5,381
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Harnessing biodegradation potential of rapid sand filtration for organic micropollutant removal from drinking water: A review

, , & ORCID Icon
Pages 2086-2118 | Published online: 09 Jun 2020

References

  • Ahmad, J., Naeem, S., Ahmad, M., Usman, A. R. A., & Al-Wabel, M. I. (2019). A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. Journal of Environmental Management, 246, 214–228. https://doi.org/10.1016/j.jenvman.2019.05.152
  • Albers, C. N., Feld, L., Ellegaard-Jensen, L., & Aamand, J. (2015). Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Water Research, 83, 61–70. https://doi.org/10.1016/j.watres.2015.06.023
  • Arciero, D., Vannelli, T., Logan, M., & Hooper, A. B. (1989). Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochemical and Biophysical Research Communications, 159(2), 640–643. https://doi.org/10.1016/0006-291X(89)90042-9
  • Baghapour, M. A., Nasseri, S., & Derakhshan, Z. (2013). Atrazine removal from aqueous solutions using submerged biological aerated filter. Journal of Environmental Health Science & Engineering, 11(1), 6. https://doi.org/10.1186/2052-336X-11-6
  • Bai, Y., Chang, Y., Liang, J., Chen, C., & Qu, J. (2016). Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters. Water Research, 106, 126–134. https://doi.org/10.1016/j.watres.2016.09.040
  • Bar-Zeev, E., Belkin, N., Liberman, B., Berman, T., & Berman-Frank, I. (2012). Rapid sand filtration pretreatment for SWRO: Microbial maturation dynamics and filtration efficiency of organic matter. Desalination, 286, 120–130. https://doi.org/10.1016/j.desal.2011.11.010
  • Batt, A. L., Kim, S., & Aga, D. S. (2006). Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environmental Science & Technology, 40(23), 7367–7373. https://doi.org/10.1021/es060835v
  • Bellusci, M., La Barbera, A., Padella, F., Mancuso, M., Pasquo, A., Grollino, M. G., Leter, G., Nardi, E., Cremisini, C., Giardullo, P., & Pacchierotti, F. (2014). Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. International Journal of Nanomedicine, 9(1), 1919–1929. https://doi.org/10.2147/IJN.S56394
  • Benner, J., De Smet, D., Ho, A., Kerckhof, F. M., Vanhaecke, L., Heylen, K., & Boon, N. (2015). Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Applied Microbiology and Biotechnology, 99(8), 3609–3618. https://doi.org/10.1007/s00253-014-6226-1
  • Benner, J., Helbling, D. E., Kohler, H.-P E., Wittebol, J., Kaiser, E., Prasse, C., Ternes, T. A., Albers, C. N., Aamand, J., Horemans, B., Springael, D., Walravens, E., & Boon, N. (2013). Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Research, 47(16), 5955–5976. https://doi.org/10.1016/j.watres.2013.07.015
  • Benner, J., & Ternes, T. A. (2009). Ozonation of metoprolol: Elucidation of oxidation pathways and major oxidation products. Environmental Science & Technology, 43(14), 5472–5480. https://doi.org/10.1021/es900280e
  • Bernard, S., Chazal, P., & Mazet, M. (1997). Removal of organic compounds by adsorption on pyrolusite (β-MnO2). Water Research, 31(5), 1216–1222. https://doi.org/10.1016/S0043-1354(96)00149-2
  • Bruins, J. H., Petrusevski, B., Slokar, Y. M., Huysman, K., Joris, K., Kruithof, J. C., & Kennedy, M. D. (2015). Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. Water Research, 69, 154–161. https://doi.org/10.1016/j.watres.2014.11.019
  • Bruins, J. H., Petrusevski, B., Slokar, Y. M., Kruithof, J. C., & Kennedy, M. D. (2014). Manganese removal from groundwater: Characterization of filter media coating. Desalination & Water Treatment, 55(7), 1–13.
