  • Litter, M. I. , Ingallinella, A. M. , Olmos, V. , Savio, M. , Difeo, G. , Botto, L. , Farfán Torres, E. M. , Taylor, S. , Frangie, S. , Herkovits, J. , Schalamuk, I. , González, M. J. , Berardozzi, E. , García Einschlag, F. S. , Bhattacharya, P. , & Ahmad, A. (2019b). Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Science of the Total Environment , 690 , 778–789. https://doi.org/10.1016/j.scitotenv.2019.06.358
  • Litter, M. I. , Armienta, M. A. , Villanueva Estrada, R. E. , Villaamil Lepori, E. C. , & Olmos, V. (2020). Arsenic in Latin America: Part II. In S. Srivastava (Ed.), Arsenic in drinking water and food . Springer.
  • Londoño, L. F. (2014). Heavy metals in dairy herds in the municipalities of San Pedro and Entrerríos, Antioquia, Colombia . Doctoral Thesis. Universidad de León. https://buleria.unileon.es/handle/10612/3667
  • Long, G. , Peng, Y. , & Bradshaw, D. (2012). A review of copper-arsenic mineral removal from copper concentrates. Minerals Engineering , 36-38 , 179–186. https://doi.org/10.1016/j.mineng.2012.03.032
  • López, D. L. , Ransom, L. , Perez, N. , Hernandez, P. , & Monterrosa, J. (2004). Dynamics of diffuse degassing at Ilopango Caldera, El Salvador. In W. I. Rose , J. J. Bommer , D. L. López , M. J. Carr , J. J. Major (Eds.), Natural Hazards in El Salvador (vol. 375, pp. 191–202). Geological Society of America Special Paper.
  • López, D. L. , Ransom, L. , Monterrosa, J. , Soriano, T. , Barahona, F. , Olmos, R. , & Bundschuh, J. (2009). Volcanic arsenic and boron pollution of Ilopango Lake, El Salvador. In J. Bundschuh , M. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A.B. Mukherjee (Eds.), Natural Arsenic in Groundwater of Latin America (pp. 129–143). Taylor & Francis.
  • López, D. L. , Bundschuh, J. , Birkle, P. , Armienta, M. A. , Cumbal, L. , Sracek, O. , Cornejo, L. , & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment , 429 , 57–75. https://doi.org/10.1016/j.scitotenv.2011.08.043
  • López, L. F. (2014). Exploraciones geoquímicas de yacimientos bajo cobertura transportada en el distrito de Inca de Oro [Evolución de Regolito y paisaje e impactos en métodos geoquímicos indirectos. Magíster Thesis]. Universidad de Chile. Atacama, Chile: Santiago de Chile. Chile.
  • López, D. L. (2019). El Cierre y Remediación de Minas Abandonadas en El Salvador. Report presented to the Mesa Nacional Frente la Mineria, San Salvador, El Salvador.
  • Lücke, O. H. , & Calderón, A. (2016). Characterization of the ashes from the 2014-2015 Turrialba Volcano eruptions by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Revista Geológica de América Central , 54 , 109–123. https://doi.org/10.15517/rgac.v54i0.23281
  • Machado, C. J. S. (2003). Recursos hídricos e cidadania no Brasil: Limites, alternativas e desafios. Ambiente & Sociedade , 6 (2), 121–136. https://doi.org/10.1590/S1414-753X2003000300008
  • Machado, I. , Bühl, V. , & Mañay, N. (2019). Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate. Science of the Total Environment , 681 , 497–502. https://doi.org/10.1016/j.scitotenv.2019.05.107
  • Macklin, M. G. , Payne, I. , Preston, D. , & Sedwick, C. (1996). Review of the Porco mine tailings dam burst and associated mining waste problems, Pilcomayo basin, Bolivia. Report to the UK Overseas Development Agency.
  • Mahecha, C. , Chaparro, S. , Saray, M. , & Reynoso, K. (2016). Assessment of arsenic and mercury pollution derived from the coal mining in some areas of the Guacheta (Cundinamarca) Municipality. Revista Ciencia Desarrollo e Innovación , 2 , 30–36. https://revistas.udca.edu.co/index.php/rcdi/article/view/489/414.
  • Mahlknecht, J. , Steinich, B. , & Navarro de LeÓN, I. (2004). Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environmental Geology , 45 (6), 781–795. https://doi.org/10.1007/s00254-003-0938-3
  • Mamani, M. , Wörner, G. , & Sempere, T. (2010). Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. Geological Society of America Bulletin , 122 (1-2), 162–182. https://doi.org/10.1130/B26538.1
  • Mañay, N. , Goso, C. , Pistón, M. , Fernández-Turiel, J. L. , García Vallés, M. , Rejas, M. , & Guerequiz, R. (2013). Groundwater arsenic content in Raigón aquifer system (San José, Uruguay). Revista SUG , 18 , 20–38.
  • Mañay, N. , Pistón, M. , & Goso, C. (2014). Arsenic environmental and health issues in Uruguay: A multidisciplinary approach. In M. Litter , H. B. Nicolli , M. Meichtry , N. Quici , J. Bundschuh , P. Bhattacharya , R. Naidu (Eds.), One Century of the Discovery of Arsenicosis in Latin America (1914-2014). Proceedings of the 5th International Congress on Arsenic in the Environment (pp. 485–487). CRC Press.
  • Mañay, N. , Pistón, M. , Cáceres, M. , Pizzorno, P. , & Bühl, V. (2019). An overview of environmental arsenic issues and exposure risks in Uruguay. Science of the Total Environment , 686 , 590–598. https://doi.org/10.1016/j.scitotenv.2019.05.443
  • Mandal, B. K. , Ogra, Y. , Anzai, K. , & Suzuki, K. T. (2004). Speciation of arsenic in biological samples. Toxicology and Applied Pharmacology , 198 (3), 307–318. https://doi.org/10.1016/j.taap.2003.10.030
  • Manganelli, A. , Goso, C. , Guerequiz, R. , Fernández Turiel, J. L. , García Vallès, M. , Gimeno, D. , & Pérez, C. (2007). Groundwater arsenic distribution in south-western Uruguay. Environmental Geology , 53 (4), 827–834. https://doi.org/10.1007/s00254-007-0695-9
  • Manz, M. , & Castro, J. (1997). The environmental hazard caused by smelter slags from the Sta. Maria de la Plaz mining district in Mexico. Environmental Pollution , 98 (1), 7–13. https://doi.org/10.1016/S0269-7491(97)00107-3
  • Marcó Parra, L. M. , Vázquez, C. , Macchi H, L. M. , Urdaneta, C. , Amaya, J. , Arroyo Cortez, J. , & Matute, S. (2010). Use of earthworms (Eisenia fetida) and vermicompost in the processing and safe management of hazardous solid and liquid wastes with high metal contents. International Journal of Global Environmental Issues , 10 (3/4), 214–224. https://doi.org/10.1504/IJGENVI.2010.037267
  • MARENA (2013). Estudio de calidad y disponibilidad de los recursos hídricos en la subcuenca del Rio Viejo. Final report. Managua, Nicaragua.
  • Mariño, E. E. , Ávila, G. T. , Bhattacharya, P. , & Schulz, C. J. (2020). The occurrence of arsenic and other trace elements in groundwaters of the southwestern Chaco-Pampean plain, Argentina. Journal of South American Earth Sciences , 100 , 102547. https://doi.org/10.1016/j.jsames.2020.102547
  • Mark, S. (2017). A review of the evidence for melanoma in nine Inca mummies. International Journal of Osteoarchaeology , 27 (4), 573–579. https://doi.org/10.1002/oa.2580
  • MARN (2017). Informe de la calidad del agua de los rios de El Salvador. Unidad de Comunicaciones MARN, Ministerio de Ambiente y Recursos Naturales de El Salvador, San Salvador, El Salvador.
  • Marschik, R. , Fontignie, D. , Chiaradia, M. , & Voldet, P. (2003). Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′S), Chile. Journal of South American Earth Sciences , 16 (5), 381–398. https://doi.org/10.1016/S0895-9811(03)00104-4
  • Marshall, G. , Ferreccio, C. , Yuan, Y. , Bates, M. N. , Steinmaus, C. , Selvin, S. , Liaw, J. , & Smith, A. H. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute , 99 (12), 920–928. https://doi.org/10.1093/jnci/djm004
  • Marshall, B. G. , Marcello, M. , Veiga, R. J. , Kaplan, R. , Adler Miserendino, G. , Schudel, B. A. , Bergquist, J. R. D. , Guimarães, L. , Sobral, G. S. , & Gonzalez-Mueller, C. (2018). Evidence of transboundary mercury and other pollutants in the Puyango-Tumbes River basin, Ecuador-Peru. Environmental Science: Processes & Impacts , 20 (4), 632–641. https://doi.org/10.1039/C7EM00504K
  • Martínez Cruz, M. (2008). Geochemical evolution of the acid crater lake of Poás Volcano (Costa Rica): Insights into volcanic-hydrothermal processes [PhD Thesis]. Utrecht University.
  • Martínez-Villegas, N. , Briones-Gallardo, R. , Ramos-Leal, J. A. , Avalos-Borja, M. , Castañón- Sandoval, A. D. , Razo-Flores, E. , & Villalobos, M. (2013). Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environmental Pollution (Barking, Essex: 1987) , 176 , 114–122. https://doi.org/10.1016/j.envpol.2012.12.025
  • Masue, Y. , Loeppert, R. H. , & Kramer, T. A. (2007). Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: Iron hydroxides. Environmental Science & Technology , 41 (3), 837–842. https://doi.org/10.1021/es061160z
  • Matschullat, J. , Perobelli Borba, R. , Deschamps, E. , Ribeiro Figueiredo, B. , Gabrio, T. , & Schwenk, M. (2000). Human and environmental contamination in the Iron Quadrangle, Brazil. Applied Geochemistry , 15 (2), 181–190. https://doi.org/10.1016/S0883-2927(99)00039-6
  • McClintock, T. R. , Chen, Y. , Bundschuh, J. , Oliver, J. T. , Navoni, J. , Olmos, V. , Villaamil Lepori, E. , Ahsan, H. , & Parvez, F. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment , 429 , 76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051
  • McCutcheon, M. (1998). Anthropogenic and volcanic pollution at Coatepeque Lake, El Salvador [BSc Thesis]. Ohio University.
