959
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Catalytic wet air oxidation of phenol: Review of the reaction mechanism, kinetics, and CFD modeling

, , & ORCID Icon
Pages 1891-1923 | Published online: 11 Jun 2020

References

  • Abbas, Z. I., & Abbas, A. S. (2019). Oxidative degradation of phenolic wastewater by electro-fenton process using MnO 2 -graphite electrode. Journal of Environmental Chemical Engineering, 7(3), 103108. https://doi.org/10.1016/j.jece.2019.103108
  • Abid, M. F., Alwan, G. M., & Abdul-Ridha, L. A. (2016). Study on catalytic wet air oxidation process for phenol degradation in synthetic wastewater using trickle bed reactor. Arabian Journal for Science and Engineering, 41(7), 2659–2670. https://doi.org/10.1007/s13369-016-2171-x
  • Abid, M. F., Jasim, F. T., & Ahmed, L. S. (2014). Kinetic study of phenol removal from wastewater over a 0.5% Pt/γ -Al2O3 catalyst in a trickle bed reactor. Environmental Engineering and Management Journal, 13(5), 1265–1275.
  • Adekola, O., & Majozi, T. (2017). Wastewater minimization in batch plants with sequence dependent changeover. Computers & Chemical Engineering, 97, 85–103. https://doi.org/10.1016/j.compchemeng.2016.11.016
  • Ahmed, L. S. (2012). Hydrodynamics and kinetics study of phenol removal treatment in wastewater in a trickle bed reactor. [Thesis]. University of Technology, Iraq.
  • Al-Obaidi, M. A., Kara-Zaïtri, C., & Mujtaba, I. M. (2019a). Evaluation of chlorophenol removal from wastewater using multi-stage spiral-wound reverse osmosis process via simulation. Computers & Chemical Engineering, 130, 106522. https://doi.org/10.1016/j.compchemeng.2019.106522
  • Al-Obaidi, M. A., Kara-Zaïtri, C., & Mujtaba, I. M. (2019b). Performance evaluation of multi-stage reverse osmosis process with permeate and retentate recycling strategy for the removal of chlorophenol from wastewater. Computers & Chemical Engineering, 121, 12–26. https://doi.org/10.1016/j.compchemeng.2018.08.035
  • Al-Obaidi, M. A., Kara-Zaïtri, C., & Mujtaba, I. M. (2017). Removal of phenol from wastewater using spiral-wound reverse osmosis process: Model development based on experiment and simulation. Journal of Water Process Engineering, 18, 20–28. https://doi.org/10.1016/j.jwpe.2017.05.005
  • Alves, A. P. A., Lima, P. S., Dezotti, M., & Bassin, J. P. (2017). Impact of phenol shock loads on the performance of a combined activated sludge-moving bed bio film reactor system. International Biodeterioration & Biodegradation, 123, 146–155. https://doi.org/10.1016/j.ibiod.2017.06.015
  • Arena, F., Italiano, C., Raneri, A., & Saja, C. (2010). Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Applied Catalysis B: Environmental, 99(1-2), 321–328. https://doi.org/10.1016/j.apcatb.2010.06.039
  • Arena, F., Italiano, C., & Spadaro, L. (2012). Applied Catalysis B: Environmental Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol. Applied Catalysis B: Environmental, 115-116, 336–345. https://doi.org/10.1016/j.apcatb.2011.12.035
  • Attou, A., & Ferschneider, G. (1999). A two fluid model for flow regime transition in gas liquid trickle-bed reactors. Chemical Engineering Science, 54(21), 5031–5037. https://doi.org/10.1016/S0009-2509(99)00226-2