  • Brusseau, G. A., Tsien, H.-C., Hanson, R. S., & Wackett, L. P. (1990). Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation, 1(1), 19–29. https://doi.org/10.1007/BF00117048
  • Burke, V., Duennbier, U., & Massmann, G. (2013). The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater – A laboratory study. Water Science and Technology, 67(3), 658–666. https://doi.org/10.2166/wst.2012.613
  • Cakmakci, M., Koyuncu, I., & Kinaci, C. (2008). Effects of iron concentrations, filter hydraulic loading rates, and porosities on iron removal by rapid sand filtration. Environmental Engineering Science, 25(5), 669–676. https://doi.org/10.1089/ees.2007.0060
  • Cartinella, J. L., Cath, T. Y., Flynn, M. T., Miller, G. C., Hunter, K. W., & Childress, A. E. (2006). Removal of natural steroid hormones from wastewater using membrane contactor processes. Environmental Science & Technology, 40(23), 7381–7386. https://doi.org/10.1021/es060550i
  • Colby, J., Stirling, D. I., & Dalton, H. (1977). The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. The Biochemical Journal, 165(2), 395–402. https://doi.org/10.1042/bj1650395
  • Cooper, J. E., Kendig, E. L., & Belcher, S. M. (2011). Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere, 85(6), 943–947. https://doi.org/10.1016/j.chemosphere.2011.06.060
  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431
  • Craft, T. F. (1966). Review of rapid sand filtration theory. Journal of American Water Works Association, 58(4), 428–439. https://doi.org/10.1002/j.1551-8833.1966.tb01600.x
  • Dahlbäck, B., Hermansson, M., Kjelleberg, S., & Norkrans, B. (1981). The hydrophobicity of bacteria – An important factor in their initial adhesion at the air-water interface. Archives of Microbiology, 128(3), 267–270. https://doi.org/10.1007/BF00422527
  • de Jongh, C. M., Kooij, P. J. F., de Voogt, P., & ter Laak, T. L. (2012). Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. The Science of the Total Environment, 427-428, 70–77. https://doi.org/10.1016/j.scitotenv.2012.04.010
  • de Moel, P. J., Verberk, J. Q. J. C., & van Dijk, J. C. (2006). Drinking water principles and practices. World Scientific Publishing Co. Pte. Ltd.
  • de Vet, W. W. J. M., Kleerebezem, R., van der Wielen, P. W. J. J., Rietveld, L. C., & van Loosdrecht, M. C. M. (2011). Assessment of nitrification in groundwater filters for drinking water production by qPCR and activity measurement. Water Research, 45(13), 4008–4018. https://doi.org/10.1016/j.watres.2011.05.005
  • Ding, C., Xin, Y., Wei, L., Chang, Y., & Shang, C. (2010). Removal of natural organic matter using surfactant-modified iron oxide-coated sand. Journal of Hazardous Materials, 174(1–3), 567–572. https://doi.org/10.1016/j.jhazmat.2009.09.089
  • Dodd, M. C., Rentsch, D., Singer, H. P., Kohler, H. P. E., & von Gunten, U. (2010). Transformation of β-lactam antibacterial agents during aqueous ozonation: Reaction pathways and quantitative bioassay of biologically-active oxidation products. Environmental Science & Technology, 44(15), 5940–5948. https://doi.org/10.1021/es101061w
  • Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  • Elhadi, S. L. N., Huck, P. M., & Slawson, R. M. (2006). Factors affecting the removal of geosmin and MIB in drinking water biofilters. Journal of American Water Works Association, 98(8), 108–119. https://doi.org/10.1002/j.1551-8833.2006.tb07738.x
  • Ellegaard-Jensen, L., Albers, C. N., & Aamand, J. (2016). Protozoa graze on the 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 introduced into waterworks sand filters. Applied Microbiology and Biotechnology, 100(20), 8965–8973. https://doi.org/10.1007/s00253-016-7710-6