  • Mejía-González, M. A. , González-Hita, L. , Briones-Gallardo, R. , Cardona-Benavides, A. , & Soto-Navarro, P. (2014). Mechanisms that release arsenic to the groundwater of the Laguna Region, states of Coahuila and Durango, Mexico. Water Technology and Sciences, V , (1), 71–82.
  • Mejia López, R. (2019). Distribución de las concentraciones de metales pesados presentes en agua superficial en El Salvador, 2018. Instituto Nacional de Salud, Unidad de Investigaciones en Salud, Ministerio de Salud, El Salvador.
  • Mello, J. , Roy, W. , Talbott, J. , & Stucki, J. (2006). Mineralogy and arsenic mobility in arsenic-rich Brazilian soils and sediments. Journal of Soils and Sediments , 6 (1), 9–19. https://doi.org/10.1065/jss2005.09.144
  • Méndez, M. , & Armienta, M. A. (2003). Arsenic phase distribution in Zimapán Mine Tailings, Mexico. Geofísica Internacional , 42 , 131–140.
  • Mendoza-Amézquita, E. , Armienta-Hernández, M. A. , Ayora, C. , Soler, A. , & Ramos-Ramírez, E. (2006). Potencial de lixiviación de elementos traza en jales de las minas La Asunción y Las Torres, en el Distrito Minero de Guanajuato, México. Revista Mexicana de Ciencias Geológicas , 23 , 75–83.
  • Menezes, M. D. , Bispo, F. H. A. , Faria, W. M. , Gonçalves, M. G. M. , Curi, N. , & Guilherme, L. R. G. (2020). Modeling arsenic content in Brazilian soils: What is relevant? Science of the Total Environment , 712 , 136511. https://doi.org/10.1016/j.scitotenv.2020.136511
  • Milián Rodríguez, E. A. (2012). Estudio geoquímico ambiental por contaminación de elementos tóxicos en la explotación del Yacimiento polimetälico San Fernando de Cuba Central [MSc Thesis]. Universidad de Pinar del Río, Cuba.
  • Minería Chilena (2015). Encuentran arsénico y plomo en niños cerca del puerto de Antofagasta. Minería Chilena, Santiago de Chile, Chile. Retrieved from http://www.mch.cl/2015/01/23/estudio-determina-presencia-de-arsenico-y-plomo-en-ninos-de-antofagasta/ (accessed 10.31.18).
  • Mirlean, N. , Andrus, V. E. , Baisch, P. , Griep, G. , & Casartelli, M. R. (2003). Arsenic pollution in Patos Lagoon estuarine sediments, Brazil. Marine Pollution Bulletin , 46 (11), 1480–1484. https://doi.org/10.1016/S0025-326X(03)00257-1
  • Mirlean, N. , Baisch, P. , Travassos, M. P. , & Nassar, C. (2011). Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast. Geo-Marine Letters , 31 (1), 65–73. https://doi.org/10.1007/s00367-010-0215-x
  • Mirlean, N. , Medeanic, S. , Garcia, F. A. , Travassos, M. P. , & Baisch, P. (2012). Arsenic enrichment in shelf and coastal sediment of Brazilian subtropics. Continental Shelf Research , 35 , 129–136. https://doi.org/10.1016/j.csr.2012.01.006
  • Mirlean, N. , Garcia, F. , Baisch, P. , Quintana, G. C. , & Agnes, F. (2013). Sandy beaches contamination by arsenic, a result of nearshore sediment diagenesis and transport (Brazilian coastline). Estuarine, Coastal and Shelf Science , 135 , 241–247. https://doi.org/10.1016/j.ecss.2013.10.020
  • Mirlean, N. , Baisch, P. , & Diniz, D. (2014). Arsenic in groundwater of the Paraiba do Sul delta, Brazil: An atmospheric source?. Science of the Total Environment , 482-483 , 148–156. https://doi.org/10.1016/j.scitotenv.2014.02.138
  • Mirlean, N. , Baisch, P. , Garcia, F. , Seus, E. , Silva-Silveira, E. , & Vicenti, J. (2016). Coralline algae and arsenic fixation in near shore sediments. Regional Studies in Marine Science , 3 , 83–88. https://doi.org/10.1016/j.rsma.2015.06.005
  • Mitchell, K. , Forde, M. , & Neptune, A. (2019). Water Quality in the Americas: Caribbean-Grenada. In Water Quality in the Americas. The Inter-American Network of Academies of Sciences IANAS ., pp. 355–367.
  • Molina, A. (2004). Estudio hidrogeoquímico en la Comarca Lagunera [México. MSc Thesis]. National Autonomous University of Mexico.
  • Mondal, D. , Periche, R. , Tineo, B. , Bermejo, L. A. , Rahman, M. M. , Siddique, A. B. , Rahman, M. A. , Solis, J. L. , & Cruz, G. J. F. (2020). Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes River basin. Chemosphere , 241 , 125070. https://doi.org/10.1016/j.chemosphere.2019.125070
  • Monroy-Torres, R. , Macías, A. E. , Gallaga-Solorzano, J. C. , Santiago-García, E. J. , & Hernández, I. (2009). Arsenic in Mexican children exposed to contaminated well water. Ecology of Food and Nutrition , 48 (1), 59–75. https://doi.org/10.1080/03670240802575519
  • Montaño, J. , Gagliardi, S. , & Montaño, M. (2006). Recursos hídricos subterráneos del Uruguay. Boletín Geológico Minero , 117 (1), 201–222.
  • Montero-Campos, V. , Quesada-Kimsey, J. , Ledezma-Espinoza, A. , & Sandoval-Mora, J. A. (2010). Determinación de arsénico en abastecimientos de agua para consumo humano de la Provincia de Cartago, Costa Rica. Acta Médica Costarricense. Colegio de Médicos y Cirujanos , 96–101.
  • Mora-Alvarado, D. , Urbina-Campos, A. , & Chamizo-García, H. (2015). Estudio ecológico sobre insuficiencia renal crónica y arsénico en las aguas para consumo humano por distritos de Guanacaste. Revista Tecnología en Marcha , 28 (2), 102–115. https://doi.org/10.18845/tm.v28i2.2337
  • Morales, I. , Villanueva-Estrada, R. E. , Rodríguez, R. , & Armienta, M. A. (2015). Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environmental Earth Sciences , 74 (6), 5403–5415. https://doi.org/10.1007/s12665-015-4554-9
  • Morales Cabrera, D. , Avendaño Cáceres, E. , Zevallos Ramos, D. , Fernández Prado, J. , & Mendoza Rodas, Z. (2018). Environmental risk due to arsenic and boron in the watersheds Sama y Locumba from Perú. MEDISAN , 22 (4), 406.
  • Morales-Arredondo, J. I. , Esteller-Alberich, M. V. , Armienta Hernández, M. A. , & Martínez-Florentino, T. A. K. (2018). Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico. Journal of Geochemical Exploration , 185 , 93–104. https://doi.org/10.1016/j.gexplo.2017.11.006
  • Morales-Simfors, N. , Bundschuh, J. , Herath, I. , Inguaggiato, C. , Caselli, A. T. , Tapia, J. , Choquehuayta, F. E. A. , Armienta, M. A. , Ormachea, M. , Joseph, E. , & López, D. L. (2020). Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment , 716 , 135564. https://doi.org/10.1016/j.scitotenv.2019.135564
  • Morgano, M. A. , Martins, M. C. T. , Rabonato, L. C. , Milani, R. F. , Yotsuyanagi, K. , & Rodriguez-Amaya, D. B. (2010). Inorganic contaminants in bee pollen from southeastern Brazil. Journal of Agricultural and Food Chemistry , 58 (11), 6876–6883. https://doi.org/10.1021/jf100433p
  • MPSDS (2014). Resolución 1207 del Ministerio de la Protección Social y Desarrollo Sostenible (MPSDS). Bogotá, Colombia.
  • Murray, J. , Kirschbaum, A. , García, M. G. , Borgnino, L. , & Guimaraes, E. M. (2014). Arsenic solid speciation in tailings of the abandoned Pan de Azúcar mine, northwestern Argentina. In One century of the discovery of arsenicosis in Latin America (1914-2014) - As2014: Proceedings of the 5th International Congress on Arsenic in the Environment (pp. 234–235). CRC Press.
  • Naranjo-Pulido, A. , Romero-Schmidt, H. , Mendez-Rodríguez, L. , Acosta-Vargas, B. , & Ortega-Rubio, A. (2002). Soil arsenic contamination in the Cape Region, B.C.S., Mexico. Journal of Environmental Biology , 23 (4), 347–352.
  • Narváez, J. , Richter, P. , & Toral, M. I. (2007). Preliminary physical chemical characterization of river waters and sediments affected by copper mining activity in central Chile: Application of multivariate analysis. Journal of the Chilean Chemical Society , 52 (3), 1261–1265. https://doi.org/10.4067/S0717-97072007000300016
  • NCH 409 (2006). Norma Calidad del Agua Potable, NCH 409/1. http://www.doh.gov.cl/APR/documentos/Documents/Normas%20NCh%20409%20Calidad%20y%20Muestreo%20del%20Agua%20Potable%20EEO.pdf.
  • Neary Ross, D. A. (2015). Trace metal content in Panamanian marine turtles, its potential to differentiate populations, and implication for human consumption [MSc Thesis]. McGill University.
  • Nelson, C. E. , & Ganoza, J. (2011). Mineralización de oro en la franja aurífera de Veraguas, Panamá. Revista Geológica de América Central , 22 (22), 87–100. https://doi.org/10.15517/rgac.v0i22.8589
  • Nelson, C. E. , Proenza, J. A. , Lewis, J. F. , & López-Kramer, J. (2011). The metallogenic evolution of the Greater Antilles. Geologica Acta , 9 (3-4), 229–264.