  • Baloyi, J., Ntho, T., & Moma, J. (2018a). A novel synthesis method of Al/Cr pillared clay and its application in the catalytic wet air oxidation of phenol. Catalysis Letters, 148(12), 3655–3668. https://doi.org/10.1007/s10562-018-2579-x
  • Baloyi, J., Ntho, T., & Moma, J. (2018b). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10), 5197–5211. https://doi.org/10.1039/C7RA12924F
  • Baloyi, J., Ntho, T., & Moma, J. (2018c). Synthesis of highly active and stable Al/Zr pillared clay as catalyst for catalytic wet oxidation of phenol. Journal of Porous Materials, 26(2), 583–597. https://doi.org/10.1007/s10934-018-0667-3
  • Beni, A. H., & Khosravi-Nikou, M. R. (2015). Modeling hydrodynamics of trickle-bed reactors at high and low pressure using CFD method. Petroleum Science and Technology, 33(20), 1770–1779. https://doi.org/10.1080/10916466.2011.588639
  • Braga, A. H., Ribeiro, M. C., Noronha, F. B., Galante, D., Bueno, J. M. C., & Santos, J. B. O. (2018). The effects of Co addition to supported Ni catalysts on hydrogen production from oxidative steam reforming of ethanol. Energy & Fuels, 32(12), 12814–12825. https://doi.org/10.1021/acs.energyfuels.8b02727
  • Cao, Y., Li, B., Zhong, G., Li, Y., Wang, H., Yu, H., & Peng, F. (2018). Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon, 133, 464–473. https://doi.org/10.1016/j.carbon.2018.03.045
  • Castaldo, R., Iuliano, M., Cocca, M., Ambrogi, V., Gentile, G., & Sarno, M. (2019). A new route for low pressure and temperature CWAO: A PtRu/MoS2_Hyper-crosslinked nanocomposite. Nanomaterials, 9(10), 1477. https://doi.org/10.3390/nano9101477
  • Chicinaş, R. P. (2018). Novel metal modified diatomite, zeolite and carbon xerogel catalysts for mild conditions wet air oxidation of phenol: Characterization, efficiency and reaction pathway. Separation and Purification Technology, 197, 36–46. https://doi.org/10.1016/j.seppur.2017.12.050.
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
  • Cybulski, A. (2007). Catalytic wet air oxidation: Are monolithic catalysts and reactors feasible? Industrial & Engineering Chemistry Research, 46(12), 4007–4033. https://doi.org/10.1021/ie060906z
  • Davies, D., Golunski, S., Johnston, P., Lalev, G., & Taylor, S. H. (2018). Dominant effect of support wettability on the reaction pathway for catalytic wet air oxidation over Pt and Ru nanoparticle catalysts. ACS Catalysis, 8(4), 2730–2734. https://doi.org/10.1021/acscatal.7b04039
  • Devlin, H. R., & Harris, I. J. (1984). Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals, 23(4), 387–392. https://doi.org/10.1021/i100016a002
  • Dewidar, H., Nosier, S. A., & El-Shazly, A. H. (2018). Photocatalytic degradation of phenol solution using Zinc Oxide/UV. Journal of Chemical Health and Safety, 25(1), 2–11. https://doi.org/10.1016/j.jchas.2017.06.001
  • Eftaxias, A. (2002, December). Catalytic wet air oxidation of phenol in a trickle bed reactor: Kinetics and reactor modelling (p. 196) [Dissertation]. Rovira i Virgili University, Spain.