  • Escher, B. I., Allinson, M., Altenburger, R., Bain, P. A., Balaguer, P., Busch, W., Crago, J., Denslow, N. D., Dopp, E., Hilscherova, K., Humpage, A. R., Kumar, A., Grimaldi, M., Jayasinghe, B. S., Jarosova, B., Jia, A., Makarov, S., Maruya, K. A., Medvedev, A., … Leusch, F. D. L. (2014). Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environmental Science & Technology, 48(3), 1940–1956. https://doi.org/10.1021/es403899t
  • Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693–709. https://doi.org/10.1016/j.chemosphere.2011.06.082
  • Feakin, S. J., Gubbins, B., McGhee, I., Shaw, L. J., & Burns, R. G. (1995). Inoculation of granular activated carbon with s-triazine-degrading bacteria for water treatment at pilot-scale. Water Research, 29(7), 1681–1688. https://doi.org/10.1016/0043-1354(94)00322-X
  • Feitosa-Felizzola, J., Hanna, K., & Chiron, S. (2009). Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides. Environmental Pollution (Barking, Essex: 1987), 157(4), 1317–1322. https://doi.org/10.1016/j.envpol.2008.11.048
  • Feld, L., Nielsen, T. K., Hansen, L. H., Aamand, J., & Albers, C. N. (2016). Establishment of bacterial herbicide degraders in a rapid sand filter for bioremediation of phenoxypropionate-polluted groundwater. Applied and Environmental Microbiology, 82(3), 878–887. https://doi.org/10.1128/AEM.02600-15
  • Forrez, I., Carballa, M., Fink, G., Wick, A., Hennebel, T., Vanhaecke, L., Ternes, T., Boon, N., & Verstraete, W. (2011). Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Research, 45(4), 1763–1773. https://doi.org/10.1016/j.watres.2010.11.031
  • Fulthorpe, R. R., Rhodes, A. N., & Tiedje, J. M. (1996). Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Applied and Environmental Microbiology, 62(4), 1159–1166. https://doi.org/10.1128/AEM.62.4.1159-1166.1996
  • Furgal, K. M., Meyer, R. L., & Kai, B. (2015). Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere, 136, 321–326. https://doi.org/10.1016/j.chemosphere.2014.11.059
  • Gözdereliler, E., Boon, N., Aamand, J., De Roy, K., Granitsiotis, M. S., Albrechtsen, H.-J., & Sørensen, S. R. (2013). Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. Applied and Environmental Microbiology, 79(1), 367–375. https://doi.org/10.1128/AEM.02536-12
  • Gude, J. C. J., Rietveld, L. C., & van Halem, D. (2016). Fate of low arsenic concentrations during full-scale aeration and rapid filtration. Water Research, 88, 566–574. https://doi.org/10.1016/j.watres.2015.10.034
  • Gude, J. C. J., Rietveld, L. C., & van Halem, D. (2018). Biological As(III) oxidation in rapid sand filters. Journal of Water Process Engineering, 21, 107–115. https://doi.org/10.1016/j.jwpe.2017.12.003
  • Hedegaard, M. J., & Albrechtsen, H. J. (2014). Microbial pesticide removal in rapid sand filters for drinking water treatment – Potential and kinetics. Water Research, 48(1), 71–81. https://doi.org/10.1016/j.watres.2013.09.024
  • Hedegaard, M. J., Arvin, E., Corfitzen, C. B., & Albrechtsen, H. J. (2014). Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks. Science of the Total Environment, 499, 257–264. https://doi.org/10.1016/j.scitotenv.2014.08.052
  • Hedegaard, M. J., Deliniere, H., Prasse, C., Dechesne, A., Smets, B. F., & Albrechtsen, H.-J. (2018). Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter. Water Research, 129, 105–114. https://doi.org/10.1016/j.watres.2017.10.073
  • Hedegaard, M. J., Prasse, C., & Albrechtsen, H.-J. (2019). Microbial degradation pathways of the herbicide bentazone in filter sand used for drinking water treatment. Environmental Science: Water Research & Technology, 5(3), 521–532. https://doi.org/10.1039/C8EW00790J
  • Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C. P., & Newcombe, G. (2006). Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Research, 40(4), 768–774. https://doi.org/10.1016/j.watres.2005.12.009
  • Horemans, B., Raes, B., Vandermaesen, J., Simanjuntak, Y., Brocatus, H., T'Syen, J., Degryse, J., Boonen, J., Wittebol, J., Lapanje, A., Sørensen, S. R., & Springael, D. (2017). Biocarriers improve bioaugmentation efficiency of a rapid sand filter for the treatment of 2,6-dichlorobenzamide-contaminated drinking water. Environmental Science & Technology, 51(3), 1616–1625. https://doi.org/10.1021/acs.est.6b05027
  • Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., & Vom Saal, F. S. (1999). Exposure to bisphenol A advances puberty. Nature, 401(6755), 763–764. https://doi.org/10.1038/44517
  • Hozalski, R. M., & Bouwer, E. J. (1998). Deposition and retention of bacteria in backwashed filters. Journal of American Water Works Association, 90(1), 71–85. https://doi.org/10.1002/j.1551-8833.1998.tb08362.x
  • Hu, W., Liang, J., Ju, F., Wang, Q., Liu, R., Bai, Y., Liu, H., & Qu, J. (2020). Metagenomics unravels differential microbiome composition and metabolic potential in rapid sand filters purifying surface water versus groundwater. Environmental Science & Technology, 54(8), 5197–5206. https://doi.org/10.1021/acs.est.9b07143
  • Hyman, M. R., Murton, I. B., & Arp, D. J. (1988). Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Applied and Environmental Microbiology, 54(12), 3187–3190. https://doi.org/10.1128/AEM.54.12.3187-3190.1988
  • Im, J., & Semrau, J. D. (2011). Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: Bioremediation via facultative methanotrophy. FEMS Microbiology Letters, 318(2), 137–142. https://doi.org/10.1111/j.1574-6968.2011.02249.x
  • Ives, K. J. (1970). Rapid filtration. Water Research, 4(3), 201–223. https://doi.org/10.1016/0043-1354(70)90068-0
  • Janniche, G. S., Lindberg, E., Mouvet, C., & Albrechtsen, H. J. (2010). Mineralization of isoproturon, mecoprop and acetochlor in a deep unsaturated limestone and sandy aquifer. Chemosphere, 81(7), 823–831. https://doi.org/10.1016/j.chemosphere.2010.08.023
  • Jian, Z., Bai, Y., Chang, Y., Liang, J., & Qu, J. (2019). Removal of micropollutants and cyanobacteria from drinking water using KMnO4 pre-oxidation coupled with bioaugmentation. Chemosphere, 215, 1–7. https://doi.org/10.1016/j.chemosphere.2018.10.013
  • Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E., Antunes, M. B., De Melo Filho, D. A., Lyra, T. M., Barreto, V. S. T., Azevedo, S. M., & Jarvis, W. R. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 338(13), 873–878. https://doi.org/10.1056/NEJM199803263381304
  • Jones, O. A., Lester, J. N., & Voulvoulis, N. (2005). Pharmaceuticals: A threat to drinking water? Trends in Biotechnology, 23(4), 163–167. https://doi.org/10.1016/j.tibtech.2005.02.001
  • Kassotaki, E., Buttiglieri, G., Ferrando-Climent, L., Rodriguez-Roda, I., & Pijuan, M. (2016). Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Research, 94, 111–119. https://doi.org/10.1016/j.watres.2016.02.022
  • Kim, J., & Kang, B. (2008). DBPs removal in GAC filter-adsorber. Water Research, 42(1–2), 145–152. https://doi.org/10.1016/j.watres.2007.07.040
  • Kirby, C. S., Thomas, H. M., Southam, G., & Donald, R. (1999). Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 14(4), 511–530. https://doi.org/10.1016/S0883-2927(98)00071-7
  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211. https://doi.org/10.1021/es011055j
  • Kors, L. J., Moorman, J. H. N., Wind, A. P. M., & van der Hoek, J. P. (1998). Nitrification and low temperature in a raw water reservoir and rapid sand filters. Water Science and Technology, 37(2), 169–176. https://doi.org/10.2166/wst.1998.0131