  • Ng, J. C. , Ciminelli, V. , Gasparon, M. , & Caldeira, C. (2019). Health risk apportionment of arsenic from multiple exposure pathways in Paracatu, a gold mining town in Brazil. Science of the Total Environment , 673 , 36–43. https://doi.org/10.1016/j.scitotenv.2019.04.048
  • Nicolau, C. , Reich, M. , & Lynne, B. (2014). Physico-chemical and environmental controls on siliceous sinter formation at the high-altitude El Tatio geothermal field, Chile. Journal of Volcanology and Geothermal Research , 282 , 60–76. https://doi.org/10.1016/j.jvolgeores.2014.06.012
  • Nicolite, M. , Truccolo, E. C. , Schettini, C. A. F. , & Carvalho, C. E. V. d. (2009). Oscilação do nível de água e a co-oscilação da maré astronômica no baixo estuário do Rio Paraíba do Sul, RJ. Revista Brasileira de Geofísica , 27 (2), 225–239. https://doi.org/10.1590/S0102-261X2009000200006
  • Nicolli, H. B. , Garcí a, J. W. , Falcó n, C. M. , & Smedley, P. L. (2011). Mobilization of arsenic and other trace elements of health concern in groundwater from the Salí River Basin, Tucumán Province, Argentina. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-011-9429-8
  • Nicolli, H. B. , Tineo, A. , García, J. W. , & Falcón, C. M. (2005). Caracterización hidrogeoquímica y presencia de arsénico en las aguas subterráneas de la cuenca del Río Salí, Provincia de Tucumán, Argentina. In G. Galindo , J. L. Fernández Turiel , M. A. Parada , D. Gimeno Torrente (Eds.), Arsénico en aguas: Origen, movilidad y tratamiento (pp. 93–102). IV Cong. Hidrogeológico Argentino.
  • Nicolli, H. B. , Bundschuh, J. , García, J. W. , Falcón, C. M. , & Jean, J.-S. (2010). Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean Plain (Argentina). Water Research , 44 (19), 5589–5604. https://doi.org/10.1016/j.watres.2010.09.029
  • Nicolli, H. B. , García, J. W. , Falcón, C. M. , & Smedley, P. (2012). Mobilization of arsenic and other trace elements of health concern in groundwater from the Salí River Basin, Tucumán Province, Argentina. Environmental Geochemistry and Health , 34 (2), 251–262. https://doi.org/10.1007/s10653-011-9429-8
  • Nicolli, H. B. , Bundschuh, J. , Blanco, M. C. , Tujchneider, O. C. , Panarello, H. O. , Dapeña, C. , & Rusansky, J. E. (2012). Arsenic and associated trace-elements in groundwater from the Chaco-Pampean Plain, Argentina: Results from 100 years of research. Science of the Total Environment , 429 , 36–56. https://doi.org/10.1016/j.scitotenv.2012.04.048
  • Nieva, N. E. , Borgnino, L. , Locati, F. , & García, M. G. (2016). Mineralogical control on arsenic release during sediment-water interaction in abandoned mine wastes from the Argentina Puna. Science of the Total Environment , 550 , 1141–1151. https://doi.org/10.1016/j.scitotenv.2016.01.147
  • Nievas, H. O. , Caruso, M. , Pizzio, F. , Ferri, F. O. , & Pérez, S. (2013). Monitoreo ambiental de aguas superficiales y subterráneas, consideración de áreas sensibles, distrito uranífero Pichiñán Este, Departamento Paso de Indios, Provincia del Chubut. Revista de la Asociación Geológica Argentina , 70 (3), 327–334.
  • Niño, L. , Ramón, J. , & Ramón, J. (2016). Physiochemical contamination of aquifers due to leachates from the El Carrasco, Bucaramanga, landfill. Producción + Limpia , 11 , 66–74. http://www.scielo.org.co/pdf/pml/v11n1/v11n1a07.pdf (accessed January 2020).
  • Nordberg, G. , Fowler, B.A. , & Nordberg, M. (Eds.). (2007). Handbook on the toxicology of metals . Academic Press.
  • Nriagu, J. O. , Bhattacharya, P. , Mukherjee, A. B. , Bundschuh, J. , Zevenhoven, R. , & Loeppert, R. H. (2007). Arsenic in soil and groundwater: An overview. In Trace metals and other contaminants in the environment (vol. 9, pp. 3–60). Elsevier.
  • Nuevas Esperanzas (2010). Estudio de arsénico en Telica. Una investigación de la extensión, las causas y los efectos de la contaminación por arsénico en el Municipio de Telica, Departamento de León. Telica, Nicaragua.
  • Nuevas Esperanzas (2013). Annual Report. León, Nicaragua.
  • Nunes, L. M. , & Otero, X. (2017). Quantification of health risks in Ecuadorian population due to dietary ingestion of arsenic in rice. Environmental Science and Pollution Research International , 24 (35), 27457–27468. https://doi.org/10.1007/s11356-017-0265-y
  • OECD (2016). Meat consumption (indicator), The Organization for Economic Co-operation and Development (OECD). https://data.oecd.org/agroutput/meat-consumption.htm-en
  • Oelkers, E. H. , & Gislason, S. R. (2001). The mechanism, rates, and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si, and oxalic acid concentration at 25 °C and pH = 3 and 11. Geochimica et Cosmochimica Acta , 65 (21), 3703–3719. https://doi.org/10.1016/S0016-7037(01)00664-0
  • Oelkers, E. H. , Golubev, S. V. , Chairat, C. , Pokrovsky, O. S. , & Schott, J. (2009). The surface chemistry of multi-oxide silicates. Geochimica et Cosmochimica Acta , 73 (16), 4617–4634. https://doi.org/10.1016/j.gca.2009.05.028
  • Ojeda, G. (2012, October). Determinación del índice de calidad de agua de la Quebrada Tabure bajo los lineamientos del proyecto ARCAL RLA 010. (Trabajo especial de grado Universidad Centroccidental, Lisandro Alvarado). Ingeniería Agronómica. Barquisimeto, Estado Lara, Venezuela.
  • Ongley, L. K. , Sherman, L. , Armienta, A. , Concilio, A. , & Ferguson-Salinas, C. (2007). Arsenic in the soils of Zimapán, Mexico. Environmental Pollution (Pollution) , 145 (3), 793–799. https://doi.org/10.1016/j.envpol.2006.05.014
  • Ono, F. , Guilherme, L. R. G. , Penido, E. , Carvalho, G. , Hale, B. , Toujaguez, R. , & Bundschuh, J. (2012). Arsenic bioaccessibility in a gold mining area: A health risk assessment for children. Environmental Geochemistry and Health , 34 (4), 457–465. https://doi.org/10.1007/s10653-011-9444-9
  • OPS/OMS-Nicaragua, & Nuevas Esperanzas (2011). Estudio de la contaminación del agua por arsénico en el Municipio de Telica, León, Nicaragua. 
  • Ormachea Muñoz, M. , Wern, H. , Johnsson, F. , Bhattacharya, P. , Sracek, O. , Thunvik, R. , Quintanilla, J. , & Bundschuh, J. (2013). Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. Journal of Hazardous Materials , 262 , 924–940. https://doi.org/10.1016/j.jhazmat.2013.06.078
  • Ormachea Muñoz, M. , Bhattacharya, P. , Sracek, O. , Ramos Ramos, O. , Quintanilla Aguirre, J. , Bundschuh, J. , & Maity, J. P. (2015). Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano. Journal of South American Earth Sciences , 60 , 10–20. https://doi.org/10.1016/j.jsames.2015.02.006
  • Ormachea Muñoz, M. , Aróstegui, J. L. , Bhattacharya, P. , Sracek, O. , García Moreno, M. E. , Kohfahl, C. , Quintanilla Aguirre, J. , Díaz, J. H. , & Bundschuh, J. (2016). Geochemistry of naturally occurring arsenic in groundwater and surface-water in the southern part of the Poopó Lake basin, Bolivian Altiplano. Groundwater for Sustainable Development , 2-3 , 104–116. https://doi.org/10.1016/j.gsd.2016.04.002
  • Ortega-Guerrero, A. (2003). Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico. Journal of Hydrology , 284 (1-4), 26–44. https://doi.org/10.1016/S0022-1694(03)00239-7
  • Ortega-Guerrero, A. (2017). Evaporative concentration of arsenic in groundwater: Health and environmental implications, La Laguna Region, Mexico. Environ Geochem Health , 39 (5), 987–1003. https://doi.org/10.1007/s10653-016-9866-5
  • Ortega-Guerrero, M. A. (2009). Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Revista Mexicana de Ciencias Geológicas , 26 (1), 143–161.
  • Otero, X. L. , Tierra, W. , Atiaga, O. , Guanoluisa, D. , Nunes, L. M. , Ferreira, T. O. , & Ruales, J. (2016). Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Science of the Total Environment , 573 , 778–787. https://doi.org/10.1016/j.scitotenv.2016.08.162
  • Othax, N. , Peluso, F. , Castelain, J. G. , Rodríguez, L. , & Dubny, S. (2013). Riesgo sanitario integrado por sustancias presentes en recursos hídricos de Tres Arroyos, Argentina. Acta Bioquímica Clínica Latinoamericana , 47 (4), 681–692.