  • Eftaxias, A., Font, J., Fortuny, A., Giralt, J., Fabregat, A., & Stüber, F. (2001). Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing. Applied Catalysis B: Environmental}, 33(2), 175–190. https://doi.org/10.1016/S0926-3373(01)00178-3
  • Eftaxias, A., Font, J., Fortuny, A., Fabregat, A., & Stüber, F. (2006). Catalytic wet air oxidation of phenol over active carbon catalyst Global kinetic modelling using simulated annealing. Applied Catalysis B: Environmental, 67(1-2), 12–23. https://doi.org/10.1016/j.apcatb.2006.04.012
  • Eftaxias, A., Font, J., Fortuny, A., Fabregat, A., & Uber, F. S. (2005). Kinetics of phenol oxidation in a trickle bed reactor over active carbon catalyst. Journal of Chemical Technology & Biotechnology, 80(6), 677–687. https://doi.org/10.1002/jctb.1250
  • Fortuny, A., Ferrer, C., Bengoa, C., Font, J., & Fabregat, A. (1995). Catalytic removal of phenol from aqueous-phase using oxygen or air as oxidant. Catalysis Today, 24(1-2), 79–83. https://doi.org/10.1016/0920-5861(95)00002-W
  • Frascari, D., Rubertelli, G., Arous, F., Ragini, A., Bresciani, L., Arzu, A., & Pinelli, D. (2019). Valorisation of olive mill wastewater by phenolic compounds adsorption: Development and application of a procedure for adsorbent selection. Chemical Engineering Journal, 360(September 2018), 124–138. https://doi.org/10.1016/j.cej.2018.11.188
  • Gao, P. (2018). Fe2O3 -CeO2 -Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions. Frontiers of Environmental Science and Engineering, 12(1), 8. https://doi.org/10.1007/s11783-018-1025-z
  • Garg, A., & Mishra, A. (2013). Degradation of organic pollutants by wet air oxidation using nonnoble metal-based catalysts. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2), 89–96. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000152
  • Guerra-Que, Z., Pérez-Vidal, H., Torres-Torres, G., Arévalo-Pérez, J. C., Silahua Pavón, A. A., Cervantes-Uribe, A., Espinosa de los Monteros, A., & Lunagómez-Rocha, M. A. (2019). Treatment of phenol by catalytic wet air oxidation: A comparative study of copper and nickel supported on γ-alumina, ceria and γ-alumina–ceria. RSC Advances, 9(15), 8463–8479. https://doi.org/10.1039/C9RA00509A
  • Guo, J., & Al-Dahhan, M. (2003). Kinetics of wet air oxidation of phenol over a novel catalyst. Industrial & Engineering Chemistry Research, 42(22), 5473–5481. https://doi.org/10.1021/ie0302488
  • Hamoudi, S., Larachi, F., Graciela, C., & Myrian, C. (1998). Wet oxidation of phenol catalyzed by unpromoted and platinum promoted manganese/cerium oxide. Industrial & Engineering Chemistry Research, 37(9), 3561–3566. https://doi.org/10.1021/ie980081w
  • Haro, P., Johnsson, F., & Thunman, H. (2016). Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. Energy, 101, 380–389. https://doi.org/10.1016/j.energy.2016.02.037
  • Kapfunde, N., Masuku, C. M., & Hildebrandt, D. (2018). Optimization of the thermal efficiency of a fixed-bed gasifier using computational fluid dynamics. Computer Aided Chemical Engineering, 44, 1747–1752. https://doi.org/10.1016/B978-0-444-64241-7.50286-X.
  • Kim, K. H., & Ihm, S. K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. Journal of Hazardous Materials, 186(1), 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011
  • Klinghoffer, A. A., Cerro, R. L., & Abraham, M. A. (1998). Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst. Catalysis Today, 40(1), 59–71. https://doi.org/10.1016/S0920-5861(97)00122-3
  • Krastanov, A., Alexieva, Z., & Yemendzhiev, H. (2013). Microbial degradation of phenol and phenolic derivatives. Engineering in Life Sciences, 13(1), 76–87. https://doi.org/10.1002/elsc.201100227
  • Kuzeljevic, Z. (2010). Hydrodynamics of trickle bed reactors: measurements and modeling. http://openscholarship.wustl.edu/etd
  • Lai, C., He, T., Li, X., Chen, F., Yue, L., & Hou, Z. (2019). Catalytic wet air oxidation of phenols over porous plate Cu-based catalysts. Applied Clay Science, 181, 105253. https://doi.org/10.1016/j.clay.2019.105253
  • Lal, K., & Garg, A. (2015). Catalytic wet oxidation of phenol under mild operating conditions: Development of reaction pathway and sludge characterization. Clean Technologies and Environmental Policy 17, 199–210. https://doi.org/10.1007/s10098-014-0777-9.