  • Košutić, K., Furač, L., Sipos, L., & Kunst, B. (2005). Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Separation and Purification Technology, 42(2), 137–144. https://doi.org/10.1016/j.seppur.2004.07.003
  • Larsen, T. A., Lienert, J., Joss, A., & Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology, 113(1–3), 295–304. https://doi.org/10.1016/j.jbiotec.2004.03.033
  • Lee, C. O., Boe-Hansen, R., Musovic, S., Smets, B., Albrechtsen, H. J., & Binning, P. (2014). Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment. Water Research, 64(7), 226–236. https://doi.org/10.1016/j.watres.2014.07.001
  • Lee, Y., & Gunten, U. V. (2010). Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical) ). Water Research, 44(2), 555–566. https://doi.org/10.1016/j.watres.2009.11.045
  • Li, Z., Dvorak, B., & Li, X. (2012). Removing 17beta-estradiol from drinking water in a biologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor. Water Research, 46(9), 2828–2836. https://doi.org/10.1016/j.watres.2012.03.033
  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39(11), 2219–2228. https://doi.org/10.1016/j.watres.2005.04.003
  • Liu, R., Sun, L., Qu, J., & Li, G. (2009). Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination, 249(3), 1233–1237.
  • Liu, W., Sutton, N. B., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2016). Pharmaceutical removal from water with iron- or manganese-based technologies: A review. Critical Reviews in Environmental Science and Technology, 46(19–20), 1584–1621. https://doi.org/10.1080/10643389.2016.1251236
  • Lopato, L., Röttgers, N., Binning, P. J., & Arvin, E. (2013). Heterogeneous nitrification in a full-scale rapid sand filter treating groundwater. Journal of Environmental Engineering, 139(3), 375–384. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000653
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. The Science of the Total Environment, 473–474(3), 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  • Manoli, K., Nakhla, G., Ray, A. K., & Sharma, V. K. (2017). Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species. Chemical Engineering Journal, 307, 513–517. https://doi.org/10.1016/j.cej.2016.08.109
  • Mcdowell, D. C., Huber, M. M., Wagner, M., von Gunten, U., & Ternes, T. A. (2005). Ozonation of carbamazepine in drinking water: Identification and kinetic study of major oxidation products. Environmental Science & Technology, 39(20), 8014–8022. https://doi.org/10.1021/es050043l
  • Meerburg, F., Hennebel, T., Vanhaecke, L., Verstraete, W., & Boon, N. (2012). Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver. Microbial Biotechnology, 5(3), 388–395. https://doi.org/10.1111/j.1751-7915.2011.00323.x
  • Men, Y., Han, P., Helbling, D. E., Jehmlich, N., Herbold, C., Gulde, R., Onnis-Hayden, A., Gu, A. Z., Johnson, D. R., Wagner, M., & Fenner, K. (2016). Biotransformation of two pharmaceuticals by the ammonia-oxidizing archaeon Nitrososphaera gargensis. Environmental Science & Technology, 50(9), 4682–4692. https://doi.org/10.1021/acs.est.5b06016
  • Meng, Y. T., Zheng, Y. M., Zhang, L. M., & He, J. Z. (2009). Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environmental Pollution, 157(8–9), 2577–2583. https://doi.org/10.1016/j.envpol.2009.02.035
  • Michalakos, G. D., Nieva, J. M., Vayenas, D. V., & Lyberatos, G. (1997). Removal of iron from potable water using a trickling filter. Water Research, 31(5), 991–996. https://doi.org/10.1016/S0043-1354(96)00343-0
  • Müller, A., Weiss, S. C., Beisswenger, J., Leukhardt, H. G., Schulz, W., Seitz, W., Ruck, W. K. L., & Weber, W. H. (2012). Identification of ozonation by-products of 4- and 5-methyl-1H-benzotriazole during the treatment of surface water to drinking water. Water Research, 46(3), 679–690. https://doi.org/10.1016/j.watres.2011.11.033