  • Oyarzún, R. , Lillo, J. , Higueras, P. , Oyarzún, J. , & Maturana, H. (2004). Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: Industrial (gold mining at El Indio-Tambo district) vs. geologic processes. Journal of Geochemical Exploration , 84 (2), 53–64. https://doi.org/10.1016/j.gexplo.2004.03.002
  • Oyarzún, R. , Lillo, J. , Oyarzún, J. , Higueras, P. , & Maturana, H. (2006). Strong metal anomalies in stream sediments from semiarid watersheds in northern Chile: When geological and structural analyses contribute to understanding environmental disturbances. International Geology Review , 48 (12), 1133–1144. https://doi.org/10.2747/0020-6814.48.12.1133
  • Padilla Garza, R. A. , Titley, S. R. , & Pimentel B, F. (2001). Geology of the Escondida porphyry copper deposit, Antofagasta Region, Chile. Economic Geology , 96 (2), 307–324. https://doi.org/10.2113/gsecongeo.96.2.307
  • Páez-Osuna, F. , Bojórquez-Leyva, H. , Bergés-Tiznado, M. , Rubio-Hernández, O. A. , Fierro-Sañudo, J. F. , Ramírez-Rochín, J. , & León-Cañedo, J. A. (2015). Heavy metals in waters and suspended sediments affected by a mine tailing spill in the upper San Lorenzo River, northwestern México. Bulletin of Environmental Contamination and Toxicology , 94 (5), 583–588. https://doi.org/10.1007/s00128-015-1473-0
  • Páez-Sánchez, A. , Alfaro-Cuevas-Villanueva, R. , Cortés-Martínez, R. , & Segovia, N. (2013). Arsenic content and physicochemical parameters of water from wells and thermal springs at Cuitzeo Lake basin, Mexico. IJIRSET , 2 (12), 7731–7740.
  • Palma-Fleming, H. , Quiroz, E. , Campillay, C. , Figueroa, M. , Varas, A. , Velásquez, D. , Jara, B. , & Palma-Larrea, X. (2012). Temporal and spatial trends of total aliphatic hydrocarbons of diesel range and trace elements in sediments and mussels of the Corral Bay area, Valdivia, Southern Central Chile. Journal of the Chilean Chemical Society , 57 (2), 1074–1082. https://doi.org/10.4067/S0717-97072012000200003
  • Paraguassú, L. , Leite, M. G. P. , Moreira, F. W. A. , Mendonça, F. P. C. , & Eskinazi-Sant’Anna, E. M. (2019). Impacts of mining in artificial lake of Iron Quadrangle-MG: Past marks and changes of the present. Environmental Earth Sciences , 78 (5), 167. https://doi.org/10.1007/s12665-019-8158-7
  • Parra, S. , Bravo, M. A. , Quiroz, W. , Moreno, T. , Karanasiou, A. , Font, O. , Vidal, V. , & Cereceda, F. (2014). Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere , 111 , 513–521. https://doi.org/10.1016/j.chemosphere.2014.03.127
  • Pazmiño Sánchez, G. F. , & Mendieta Arguello, R. A. (2018). Thesis Influencia de dos sistemas de riego en la absorción de arsénico, y el crecimiento y rendimiento de dos variedaded de arroz (Oryza sativa) bajo siembra directa e indirecta. BSc Escuela Agricola Panamericana, Zamorano, Honduras.
  • Pereira, M. dS. S,. Winter, E,. Guimarães, J. R. , Rath, S. , & Fostier, A. H. (2007). A simple voltammetric procedure for speciation and evaluation of As removal from water. Environmental Chemistry Letters , 5 (3), 137–141. https://doi.org/10.1007/s10311-007-0094-1
  • Pérez, Y. (1999). Fuentes de aguas termales de la cordillera Andina del centro-sur de Chile (39-42oS). Boletín 54. SERNAGEOMIN, Santiago, Chile.
  • Perez Carrera, A. , & Fernandez Cirelli, A. (2013). Niveles de arsénico y vanadio en aguas naturales en el Departamento de Unión, sudeste de la Provincia de Córdoba, Argentina. AUGMDOMUS, 5, Special Number (I), Aguas. ISSN, 1852–1218.
  • Pérez Carrera, A. L. , Volpedo, A. , & Fernandez Cirelli, A. (2015). Arsénico. Del agua a los alimentos. Ciencia e Investigación , 65 (2), 37–44.
  • Perez Vargas, M. R. (2010). Contaminación del sedimento de presas del municipio de Chihuahua Chihuahua, Chih., Mexico. Bachelor Thesis, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua.
  • Peru (2018). Agua potable quedará libre de arsénico con primera planta tratamiento que operará en Jauja, Plataforma digital única del Gobierno Peruano. https://www.gob.pe/institucion/vivienda/noticias/19685-agua-potable-quedara-libre-de-arsenico-con-primera-planta-tratamiento-que-operara-en-jauja.
  • Pesce, A. H. (2002). Thermal spas: An economical development alternative long both sides of the Uruguay River. GHC Bulletin , 22–28.
  • Piazza, A. , Di, Rizzo, A. L. , Barberi, F. , Carapezza, M. L. , Astis, G. , de, Romano, C. , & Sortino, F. (2015). Geochemistry of the mantle source and magma feeding system beneath Turrialba Volcano, Costa Rica. Lithos , 232 , 319–335. https://doi.org/10.1016/j.lithos.2015.07.012
  • Pinelli, J. A. , Silva, A. G. , Reis, B. J. , Catelani, C. S. , Souza, W. C. , & Nunes, T. C. O. (2011). Relatório técnico - bacia do Rio Paraíba do Sul - subsídios às ações de melhoria da gestão. AGEVAP - Associação Pró-Gestão das Águas da Bacia Hidrográfica do Rio Paraíba do Sul, Brazil.
  • Pistón, M. , Mañay, N. , Goso, C. , Fernandez Turiel, J. L. , Rejas, M. , & Gerequiz, R. (2013). Groundwater arsenic content in Raigón Aquifer System (San José, Uruguay). Revista SUG , 18 , 20–38.
  • Poleo, G. , Marcó, L. , Piña, R. , Giordani, L. , Segura, Y. , & Torres, G. (2014). Sistema piloto para la gestión del agua, los residuos sólidos y líquidos y su aprovechamiento. Avance. Observador de Conocimiento , 2 (2), 27–34. https://issuu.com/oncti/docs/rocv2n2
  • Prado, F. , González, M. E. , Hernández, M. , Guzmán, C. , Chaulon, M. G. , Cóbar, S. , Donis, M. , & Rivera, C. (2016). Preliminary study of total levels of dissolved arsenic in drinking water of different zones of the Municipality of Guatemala, Department of Guatemala. Toxicology Letters , 259 , S122. https://doi.org/10.1016/j.toxlet.2016.07.313
  • Prieto, G. (1998). Geochemistry of heavy metals derived from gold-bearing sulphide minerals in the Marmato District (Colombia). Journal of Geochemical Exploration , 64 (1-3), 215–222. https://doi.org/10.1016/S0375-6742(98)00034-X
  • Prieto, G. , & García, G. (2005). Atlas geoquímico de Colombia - mapeo de ultra baja densidad (UBD) . Instituto Colombiano de Geología y Minería–Ingeominas. http://recordcenter.sgc.gov.co/B11/22006100020002/documento/pdf/2105200021101000.pdf (accessed February 2019).
  • PSG (2015). Muestreo de suelos para las comunas de Quintero y Puchuncaví, Región de Valparaíso. Ministerio Del Medio Ambiente, Licitación ID: 608897-135-LP14.
  • PSG (2016). Evaluación confirmatoria sitio específico del riesgo en sectores relacionados con disposición de residuos sólidos domiciliarios (RSD) y asimilables: Vertedero Lepún (Lago Ranco) y Vertedero Asquee (Mariquina), Región de Los Ríos. Ministerio Del Medio Ambiente, Licitación ID 613925-1-LE16.
  • Puccia, V. , Limbozzi, F. , & Avena, M. (2015). Arsenic in porewaters of the unsaturated zone of an Argentinean watershed: Adsorption and competition with carbonate as important processes that regulate its concentration. Aquatic Geochemistry , 21 (6), 513–534. https://doi.org/10.1007/s10498-015-9271-1
  • Puntoriero, M. L. , Volpedo, A. , & Fernández Cirelli, A. (2014). Riesgo para la población rural en zonas con alto contenido de arsénico. Acta Toxicológica Argentina , 22 (1), 15–22.
  • Quino Lima, I. , Ramos Ramos, O. , Ormachea Muñoz, M. , Quintanilla Aguirre, J. , Duwig, C. , Maity, J. P. , Sracek, O. , & Bhattacharya, P. (2020). Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano. Science of the Total Environment , 719 , 137505. https://doi.org/10.1016/j.scitotenv.2020.137505
  • Quino Lima, I. , Ormachea Muñoz, M. , Ramos Ramos, O. E. , Bhattacharya, P. , Quispe Choque, R. , Quintanilla Aguirre, J. , & Sracek, O. (2019). Hydrogeochemical assessment in the Lower Katari Basin. Groundwater for Sustainable Development , 8 , 281–2913. https://doi.org/10.1016/j.gsd.2018.11.013
  • Quinteros, E. (2014). Arsénico en agua de consumo en El Salvador. http://www.xeologosdelmundu.org/wp-content/uploads/2015/01/Congreso-Agua-Memoria-Tecnica-2014.pdf
  • Quinteros, E. , Ribó, A. , Mejía, R. , López, A. , Belteton, W. , Comandari, A. , Orantes, C. M. , Pleites, E. B. , Hernández, C. E. , & López, D. L. (2017). Heavy metals and pesticide exposure from agricultural activities and former agrochemical factory in a Salvadoran rural community. Environmental Science and Pollution Research , 24 (2), 1662–1676. https://doi.org/10.1007/s11356-016-7899-z
  • Ramos-Arroyo, Y. R. , & Siebe, C. (2007). Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico. CATENA , 71 , 497–506.