  • Levec, J., & Pintar, A. (1995). Catalytic oxidation of aqueous solutions of organics. Catalysis Today, 24(1-2), 51–58. https://doi.org/10.1016/0920-5861(95)00006-2
  • Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3-4), 172–184. https://doi.org/10.1016/j.cattod.2007.03.035
  • Liu, C., Min, Y., Zhang, A.-Y., Si, Y., Chen, J.-J., & Yu, H.-Q. (2019). Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms. Water Research, 165, 114980. https://doi.org/10.1016/j.watres.2019.114980
  • Lopes, R. J. G., & Quinta-Ferreira, R. M. (2007). Trickle-bed CFD studies in the catalytic wet oxidation of phenolic acids. Chemical Engineering Science, 62(24), 7045–7052. https://doi.org/10.1016/j.ces.2007.08.085
  • Monteros, A. E. d l., Lafaye, G., Cervantes, A., Del Angel, G., Barbier Jr, J., & Torres, G. (2015). Catalytic wet air oxidation of phenol over metal catalyst (Ru,Pt) supported on TiO2–CeO2 oxides. Catalysis Today, 258, 564–569. https://doi.org/10.1016/j.cattod.2015.01.009
  • Luo, Z., Gao, M., Yang, S., & Yang, Q. (2015). Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: Mechanism, kinetics and thermodynamics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 222–230. https://doi.org/10.1016/j.colsurfa.2015.05.014
  • Makatsa, T. J., Baloyi, S. J., Ntho, T. A., & Masuku, C. M. (2019). Kinetic study of phenol oxidation in a trickle bed reactor over Al/Zr-pillared clay catalyst. IOP Conference Series: Materials Science and Engineering, 655, 012050. https://doi.org/10.1088/1757-899X/655/1/012050
  • Masuku, C. M., & Biegler, L. T. (2019). Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation. Current Opinion in Chemical Engineering, 25, 95–100. https://doi.org/10.1016/j.coche.2018.12.009
  • Maugans, C. B., & Akgerman, A. (2003). Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Research, 37(2), 319–328. https://doi.org/10.1016/S0043-1354(02)00289-0
  • Mohammed, A. E., Jarullah, A. T., Gheni, S. A., & Mujtaba, I. M. (2016). Optimal design and operation of an industrial three phase reactor for the oxidation of phenol. Computers & Chemical Engineering, 94, 257–271. https://doi.org/10.1016/j.compchemeng.2016.07.018
  • Mohammed, W. T., & Abdullah, S. M. (2008). Kinetic study on catalytic wet air oxidation of phenol in a trickle bed reactor. Iraqi Journal of Chemical and Petroleum Engineering, 9(2), 17–23.
  • Mohammed, W. T. (2014). Active Carbon from Date Stones for Phenol Oxidation in Trickle Bed Reactor. Experimental and Kinetic Study’, 20(4), 120–160.
  • Moma, J., Baloyi, J., & Ntho, T. (2018). Synthesis and characterization of an efficient and stable Al/Fe pillared clay catalyst for the catalytic wet air oxidation of phenol. RSC Advances, 8, 30115–30124. https://doi.org/10.1039/c8ra05825c.
  • Mousazadeh, F. (2013). Hot spot formation in trickle bed reactors (PhD Thesis). the Netherlands: Technische Universiteit Delft.