  • Neale, P. A., Ait-Aissa, S., Brack, W., Creusot, N., Denison, M. S., Deutschmann, B., Hilscherová, K., Hollert, H., Krauss, M., Novák, J., Schulze, T., Seiler, T.-B., Serra, H., Shao, Y., & Escher, B. I. (2015). Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling. Environmental Science & Technology, 49(24), 14614–14624. https://doi.org/10.1021/acs.est.5b04083
  • Nicolaisen, B. (2003). Developments in membrane technology for water treatment. Desalination, 153(1–3), 355–360. https://doi.org/10.1016/S0011-9164(02)01127-X
  • Niu, J., Kasuga, I., Kurisu, F., Furumai, H., & Shigeeda, T. (2013). Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing . Water Research, 47(19), 7053–7065. https://doi.org/10.1016/j.watres.2013.07.056
  • O'Melia, C. R., & Crapps, D. K. (1964). Some chemical aspects of rapid sand filtration. Journal American Water Works Association, 56(10), 1326–1344. https://doi.org/10.1002/j.1551-8833.1964.tb01340.x
  • Onesios, K. M., Yu, J. T., & Bouwer, E. J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation, 20(4), 441–466. https://doi.org/10.1007/s10532-008-9237-8
  • Ormad, M. P., Miguel, N., Claver, A., Matesanz, J. M., & Ovelleiro, J. L. (2008). Pesticides removal in the process of drinking water production. Chemosphere, 71(1), 97–106. https://doi.org/10.1016/j.chemosphere.2007.10.006
  • Papadopoulou, A., Hedegaard, M. J., Dechesne, A., Albrechtsen, H.-J., Musovic, S., & Smets, B. F. (2019). Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter. Applied Microbiology and Biotechnology, 103(2), 1007–1019. https://doi.org/10.1007/s00253-018-9501-8
  • Paredes, L., Fernandez-Fontaina, E., Lema, J. M., Omil, F., & Carballa, M. (2016). Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Science of the Total Environment, 551-552, 640–648. https://doi.org/10.1016/j.scitotenv.2016.02.008
  • Pereira, R. O., de Alda, M. L., Joglar, J., Daniel, L. A., & Barceló, D. (2011). Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere, 84(11), 1535–1541. https://doi.org/10.1016/j.chemosphere.2011.05.058
  • Piai, L., Dykstra, J. E., Adishakti, M. G., Blokland, M., Langenhoff, A. A. M., & van der Wal, A. (2019). Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Research, 162, 518–527. https://doi.org/10.1016/j.watres.2019.06.012
  • Rattier, M., Reungoat, J., Keller, J., & Gernjak, W. (2014). Removal of micropollutants during tertiary wastewater treatment by biofiltration: Role of nitrifiers and removal mechanisms. Water Research, 54, 89–99. https://doi.org/10.1016/j.watres.2014.01.030
  • Remucal, C. K., & Ginder-Vogel, M. (2014). A critical review of the reactivity of manganese oxides with organic contaminants. Environmental Science. Processes & Impacts, 16(6), 1247–1266. https://doi.org/10.1039/c3em00703k
  • Rentz, J. A., Charoenkwan, K., Luther, G. W., & David, E. (2007). Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environmental Science & Technology, 41(17), 6084–6089. https://doi.org/10.1021/es062203e
  • Richter, D., Massmann, G., & Dünnbier, U. (2008). Behaviour and biodegradation of sulfonamides (p-TSA, o-TSA, BSA) during drinking water treatment. Chemosphere, 71(8), 1574–1581. https://doi.org/10.1016/j.chemosphere.2007.11.026
  • Roh, H., Subramanya, N., Zhao, F., Yu, C.-P., Sandt, J., & Chu, K.-H. (2009). Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere, 77(8), 1084–1089. https://doi.org/10.1016/j.chemosphere.2009.08.049
  • Rosenberg, M., & Kjelleberg, S. (1986). Hydrophobic interactions: Role in bacterial adhesion. In K. C. Marshall (Ed.), Advances in microbial ecology (pp. 353–393). Springer US.