  • Ramos Ramos, O. E. , Cáceres, L. F. , Ormachea Muñoz, M. R. , Bhattacharya, P. , Quino, I. , Quintanilla, J. , Sracek, O. , Thunvik, R. , Bundschuh, J. , & García, M. E. (2012). Sources and behavior of arsenic and trace elements in groundwater and surface water in the Poopó Lake basin, Bolivian Altiplano. Environmental Earth Sciences , 66 (3), 793–807. https://doi.org/10.1007/s12665-011-1288-1
  • Ramos Ramos, O. E. , Rötting, T. S. , French, M. , Sracek, O. , Bundschuh, J. , Quintanilla, J. , & Bhattacharya, P. (2014). Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions, Bolivian Altiplano. Journal of Hydrology , 518 , 421–433. https://doi.org/10.1016/j.jhydrol.2014.08.019
  • Raychowdhury, N. , Mukherjee, A. , Bhattacharya, P. , Johannesson, K. , Bundschuh, J. , Bejarano Sifuentes, G. , Nordberg, E. , Martin, R. A. , & Storniolo, A. R. (2014). Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting. Journal of Hydrology , 518 , 300–316. https://doi.org/10.1016/j.jhydrol.2013.07.003
  • Razo, I. , Carrizales, L. , Castro, J. , Díaz-Barriga, F. , & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, & Soil Pollution , 152 (1-4), 129–152. https://doi.org/10.1023/B:WATE.0000015350.14520.c1
  • Razo, I. , Téllez, J. , Monroy, M. , Carrizales, L. , Díaz-Barriga, F. , & Castro, J. (2004). As and Pb bioaccesibility in polluted soils from a mining site under semiarid climate in Mexico. Proceedings Tailings and Mine Waste’04. Taylor & Francis Group, 173–182.
  • Redon, P.-O. , Bur, T. , Guiresse, M. , Probst, J.-L. , Toiser, A. , Revel, J.-C. , Jolivet, C. , & Probst, A. (2013). Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France. Geoderma , 206 , 112–122. https://doi.org/10.1016/j.geoderma.2013.04.023
  • Reimann, C. , & De Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology , 34 (24), 5084–5091. https://doi.org/10.1021/es001339o
  • Reuer, M. K. , Bower, N. W. , Koball, J. H. , Hinostroza, E. , De la Torre Marcas, M. E. , Hurtado Surichaqui, J. A. , & Echevarria, S. (2012). Lead, arsenic, and cadmium contamination and its impact on children’s health in La Oroya, Peru. ISRN Public Health , 2012 , 1–12. Article ID 231458. https://doi.org/10.5402/2012/231458
  • Reyes-Gómez, V. , Alarcón, M. , Gutiérrez, M. , & Ñunez, D. (2013). Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant levels, potential sources, and co-occurrence. Water, Air, & Soil Pollution , 224 (2), 1–15. https://doi.org/10.1007/s11270-013-1433-4
  • Reynoso, L. , & Andriulo, A. (2013). Estado actual de la calidad del agua en la cuenca del arroyo pergamino. INTA. Estación Experimental Agropecuaria Pergamino. http://produccion-animal.com.ar/agua_cono_sur_de_america/45-calidad_agua_cuenca_Pergamino.pdf
  • Rezende, P. S. (2009). Avaliação da Distribuição e Mobilidade de Elementos Traço em Sedimentos da Bacia Hidrográfica do Rio São Francisco. Dissertação de Mestrado. Instituto de Ciências Exatas, Departamento de Química Analítica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 128 p.
  • Rezende, P. S. , Costa, L. M. , & Windmöller, C. C. (2015). Arsenic mobility in sediments from Paracatu River basin, MG, Brazil. Archives of Environmental Contamination and Toxicology , 68 (3), 588–602. https://doi.org/10.1007/s00244-015-0134-y
  • Risacher, F. , & Hauser, A. (2008). Catastro de las principales fuentes de aguas termales de Chile (12302–1). IRD and SERNAGEOMIN, Santiago de Chile, Chile.
  • Risacher, F. , Alonso, H. , & Salazar, C. (1999). Geoquímica de aguas en cuencas cerradas: I, II y III regiones - Chile. S.I.T. N° 51, Santiago de Chile, Chile.
  • Rivera-Núñez, Z. , Pan, Z. , Dulience, B. , Becker, H. , Steensma, J. , Hobson, A. , Giammar, D. E. , & Iannotti, L. L. (2018). Water metal contaminants in a potentially mineral-deficient population of Haiti. International Journal of Environmental Health Research , 28 (6), 626–634. https://doi.org/10.1080/09603123.2018.1499880
  • Roberge, J. , O’Rourke, M. K. , Meza-Montenegro, M. M. , Gutiérrez-Millán, L. E. , Burgess, J. L. , & Harris, R. B. (2012). Binational arsenic exposure survey: Methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations. International Journal of Environmental Research and Public Health , 9 (4), 1051–1067. https://doi.org/10.3390/ijerph9041051
  • Rocha, G. H. O. , Lini, R. S. , Barbosa, F., Jr Batista, B. L. , Souza, V. C. O. , Nerilo, S. B. , Bando, E. , Mossini, S. A. G. , & Nishiyama, P. (2015). Exposure to heavy metals due to pesticide use by vineyard farmers. International Archives of Occupational and Environmental Health , 88 (7), 875–880. https://doi.org/10.1007/s00420-014-1010-1
  • Rocha-Amador, D. O. , Calderón, J. , Carrizales, L. , Costilla-Salazar, R. , & Pérez-Maldonado, I. N. (2011). Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environmental Toxicology and Pharmacology , 32 (3), 399–405. https://doi.org/10.1016/j.etap.2011.08.004
  • Rodríguez, R. , Armienta, M. A. , & Mejía Gómez, J. A. (2005). Arsenic contamination of the Salamanca aquifer system in Mexico: A risk analysis. In J. Bundschuh , P. Bhattacharya , D. Chandrasekharam (Eds.), Natural arsenic in groundwater: Occurrence, remediation and management (pp. 77–83). Taylor & Francis Group.
  • Rodríguez Alfaro, M. , Araújo do Nascimento, C. W. , Muñiz Ugarte, O. , Montero, A. , De Aguiar Accioly, A. M. , Calero Martin, B. , Limeres Jiménez, T. , & Ginebra Aguilar, M. (2015). First national-wide survey of trace elements in Cuban urban agriculture. Agronomy for Sustainable Development , 37 (27), 1–7.
  • Rodriguez Castro, M. C. , Urrea, G. , & Guasch, H. (2015). Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Science of the Total Environment , 503-504 , 122–132. https://doi.org/10.1016/j.scitotenv.2014.06.094
  • Rodríguez-Oroz, D. , Vidal, R. , Fernandoy, F. , Lambert, F. , & Quiero, F. (2018). Metal concentrations and source identification in Chilean public children’s playgrounds. Environmental Monitoring and Assessment , 190 (12), 703. https://doi.org/10.1007/s10661-018-7056-x
  • Romero, F. M. , Armienta, M. A. , Villaseñor, G. , & González, J. L. (2006). Mineralogical constraints on the mobility of arsenic in tailings from Zimapán, Hidalgo, Mexico. International Journal of Environment and Pollution , 26 (1/2/3), 23–40. https://doi.org/10.1504/IJEP.2006.009097
  • Romero, F. M. , Armienta, M. A. , Gutiérrez, M. E. , & Villaseñor, G. (2008). Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Revista Internacional de Contaminación Ambiental , 24 , 43–54.
  • Romero, L. , Alonso, H. , Campano, P. , Fanfani, L. , Cidu, R. , Dadea, C. , Keegan, T. , Thornton, I. , & Farago, M. (2003). Arsenic enrichment in waters and sediments of the Río Loa (Second Region, Chile). Applied Geochemistry , 18 (9), 1399–1416. https://doi.org/10.1016/S0883-2927(03)00059-3
  • Rosas, I. , Belmont, R. , Armienta, A. , & Baez, A. (1999). Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water, Air, and Soil Pollution , 112 (1/2), 133–149. https://doi.org/10.1023/A:1005095900193
  • Rosenmeier, M. F. , Hodell, D. A. , Brenner, M. , Curtis, J. H. , Martin, J. B. , Anselmetti, F. S. , Ariztegui, D. , & Guilderson, T. P. (2002). Influence of the vegetation change on hydrology: Implications for paleoclimatic interpretation of lacustrine d18O records. Journal of Paleolimnology , 27 (1), 117–131. https://doi.org/10.1023/A:1013535930777
  • Rosolen, V. , De-Campos, A. B. , Govone, J. S. , & Rocha, C. (2015). Contamination of wetland soils and floodplain sediments from agricultural activities in the Cerrado Biome (State of Minas Gerais, Brazil). CATENA , 128 , 203–210. https://doi.org/10.1016/j.catena.2015.02.007
  • Rossello, E. A. , Veroslavsky, G. , de Santa Ana, H. , & Rodríguez, P. (2018). Geology of the Río de la Plata and the surrounding areas of Argentina and Uruguay related to the evolution of the Atlantic margin. Journal of South American Earth Sciences , 83 , 147–164. https://doi.org/10.1016/j.jsames.2017.12.010
  • Rosso, J. J. , Schenone, N. F. , Pérez Carrera, A. , & Fernández Cirelli, A. (2013). Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers. Environmental Geochemistry and Health , 35 (2), 201–214. https://doi.org/10.1007/s10653-012-9476-9
  • Ruggieri, F. , Fernandez-Turiel, J. L. , Saavedra, J. , Gimeno, D. , Polanco, E. , Amigo, A. , Galindo, G. , & Caselli, A. (2012). Contribution of volcanic ashes to the regional geochemical balance: The 2008 eruption of Chaitén Volcano, Southern Chile. Science of the Total Environment , 425 , 75–88. https://doi.org/10.1016/j.scitotenv.2012.03.011
  • Ruiz-Huerta, E. A. , de la Garza Varela, A. , Gómez-Bernal, J. M. , Castillo, F. , Avalos-Borja, M. , SenGupta, B. , & Martínez-Villegas, N. (2017). Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. Journal of Hazardous Materials , 339 , 330–339.
  • Sadiq, M. , Zaidi, T. H. , & Mian, A. A. (1983). Environmental behavior of arsenic in soils: Theoretical. Water, Air, & Soil Pollution , 20 (4), 369–377. https://doi.org/10.1007/BF00208511
  • Sakuma, A. M. A. (2004). Avaliação da exposição humana ao arsênio no Alto Vale do Ribeira , Brasil. Doctoral Thesis, Universidade Estadual de Campinas.