  • Parvas, M., Haghighi, M., & Allahyari, S. (2014). Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environmental Technology, 35(9-12), 1140–1149. https://doi.org/10.1080/09593330.2013.863952
  • Pervov, A., & Nguyen, X. Q. (2019). Application of reverse osmosis and nanofiltration techniques at municipal drinking water facilities. E3S Web of Conferences, 97, 06004. https://doi.org/10.1051/e3sconf/20199706004
  • Pradeep, N. V., Anupama, S., Navya, K., Shalini, H. N., Idris, M., & Hampannavar, U. S. (2015). Biological removal of phenol from wastewaters: a mini review. Applied Water Science, 5(2), 105–112. https://doi.org/10.1007/s13201-014-0176-8
  • Quintanilla, A., Casas, J., Mohedano, A., & Rodriguez, J. (2006). Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon. Applied Catalysis B: Environmental, 67(3-4), 206–216. https://doi.org/10.1016/j.apcatb.2006.05.003
  • Radwan, M., Gar Alalm, M., & Eletriby, H. (2018). Optimization and modeling of electro-Fenton process for treatment of phenolic wastewater using nickel and sacrificial stainless steel anodes. Journal of Water Process Engineering, 22(January), 155–162. https://doi.org/10.1016/j.jwpe.2018.02.003
  • Resende, K. A., Teles, C. A., Jacobs, G., Davis, B. H., Cronauer, D. C., Jeremy Kropf, A., Marshall, C. L., Hori, C. E., & Noronha, F. B. (2018). Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance. Applied Catalysis B: Environmental, 232, 213–231. https://doi.org/10.1016/j.apcatb.2018.03.041
  • Resini, C., Catania, F., Berardinelli, S., Paladino, O., & Busca, G. (2008). Catalytic wet oxidation of phenol over lanthanum strontium manganite. Applied Catalysis B: Environmental, 84(3-4), 678–683. https://doi.org/10.1016/j.apcatb.2008.06.005
  • Sánchez-Trinidad, C., del Angel, G., Torres‐Torres, G., Cervantes-Uribe, A., Silahua Pavón, A A.., Guerra‐Que, Z., Arévalo-Pérez, J. C., & Tzompantzi‐Morales, F. J. (2019). Effect of the CuAl2O4 and CuAlO2 Phases in Catalytic Wet Air Oxidation of ETBE and TAME using CuO/γ‐Al2O3 catalysts. Chemistry Open, 8(8), 1143–1150. https://doi.org/10.1002/open.201900080
  • Santos, A., Yustos, P., Quintanilla, A., Rodrı́guez, S., & Garcı́a-Ochoa, F., (2002). Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 39(2), 97–113. https://doi.org/10.1016/S0926-3373(02)00087-5
  • Seadira, T., Sadanandam, G., Ntho, T. A., Lu, X., Masuku, C. M., & Scurrell, M. (2018). Hydrogen production from glycerol reforming: Conventional and green production. Reviews in Chemical Engineering, 34(5), 695–726. https://doi.org/10.1515/revce-2016-0064
  • Seadira, T. W. P., Masuku, C. M., & Scurrell, M. S. (2020). Solar photocatalytic glycerol reforming for hydrogen production over ternary Cu/THS/Graphene photocatalyst: Effect of Cu and graphene loading. Renewable Energy, 156, 84–97. https://doi.org/10.1016/j.renene.2020.04.020
  • Serra-Pérez, E., Álvarez-Torrellas, S., Ismael Águeda, V., Delgado, J. A., Ovejero, G., & García, J. (2019). Insights into the removal of Bisphenol A by catalytic wet air oxidation upon carbon nanospheres-based catalysts: Key operating parameters, degradation intermediates and reaction pathway. Applied Surface Science, 473, 726–737. https://doi.org/10.1016/j.apsusc.2018.12.205
  • Suárez-Ojeda, M. E., Fabregat, A., Stüber, F., Fortuny, A., Carrera, J., & Font, J. (2007). Catalytic wet air oxidation of substituted phenols: Temperature and pressure effect on the pollutant removal, the catalyst preservation and the biodegradability enhancement. Chemical Engineering Journal, 132(1-3), 105–115. https://doi.org/10.1016/j.cej.2007.01.025
  • Sun, J., Liu, X., Zhang, F., Zhou, J., Wu, J., Alsaedi, A., Hayat, T., & Li, J. (2019). Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563(October 2018), 22–30. https://doi.org/10.1016/j.colsurfa.2018.11.042
  • Sun, X., Wang, C., Li, Y., Wang, W., & Wei, J. (2015). Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 355, 68–74. https://doi.org/10.1016/j.desal.2014.10.018
  • Tałałaj, I. A., Biedka, P., & Bartkowska, I. (2019). Treatment of landfill leachates with biological pretreatments and reverse osmosis. Environmental Chemistry Letters, 17(3), 1177–1193. https://doi.org/10.1007/s10311-019-00860-6
  • Ukonu, P. N. (2018). Heterogeneous catalytic wet air oxidation of industrial wastewater pollutant for environmental sustainability. University of Massachusetts Lowell.
  • Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports, 2(3), 157–167. https://doi.org/10.1007/s40726-016-0035-3
  • Wang, C., Xu, J., Yang, Z., Zhang, Z., & Cai, Z. (2019). A field study of polychlorinated dibenzo-p-dioxins and dibenzofurans formation mechanism in a hazardous waste incinerator: Emission reduction strategies. Journal of Cleaner Production, 232, 1018–1027. https://doi.org/10.1016/j.jclepro.2019.06.020
  • Wang, J., Fu, W., He, X., Yang, S., & Zhu, W. (2014). Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: Reaction mechanism and pathway. Journal of Environmental Sciences (China), 26(8), 1741–1749. https://doi.org/10.1016/j.jes.2014.06.015
  • Wu, Q., Hu, X., & Yue, P. L. (2005). Kinetics study on heterogeneous catalytic wet air oxidation of phenol using copper/activated carboncatalyst kinetics study on heterogeneous catalytic wet air oxidation of phenol using copper/activated carbon catalyst. International Journal of Chemical Reactor Engineering, 3(1). https://doi.org/10.2202/1542-6580.1282
  • Yadav, A., Teja, A. K., & Verma, N. (2016). Removal of phenol from water by catalytic wet air oxidation using carbon bead – supported iron nanoparticle – containing carbon nano fibers in an especially configured reactor. Journal of Environmental Chemical Engineering, 4(2), 1504–1513. https://doi.org/10.1016/j.jece.2016.02.021
  • Yang, S. (2012). Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Journal of Hazardous Materials. Elsevier B, 233–234, 18–24. https://doi.org/10.1016/j.jhazmat.2012.06.033
  • Yang, S., Cui, Y., Sun, Y., & Yang, H. (2014). Graphene oxide as an effective catalyst for wet air oxidation of phenol. Journal of Hazardous Materials, 280, 55–62. https://doi.org/10.1016/j.jhazmat.2014.07.051
  • Ye, J., Mu, Y., Cheng, X., & Sun, D. (2011). Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor. Bioresource Technology, 102(9), 5498–5503. https://doi.org/10.1016/j.biortech.2011.01.001
  • Yu, Y., Wei, H., Yu, L., Gu, B., Li, X., Rong, X., Zhao, Y., Chen, L., & Sun, C. (2016). Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst. Catalysis Science & Technology, 6(4), 1085–1093. https://doi.org/10.1039/C5CY00900F
  • Zapico, R. R., Marín, P., Díez, F. V., & Ordóñez, S. (2015). Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: Development of a kinetic model. Chemical Engineering Journal, 270, 122–132. https://doi.org/10.1016/j.cej.2015.01.112
  • Zarca, G., Ortiz, I., & Urtiaga, A. (2015). Behaviour of 1-hexyl-3-methylimidazolium chloride-supported ionic liquid membranes in the permeation of CO2, H2, CO and N2 single and mixed gases. Desalination and Water Treatment, 56(13), 3640–3646. https://doi.org/10.1080/19443994.2014.978820
  • Zhou, H., Wang, G., Wu, M., Xu, W., Zhang, X., & Liu, L. (2018). Phenol removal performance and microbial community shift during pH shock in a moving bed biofilm reactor (MBBR). Journal of Hazardous Materials, 351(October 2017), 71–79. https://doi.org/10.1016/j.jhazmat.2018.02.055
  • Zuo, K., Chang, J., Liu, F., Zhang, X., Liang, P., & Huang, X. (2017). Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell. Desalination, 423(May), 104–110. https://doi.org/10.1016/j.desal.2017.09.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.