  • Samuelsen, E. D., Badawi, N., Nybroe, O., Sorensen, S. R., & Aamand, J. (2017). Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Applied Microbiology and Biotechnology, 101(1), 411–421. https://doi.org/10.1007/s00253-016-7909-6
  • Sarkar, B., Venkateswralu, N., Rao, R. N., Bhattacharjee, C., & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination, 212(1–3), 129–140. https://doi.org/10.1016/j.desal.2006.09.021
  • Schulman, L. J., Sargent, E. V., Naumann, B. D., Faria, E. C., Dolan, D. G., & Wargo, J. P. (2002). A human health risk assessment of pharmaceuticals in the aquatic environment. Human and Ecological Risk Assessment, 8(4), 657–680. https://doi.org/10.1080/20028091057141
  • Semrany, S., Favier, L., Djelal, H., Taha, S., & Amrane, A. (2012). Bioaugmentation: Possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs). Biochemical Engineering Journal, 69, 75–86. https://doi.org/10.1016/j.bej.2012.08.017
  • Shi, J., Fujisawa, S., Nakai, S., & Hosomi, M. (2004). Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research, 38(9), 2323–2330. https://doi.org/10.1016/j.watres.2004.02.022
  • Sørensen, S. R., Holtze, M. S., Simonsen, A., & Aamand, J. (2007). Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Applied and Environmental Microbiology, 73(2), 399–406. https://doi.org/10.1128/AEM.01498-06
  • Sullivan, J. P., Dickinson, D., & Chase, H. A. (1998). Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Critical Reviews in Microbiology, 24(4), 335–373. https://doi.org/10.1080/10408419891294217
  • Sun, Q., Li, Y., Chou, P.-H., Peng, P.-Y., & Yu, C.-P. (2012). Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration. Environmental Science & Technology, 46(8), 4442–4448. https://doi.org/10.1021/es204424t
  • Swartjes, F. A., & van der Aa, M. (2020). Measures to reduce pesticides leaching into groundwater-based drinking water resources: An appeal to national and local governments, water boards and farmers. The Science of the Total Environment, 699, 134186https://doi.org/10.1016/j.scitotenv.2019.134186
  • Tatari, K., Smets, B. F., & Albrechtsen, H. J. (2013). A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters. Water Research, 47(16), 6380–6387. https://doi.org/10.1016/j.watres.2013.08.005
  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32(1), 287–328. https://doi.org/10.1146/annurev.earth.32.101802.120213
  • Tekerlekopoulou, A. G., Pavlou, S., & Vayenas, D. V. (2013). Removal of ammonium, iron and manganese from potable water in biofiltration units: A review. Journal of Chemical Technology & Biotechnology, 88(5), 751–773. https://doi.org/10.1002/jctb.4031
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260. https://doi.org/10.1016/S0043-1354(98)00099-2
  • Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.-J., Haist-Gulde, B., Preuss, G., Wilme, U., & Zulei-Seibert, N. (2002). Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology, 36(17), 3855–3863. https://doi.org/10.1021/es015757k
  • Tom, H., Bart, D. G., Nico, B., & Willy, V. (2009). Biogenic metals in advanced water treatment. Trends in Biotechnology, 27(2), 90–98.