  • Sánchez-Yañez, C. , Reich, M. , Leisen, M. , Morata, D. , & Barra, F. (2017). Geochemistry of metals and metalloids in siliceous sinter deposits: Implications for elemental partitioning into silica phases. Applied Geochemistry , 80 , 112–133. https://doi.org/10.1016/j.apgeochem.2017.03.008
  • Sandali, G. , & Diez, E. (2004). Determinación del contenido de arsénico en agua de consumo humano en la Provincia del Chubut. Acta Toxicológica Argentina , 12 , 1–46.
  • Santos, E. C. d O. , Jesus, I. M. d. , Brabo, E. d S. , Fayal, K. F. , Sá Filho, G. C. , Lima, M. d O. , Miranda, A. M. M. , Mascarenhas, A. S. , Sá, L. L. C. d. , Silva, A. P. d. , & Câmara, V. d M. (2003). Exposição ao mercúrio e ao arsênio em estados da Amazônia: Síntese dos estudos do Instituto Evandro Chagas/FUNASA. Revista Brasileira de Epidemiologia , 6 (2), 171–185. https://doi.org/10.1590/S1415-790X2003000200010
  • Santos, M. J. , Tarley, C. R. T. , Cunha, I. , Zapelini, I. , Galunin, E. , Bleinroth, D. , Vieira, I. , & Abrão, T. (2015). Leachability of major and minor elements from soils and sediments of an abandoned coal mining area in southern Brazil. Environmental Monitoring and Assessment , 187 (3), 1–13. https://doi.org/10.1007/s10661-015-4271-6
  • Sariñana-Ruiz, Y. A. , Vazquez-Arenas, J. , Sosa-Rodríguez, F. S. , Labastida, I. , Armienta, M. A. , Aragon-Piña, A. , Escobedo-Bretado, M. A. , Gonzalez-Valdez, L. S. , Ponce-Peña, P. , Ramírez- Aldaba, H. , & Lara, R. H. (2017). Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. Chemosphere , 178 , 391–401. https://doi.org/10.1016/j.chemosphere.2017.03.032
  • Scanlon, B. R. , Nicot, J. P. , Reedy, R. C. , Kurtzman, D. , Mukherjee, A. , & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry , 24 (11), 2061–2071. https://doi.org/10.1016/j.apgeochem.2009.08.004
  • Scarpelli, W. (2010). Arsênio. Alerta de perigo. http://www.cprm.gov.br/publique/media/gestao_territorial/geologia_medica/slides_palestraII.pdf
  • Schaefer, C. E. , Andaya, C. , Burant, A. , Condee, C. W. , Urtiaga, A. , Strathmann, T. J. , & Higgins, C. P. (2017). Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal , 317 , 424–432. https://doi.org/10.1016/j.cej.2017.02.107
  • Schlebusch, K. , Gattepaille, L. , Engström, K. , Vahter, M. , Jakobsson, M. , & Broberg, K. (2015). Human adaptation to arsenic-rich environments. Molecular Biology and Evolution , 32 (6), 1544–1555. https://doi.org/10.1093/molbev/msv046
  • Secretaría de Políticas, Regulación e Institutos y Secretaría de Agricultura, Ganadería y Pesca, Código Alimentario Argentino, Resolución Conjunta 34/2012 y 50/2012 (2012). https://www.ecolex.org/details/legislation/resolucion-conjunta-no-342012-y-502012-prorrogase-el-plazo-de-cinco-anos-previsto-en-los-articulos-982-y-983-del-codigo-alimentario-argentino-lex-faoc110418/
  • Segura, F. R. , Nunes, E. A. , Paniz, F. P. , Paulelli, A. C. C. , Rodrigues, G. B. , Braga, G. U. B. , Filho, W. R. P. , Barbosa, F., Jr. , Cerchiaro, G. , Silva, F. F. , & Batista, B. L. (2016). Potential risks of the residue from Samarco’’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution , 218 , 813–825. https://doi.org/10.1016/j.envpol.2016.08.005
  • Semana (2019). 48 municipios se declararon en calamidad pública por desabastecimiento de agua. Revista Semana. https://sostenibilidad.semana.com/impacto/articulo/48-municipios-se-declararon-en-calamidad-publica-por-desabastecimiento-de-agua/42929
  • SERNAGEOMIN (2017). Datos de geoquímica de depósitos de relaves de Chile. Servicion Nacional de Geología y Minería. https://www.sernageomin.cl/deposito-de-relaves/
  • SGC . (2016). Atlas Geoquímico de Colombia. Concentración de Arsénico (As). Bogotá: Servicio Geológico Colombiano (SGC). http://srvags.sgc.gov.co/Archivos_Geoportal/Recursos_Minerales/UNIDOS_ATLAS/As.pdf
  • Shumilin, E. , Páez-Osuna, F. , Green-Ruiz, C. , Sapozhnikov, D. , Rodrı́guez-Meza, G. D. , & Godı́nez-Orta, L. , (2001). Arsenic, antimony, selenium and other trace elements in sediments of the La Paz Lagoon, Peninsula of Baja California Mexico. Marine Pollution Bulletin , 42 (3), 174–178. https://doi.org/10.1016/S0025-326X(00)00123-5
  • Shumilin, E. , Mirlean, N. , Choumiline, K. , & Ostrooumov, M. (2015). Increasing arsenic mobility in the fine fraction of the dry stream sediments of the semi-arid San Antonio gold mining district (Baja California peninsula, Mexico). Environmental Earth Sciences , 73 (8), 4689–4700. https://doi.org/10.1007/s12665-014-3753-0
  • Sierra, L. (2019). Nuevas metodologías en la exploración del agua subterránea en base a la investigación del origen y la movilidad del arsénico en el acuífero Pampeano PhD Thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina. ISBN 978-987-86-2042-2048.
  • Sierra, L. , Weinzettel, P. , Dietrich, S. , Bea, S. , & Cacciabue, L. (2016). Caracterización del acuífero pampeano mediante la utilización del perfilaje de espectroscopía gamma natural en una perforación de estudio. IX Congreso Argentino de Hidrogeología y VII Seminario Hispano-Latinoamericano Sobre Temas Actuales de la Hidrología Subterránea, 248–256.
  • Sierra, L. , Weinzettel, P. , Dietrich, S. , Cacciabue, L. , Bea, S. , Basso, M. , & Kruse, E. (2018). Estudio de la variabilidad de la concentración de Arsénico en un sector experimental de la cuenca del Arroyo Claromecó [Paper presentation]. Hidrología Regional Actas Del XIV Congreso Latinoamericano de Hidrogeología, I, Salta, Argentina.
  • Silva, D. C. , Bellato, C. R. , Marques Neto, J. O. , & Fontes, M. F. (2018). Arsenic and trace metals in water and sedimento of the Velhas River, southeastern Iron Quadrangle region, Minas Gerais, Brazil. Química Nova , 41 (9), 1011–1018. https://doi.org/10.21577/0100-4042.20170275
  • Silva, Y. J. A. B. , Nascimento, C. W. A. , Cantalice, J. R. B. , Silva, Y. J. A. B. , & Cruz, C. M. C. A. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment , 187 (9), 1–10. https://doi.org/10.1007/s10661-015-4782-1
  • Sindico, F. , Hirata, R. , & Manganelli, A. (2018). The Guarani Aquifer System: From a beacon of hope to a question mark in the governance of transboundary aquifers. Journal of Hydrology: Regional Studies , 20 , 49–59. https://doi.org/10.1016/j.ejrh.2018.04.008
  • Smedley, P. L. , & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry , 17 (5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5
  • Smedley, P. L. , Nicolli, H. B. , Macdonald, D. M. J. , Barros, A. J. , & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwater from La Pampa, Argentina. Applied Geochemistry , 17 (3), 259–284. https://doi.org/10.1016/S0883-2927(01)00082-8
  • Smedley, P. L. , Kinniburgh, D. G. , Macdonald, D. M. J. , Nicolli, H. B. , Barros, A. J. , Tullio, J. O. , Pearce, J. M. , & Alonso, M. S. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry , 20 (5), 989–1016. https://doi.org/10.1016/j.apgeochem.2004.10.005
  • Smith, A. H. , Goycolea, M. , Haque, R. , & Biggs, M. L. (1998). Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. American Journal of Epidemiology , 147 (7), 660–669. https://doi.org/10.1093/oxfordjournals.aje.a009507
  • SNIS (2015). Diagnóstico SNIS de 2015. Sistema Nacional de Informação sobre Saneamento (SNIS), Brazil. http://www.snis.gov.br/diagnostico-residuos-solidos/diagnostico-rs-2015.
  • Sosa, N. N. , Kulkarni, H. V. , Datta, S. , Beilinson, E. , Porfido, C. , Spagnuolo, M. , Zárate, M. , & Surber, J. (2019). Occurrence and distribution of high arsenic in sediments and groundwater of the Claromecó fluvial basin, southern Pampean Plain (Argentina). Science of the Total Environment , 695 , 133673. https://doi.org/10.1016/j.scitotenv.2019.133673
  • Soto, C. (2010). Hidrogeología e hidroquímica de aguas subterráneas en el Distrito Inca de Oro, Región de Atacama: Procesos de interacción agua-roca y dispersión geoquímica . M.Sc. Thesis, Universidad de Chile.
  • Souza, A. C. M. , Almeida, M. G. , Pestana, I. A. , & Souza, C. M. M. (2019). Arsenic exposure and effects in humans: A mini-review in Brazil. Archives of Environmental Contamination and Toxicology , 76 , 357–365.
  • Soza Ferrufino, E. (2020). Disponibilidad del potencial hídrico y la contaminación por arsénico con fines de gestión sostenible de la cuenca El Sauce, Departamento de León . M.Sc. Thesis, Universidad Nacional Autónoma de Nicaragua.
  • Sracek, O. , & Hirata, R. (2002). Geochemical and stable isotopic evolution of the Guarani Aquifer System in the State of São Paulo, Brazil. Hydrogeology Journal , 10 (6), 643–655. https://doi.org/10.1007/s10040-002-0222-8
  • Sracek, O. , Novák, M. , Sulovský, P. , Martin, R. , Bundschuh, J. , & Bhattacharya, P. (2009). Mineralogical study of arsenic-enriched aquifer sediments at Santiago del Estero, northwest Argentina. In J. Bundschuh , M. A. Armienta , P. Birkle , P. Bhattacharya , J. Matschullat , A. B. Mukherjee (Eds.), Natural arsenic in groundwater of Latin America - Occurrence, health impact and remediation (pp. 61–68.). CRC Press/Balkema.
  • Sracek, O. , Armienta, M. A. , Rodríguez, R. , & Villaseñor, G. (2010). Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo State, Mexico. Journal of Environmental Monitoring: JEM , 12 (1), 329–337. https://doi.org/10.1039/B911873J
  • Stern, C. R. (2004). Active Andean volcanism: Its geologic and tectonic setting. Revista Geológica de Chile , 31 (2), 161–206. https://doi.org/10.4067/S0716-02082004000200001
  • Stollenwerk, K. G. (2003). Geochemical processes controlling transport of arsenic in groundwater: A review of adsortion. In A. H. Welch , K. G. Stollenwerk (Eds.), Arsenic in groundwater: Geochemistry and occurrence (pp. 68–100). Kluwer Academic Publishers.
  • Su, C. M. , & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environmental Science & Technology , 35 (22), 4562–4568. https://doi.org/10.1021/es010768z
  • Tablada, Y. (2008, December 28). Cocibolca ya sale grifos Juigalpa. El Nuevo Diario. https://www.elnuevodiario.com.ni/contactoend/36179-cocibolca-ya-sale-grifos-juigalpa/
  • Takahashi, Y. , Minamikawa, R. , Hattori, K. H. , Kurishima, K. , Kihou, N. , & Yuita, K. (2004). Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology , 38 (4), 1038–1044. https://doi.org/10.1021/es034383n
  • Talavera Mendoza, O. , Yta, M. , Moreno, T. O. , Dótor, A. A. , Flores, M. N. , & Duarte, G. C. (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, México area to evaluate their potential environmental impact. Geofísica Internacional , 44 , 49–64.
  • Talavera Mendoza, O. , Armienta Hernández, M. A. , García Abundis, J. , & Flores Mundo, N. (2006). Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco, Guerrero, southern Mexico. Environmental Geochemistry and Health , 28 (3), 243–255. https://doi.org/10.1007/s10653-005-9037-6
  • Tapia, J. , Davenport, J. , Townley, B. , Dorador, C. , Schneider, B. , Tolorza, V. , & von Tümpling, W. (2018). Sources, enrichment, and redistribution of As, Cd, Cu, Li, Mo, and Sb in the northern Atacama region, Chile: Implications for arid watersheds affected by mining. Journal of Geochemical Exploration , 185 , 33–51. https://doi.org/10.1016/j.gexplo.2017.10.021
  • Tapia, J. , González, R. , Townley, B. , Oliveros, V. , Álvarez, F. , Aguilar, G. , Menzies, A. , & Calderón, M. (2018). Geology and geochemistry of the Atacama Desert. Antonie Van Leeuwenhoek , 111 (8), 1273–1291. https://doi.org/10.1007/s10482-018-1024 https://doi.org/10.1007/s10482-018-1024-x
  • Tapia, J. , Valdés, J. , Orrego, R. , Tchernitchin, A. , Dorador, C. , Bolados, A. , & Harrod, C. (2018). Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: Health risk implications. PeerJ , 6 , e4699. https://doi.org/10.7717/peerj.4699
  • Tapia, J. , Murray, J. , Ormachea, M. , Tirado, N. , & Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Science of the Total Environment , 678 , 309–325. https://doi.org/10.1016/j.scitotenv.2019.04.084
  • Tapia, J. , Rodríguez, M. P. , Castillo, P. , González, R. , Rodríguez, C. , Valdés, A. , Townley, B. , & Fuentes, G. (2019). Arsenic and copper in Chile and the development of environmental standards. In: Chile: Environmental history, perspectives and challenges . Chapter 7, 241–285, ISBN 978-1-53615-665-2, Nova Publishers.
  • Teruggi, M. E. (1957). The nature and origin of Argentine loess. Journal of Sedimentary Research , 27 , 322–332.
  • Ticay, S. , Vásquez Hernández, J. A. , Fagoaga, W. A. , Martínez Batres, R. C. , & Joares, O. M. (2015). Inventario y Diagnóstico de 15 Antiguos Trabajos Mineros. Reporte de consultoría presentado al Ministerio de Economía de El Salvador.
  • Tobey, J. (2004). Impacts of altered freshwater flows to estuaries: Yuna watershed and Samana Bay estuary. Draft Profile, USAID, Washington. https://www.crc.uri.edu/download/14_LevelOneProfileDraft_SamanaBay_2004.pdf
  • Tomaszewska, B. , Bundschuh, J. , Pająk, L. , Dendys, M. , Delgado Quezada, V. , Bodzek, M. , Armienta, M. A. , Muñoz, M. O. , & Kasztelewicz, A. (2020). Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation – Research into model solutions. Science of the Total Environment , 714 , 136853. https://doi.org/10.1016/j.scitotenv.2020.136853
  • Torró, L. , Garcia-Casco, A. , Proenza, J. A. , Blanco-Quintero, I. F. , Gutiérrez-Alonso, G. , & Lewis, J. F. (2016). High-pressure greenschist to blueschist facies transition in the Maimón Formation (Dominican Republic) suggests mid-Cretaceous subduction of the Early Cretaceous Caribbean arc. Lithos , 266-267 , 309–331. https://doi.org/10.1016/j.lithos.2016.10.026
  • Torró, L. , Proenza, J. A. , Melgarejo, J. C. , Alfonso, P. , Farré de Pablo, J. , Colomer, J. M. , García-Casco, A. , Gubern, A. , Gallardo, E. , Cazañas, X. , Chávez, C. , Del Carpio, R. , León, P. , Nelson, C. E. , & Lewis, J. F. (2016). Mineralogy, geochemistry and sulfur isotope characterization of Cerro de Maimón (Dominican Republic), San Fernando and Antonio (Cuba) Lower Cretaceous VMS deposits: Formation during subduction initiation of the proto-Caribbean lithosphere within a for-arc. Ore Geology Reviews , 72 (1), 794–817. https://doi.org/10.1016/j.oregeorev.2015.09.017
  • Toujaguez, R. , Ono, F. B. , Martins, V. , Cabrera, P. P. , Blanco, A. V. , Bundschuh, J. , & Guilherme, L. R. G. (2013). Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials , 262 , 1004–1013. https://doi.org/10.1016/j.jhazmat.2013.01.045
  • Toujague de la Rosa, R. , & Molerio León, L. F. (2013). Análisis multivariado de la contaminación por arsénico en las aguas subterráneas de mina Delita, Cuba. Revista Electrónica de la Agencia de Medio Ambiente , 13 (24), 1–9.
  • Tume, P. , Barrueto, K. , Olguin, M. , Torres, J. , Cifuentes, J. , Ferraro, F. , Roca, N. , Bech, J. , Cornejo, O. (2019). The influence of the industrial area on the pollution outside its borders: A case study from Quintero and Puchuncavi districts, Chile. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00423-2
  • Uddh-Söderberg, T. E. , Gunnarsson, S. J. , Hogmalm, K. J. , Lindegård, M. I. B. G. , & Augustsson, A. L. M. (2015). An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites. Science of the Total Environment , 536 , 189–197. https://doi.org/10.1016/j.scitotenv.2015.07.018
  • US EPA (2001). Arsenic in drinking water. Fact Sheet: Drinking water standard for arsenic . U.S. Environmental Protection Agency (US EPA). EPA 815-F-00-015.
  • Uturunco, C. , Paredes, H. , N. (2019). Informe de Emergencia N° 214 - 05/03/2019/COEN - INDECI/15:20 HORAS (Informe N° 35) Contaminación por arsénico y plomo en el agua subterránea del Distrito de Mórrope - Lambayeque. https://www.indeci.gob.pe/wp-content/uploads/2019/04/INFORME-DE-EMERGENCIA-N%C2%BA-456-13ABR2019-CONTAMINACI%C3%93N-DE-ARS%C3%89NICO-Y-PLOMO-EN-EL-AGUA-EN-EL-DISTRITO-DE-M%C3%93RROPE-LAMBAYEQUE-39.pdf
  • Valdés, J. , & Tapia, J. (2019). Spatial monitoring of metals and As in coastal sediments of northern Chile: An evaluation of background values for the analysis of local environmental conditions. Marine Pollution Bulletin , 145 , 624–640. https://doi.org/10.1016/j.marpolbul.2019.06.036
  • Vargas, O. , González, L. M. , Prieto, G. , Espinosa, A. , Matamoros, A. , Sánchez, L. H. , Perilla, C. E. , Garzón, T. , García, G. I. (2001). Levantamiento geoquímico en la Plancha 5-09 - Informe Técnico. Bogotá: Instituto Colombiano de Geología y Minería - Ingeominas. http://recordcenter.sgc.gov.co/B3/12007100002656/documento/pdf/0101026561103000.pdf.
  • Vargas, O. , Prieto, G. , González, L. M. , & Matamoros, A. (2004). Geoquímica de metales pesados en suelos de la cuenca del Río Bogotá. Instituto Colombiano de Geología y Minería - Ingeominas. http://recordcenter.sgc.gov.co/B11/23008001024383/Documento/pdf/Geoqu%C3%ADmica%20de%20Metales%20Pesados%20en%20Suelos%20de%20la%20Cuenca%20del%20r%C3%ADo%20Bogot%C3%A1.pdf.