  • Tran, N. H., Urase, T., Ngo, H. H., Hu, J., & Ong, S. L. (2013). Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresource Technology, 146, 721–731. https://doi.org/10.1016/j.biortech.2013.07.083
  • Tu, J., Yang, Z., Hu, C., & Qu, J. (2014). Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. Journal of Environmental Sciences, 26(5), 1154–1161. https://doi.org/10.1016/S1001-0742(13)60505-7
  • Tuxen, N., Tüchsen, P. L., Rügge, K., Albrechtsen, H. J., & Bjerg, P. B. (2000). Fate of seven pesticides in an aerobic aquifer studied in column experiment. Chemosphere, 41(9), 1485–1494. https://doi.org/10.1016/S0045-6535(99)00533-0
  • van Beek, C. G. E. M., Hiemstra, T., Hofs, B., Nederlof, M. M., van Paassen, J. A. M., & Reijnen, G. K. (2012). Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration. Journal of Water Supply: Research and Technology-Aqua, 61(1), 1–13. https://doi.org/10.2166/aqua.2012.033
  • van der Aa, L. T. J., Kors, L. J., Wind, A. P. M., Hofman, J. A. M. H., & Rietveld, L. C. (2002). Nitrification in rapid sand filter: Phosphate limitation at low temperatures. Water Supply, 2(1), 37–46. https://doi.org/10.2166/ws.2002.0005
  • Vandermaesen, J., Horemans, B., Degryse, J., Boonen, J., Walravens, E., & Springael, D. (2016). Mineralization of the common groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) in sand filter units of drinking water treatment plants. Environmental Science & Technology, 50(18), 10114–10122. https://doi.org/10.1021/acs.est.6b01352
  • Vandermaesen, J., Horemans, B., Degryse, J., Boonen, J., Walravens, E., & Springael, D. (2019). The pesticide mineralization capacity in sand filter units of drinking water treatment plants (DWTP): Consistency in time and relationship with intake water and sand filter characteristics. Chemosphere, 228, 427–436. https://doi.org/10.1016/j.chemosphere.2019.04.033
  • Verhagen, P., De Gelder, L., Hoefman, S., De Vos, P., & Boon, N. (2011). Planktonic versus biofilm catabolic communities: Importance of the biofilm for species selection and pesticide degradation. Applied and Environmental Microbiology, 77(14), 4728–4735. https://doi.org/10.1128/AEM.05188-11
  • Vries, D., Bertelkamp, C., Schoonenberg Kegel, F., Hofs, B., Dusseldorp, J., Bruins, J. H., de Vet, W., & van den Akker, B. (2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research, 109, 35–45. https://doi.org/10.1016/j.watres.2016.11.032
  • Walker, S. L., Hill, J. E., Redman, J. A., & Elimelech, M. (2005). Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Applied and Environmental Microbiology, 71(6), 3093–3099. https://doi.org/10.1128/AEM.71.6.3093-3099.2005
  • Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E. (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 39(17), 6649–6663. https://doi.org/10.1021/es0484799
  • WHO. (1997). Report of the working group meeting on chemical substances in drinking water. World Health Organisation.
  • Wright, D. A., Killham, K., Glover, L. A., & Prosser, J. I. (1995). Role of pore size location in determining bacterial activity during predation by protozoa in soil. Applied and Environmental Microbiology, 61(10), 3537–3543. https://doi.org/10.1128/AEM.61.10.3537-3543.1995
  • Zearley, T. L., & Summers, R. S. (2012). Removal of trace organic micropollutants by drinking water biological filters. Environmental Science & Technology, 46(17), 9412–9419. https://doi.org/10.1021/es301428e
  • Zhang, Y., Zhu, H., Szewzyk, U., & Geissen, S. U. (2015). Removal of pharmaceuticals in aerated biofilters with manganese feeding. Water Research, 72, 218–226. https://doi.org/10.1016/j.watres.2015.01.009
  • Zuehlke, S., Duennbier, U., & Heberer, T. (2007). Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply. Chemosphere, 69(11), 1673–1680. https://doi.org/10.1016/j.chemosphere.2007.06.020