  • Vásquez-Prada, B. D. , Ortega, J. , Alonso Marín, E. , Cerrato, D. , & Sánchez Navarro, J. A. (2008). Estudio hidrogeológico de la Laguna de Apoyo (Nicaragua) y propuestas para su gestión. Boletín Geológico y Minero , 119 (1), 137–148.
  • Vega, A. S. , Lizama, K. , & Pastén, P. A. (2018). Water quality: Trends and challenges. In G. Donoso (Ed.), Water policy in Chile. Global issues in water policy (vol. 21). Springer.
  • Vesga, A. M. , Peñalosa, P. (2018). Reporte de avance del Estudio Nacional del Agua - ENA (2018). Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, Bogotá, Colombia. www.andi.com.co/Uploads/Cartilla_ENA_%202018.pd.
  • Villa-Achupallas, M. , Rosado, D. , Aguilar, S. , & Galindo-Riaño, M. D. (2018). Water quality in the tropical Andes hotspot: The Yacuambi River (southeastern Ecuador). Science of the Total Environment , 633 , 50–58. https://doi.org/10.1016/j.scitotenv.2018.03.165
  • Villaamil Lepori, E. C. (2015). Hidroarsenicismo crónico regional endémico en Argentina. Acta Bioquímica Clínica Latinoamericana , 49 , 83–104.
  • Villa-Gonzales, G. F. , Huamaní-Pacsi, C. , Chávez-Ruiz, M. , & Huamaní-Azorza, J. A. (2018). [Evaluation of the arsenic removal in superficial waters using home filters]. Rev Peru Med Exp Salud Publica , 35 (4), 652–526. https://doi.org/10.17843/rpmesp.2018.354.3715
  • Villalobos-Castañeda, B. , Alfaro-Cuevas, R. , Cortés-Martínez, R. , Martínez-Miranda, V. , & Márquez- Benavides, L. (2010). Distribution and partitioning of iron, zinc, and arsenic in surface sediments in the Grande River mouth to Cuitzeo Lake, Mexico. Environmental Monitoring and Assessment , 166 (1-4), 331–346. https://doi.org/10.1007/s10661-009-1005-7
  • Villanueva-Estrada, R. E. , Prol-Ledesma, R. M. , Rodríguez-Díaz, A. A. , Canet, C. , & Armienta, M. A. (2013). Arsenic in hotsprings of Bahía Concepción, Baja California Peninsula, México. Chemical Geology , 348 , 27–36. https://doi.org/10.1016/j.chemgeo.2012.09.008
  • Vital, M. , Daval, D. , Clément, A. , Quiroga, S. , Fritz, B. , & Martinez, D. E. (2018). Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, Province of Buenos Aires, Argentina. CATENA , 160 , 112–123. https://doi.org/10.1016/j.catena.2017.09.005
  • Vital, M. , Martínez, D. E. , Babay, P. , Quiroga, S. , Clément, A. , & Daval, D. (2019). Control of the mobilization of arsenic and other natural pollutants in groundwater by calcium carbonate concretions in the Pampean Aquifer, southeast of the Buenos Aires Province, Argentina. Science of the Total Environment , 674 , 532–543. https://doi.org/10.1016/j.scitotenv.2019.04.151
  • Volpedo, A. , Puntoriero, M. L. , & Fernández Cirelli, A. (2013). Riesgo potencial de las altas concentraciones de arsénico en el Lago Chasicó (Buenos Aires, Argentina). Actas 7mo. Congreso de Medio Ambiente AUGM., La Plata, Argentina.
  • Vormittag, E. M. P. A. A. , Oliveira, M. A. , & Gleriano, J. S. (2018). Health evaluation of the Barra Longa population affected by the disaster in Mariana county. Ambiente & Sociedade , 21 (0), e01222. https://doi.org/10.1590/1809-4422asoc0122r2vu18l1ao
  • VROM (2000). Circular on target values and intervention values for soil remediation, Annex A: Target values, soil remediation intervention values and indicative levels for serious contamination . Dutch Ministry of Housing, Spatial Planning and Environment.
  • Wahl, D. , Byrne, R. , Schreiner, T. , & Hansen, R. (2006). Holocene vegetation change in the northern Petén and its implications for Maya prehistory. Quaternary Research , 65 (3), 380–389. https://doi.org/10.1016/j.yqres.2005.10.004
  • Ward, N. I. , Lord, G. , Farnfield, H. , O’Reilly, J. , Al Rawahi, W. , Watts, M. J. , & Marcilla, A. L. (2014). In Arsenic speciation analysis of water in Argentina [Paper presentation]. Proceeding of the 5th International Congress on Arsenic in the Environment, Taylor and Francis Group, London, pp. 201–203.
  • Watts, M. J. , O’Reilly, J. , Marcilla, A. L. , Shaw, R. A. , & Ward, N. I. (2010). Field based speciation of arsenic in UK and Argentinean water samples. Environmental Geochemistry and Health , 32 (6), 479–490. https://doi.org/10.1007/s10653-010-9321-y
  • Wendland, E. , Rabelo, J. , Roehrig, J. (2014). Guarani Aquifer System – The strategical water source in South America: Institute für Tropentechnologie, Germany. http://www.geologiadelparaguay.com/Guaran%C3%AD-Aquifer-System.pdf.
  • WHO (2003). Arsenic in drinking-water. Background document for preparation of WHO guidelines for drinking-water quality . World Health Organization. WHO/SDE?WSH?03.04.75.
  • WHO (2010). Exposure to arsenic: A major public health concern. In: Preventing disease through healthy environments . World Health Organization. https://www.who.int/ipcs/features/10chemicals_en.
  • WHO (2011). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum . World Health Organization.
  • WHO (2017). Guidelines for drinking-water quality: Fourth edition incorporating first addendum . 4th ed. World Health Organization.
  • Wickre, J. B. , Folt, C. L. , Sturup, S. , & Karagas, M. R. (2004). Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Archives of Environmental Health , 59 (8), 400–409. https://doi.org/10.3200/AEOH.59.8.400-409
  • Widmer, J. M. , Sergile, F. , Cheremond, Y. , & Morris, G. (2018). A vision for water in Haiti 2018. Emerging Infectious Diseases , 24 (10), 1–21. https://doi.org/10.3201/eid2410.180693
  • Wrage, J. , Tardani, D. , Reich, M. , Daniele, L. , Arancibia, G. , Cembrano, J. , Sánchez-Alfaro, P. , Morata, D. , & Pérez-Moreno, R. (2017). Geochemistry of thermal waters in the Southern Volcanic Zone, Chile – Implications for structural controls on geothermal fluid composition. Chemical Geology , 466 , 545–561. https://doi.org/10.1016/j.chemgeo.2017.07.004
  • Wurl, J. , Rodríguez, L. C. M. , Cassassuce, F. , Gutiérrez, G. M. , & Velázquez, E. R. (2013). Geothermal water in the San Juan Bautista Londó aquifer, BCS, Mexico. Procedia Earth and Planetary Science , 7 , 900–903. https://doi.org/10.1016/j.proeps.2013.03.124
  • Wurl, J. , Mendez-Rodriguez, L. , & Acosta-Vargas, B. (2014). Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico. Journal of Hydrology , 518 , 447–459. https://doi.org/10.1016/j.jhydrol.2014.05.009
  • Wurl, J. , Lamadrid, M. I. , Mendez-Rodriguez, L. , & Acosta-Vargas, B. (2018). Arsenic concentration in the surface water of a former mining area: The La Junta Creek, Baja California Sur, Mexico. International Journal of Environmental Research and Public Health , 15 (3), 437. https://doi.org/10.3390/ijerph15030437
  • Wyatt, C. J. , Fimbres, C. , Romo, L. , Méndez, R. O. , & Grijalva, M. (1998). Incidence of heavy metal contamination in water supplies in Northern Mexico. Environmental Research , 76 (2), 114–119. https://doi.org/10.1006/enrs.1997.3795
  • Yépez, M. , de, L. A. , Reina, M. , Segura, F. , Amaya, J. , Arrieche, B. , Arroyo, J. , Marcó, L. , & Matute, S. (2007). Determination of Arsenic in sugar cane soils and foliar tissue from Municipio Palavecino, Lara State, Venezuela by hydride generation atomic absorption spectroscopy. Journal of Environmental Science, an Indian Journal , 2 (3), 200–204. https://www.tsijournals.com/articles/a-determination-of-arsenic-in-sugar-cane-soils-and-foliar-tissue-from-municipio-lara-state-venezuela-by-hydride-generati.pdf.
  • Zabala, M. E. , Martínez, S. , Manzano, M. , & Vives, L. (2016). Groundwater chemical baseline values to assess the recovery plan in the Matanza-Riachuelo River basin, Argentina. Science of the Total Environment , 541 , 1516–1530. https://doi.org/10.1016/j.scitotenv.2015.10.006
  • Zavala, Y. J. , & Duxbury, J. M. (2008). Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environmental Science & Technology , 42 (10), 3856–3860. https://doi.org/10.1021/es702747y
  • Zoby, J. L. G. (2008). Panorama da qualidade das águas subterrâneas no Brasil [Paper presentation]. XV Congresso Brasileiro de Águas Subterrâneas, Natal, Brazil.
  • Zorrilla Fernández , S. A. (2017). Aplicación de la geoquímica al estudio del vertedero de Duquesa en Santo Domingo, República Dominicana: Propuesta de tratamiento pasivo de los lixiviados. Tesis (Master), E.T.S.I. de Minas y Energía (UPM).
  • Zúñiga-Vázquez, D. , Armienta, M. A. , Deng, Y. , Cruz, O. , Aguayo, A. , & Ceniceros, N. (2019). Evaluation of Fe, Zn, Pb, Cd and As mobility from tailings by sequential extraction and experiments under imposed physico-chemical conditions. Geochemistry: Exploration, Environment, Analysis , 19 (2), 129–137. https://doi.org/10.1144/geochem2018-041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.