1,785
Views
21
CrossRef citations to date
0
Altmetric
Research Article

The mechanism and application of bidirectional extracellular electron transport in the field of energy and environment

, , , , , , & show all
Pages 1924-1969 | Published online: 09 Jun 2020

References

  • Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T., & Lovley, D. R. (2016). Conductivity of individual Geobacter pili. RSC Advances, 6(10), 8354–8357. https://doi.org/10.1039/C5RA28092C
  • Aklujkar, M., Young, N. D., Holmes, D., Chavan, M., Risso, C., Kiss, H. E., Han, C. S., Land, M. L., & Lovley, D. R. (2010). The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. Bmc Genomics, 11, 490. https://doi.org/10.1186/1471-2164-11-490
  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., & Lovley, D. R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891. https://doi.org/10.1128/aem.69.10.5884-5891.2003
  • Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S., & Majone, M. (2009). Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 103(1), 85–91. https://doi.org/10.1002/bit.22234
  • Bargar, J. R., Williams, K. H., Campbell, K. M., Long, P. E., Stubbs, J. E., Suvorova, E. I., Lezama-Pacheco, J. S., Alessi, D. S., Stylo, M., Webb, S. M., Davis, J. A., Giammar, D. E., Blue, L. Y., & Bernier-Latmani, R. (2013). Uranium redox transition pathways in acetate-amended sediments. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4506–4511. https://doi.org/10.1073/pnas.1219198110
  • Barrozo, A., El-Naggar, M. Y., & Krylov, A. I. (2018). Distinct electron conductance regimes in bacterial decaheme cytochromes. Angewandte Chemie (International ed. in English), 57(23), 6805–6809. https://doi.org/10.1002/anie.201800294
  • Belchik, S. M., Kennedy, D. W., Dohnalkova, A. C., Wang, Y., Sevinc, P. C., Wu, H., Lin, Y., Lu, H. P., Fredrickson, J. K., & Shi, L. (2011). Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 77(12), 4035–4041. https://doi.org/10.1128/AEM.02463-10
  • Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485. https://doi.org/10.1126/science.1066771
  • Bretschger, O., Obraztsova, A., Sturm, C. A., Chang, I. S., Gorby, Y. A., Reed, S. B., Culley, D. E., Reardon, C. L., Barua, S., Romine, M. F., Zhou, J., Beliaev, A. S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.-H., Fredrickson, J. K., & Nealson, K. H. (2007). Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology, 73(21), 7003–7012. https://doi.org/10.1128/AEM.01087-07
  • Brown, S. T., Basu, A., Ding, X., Christensen, J. N., & DePaolo, D. J. (2018). Uranium isotope fractionation by abiotic reductive precipitation. Proceedings of the National Academy of Sciences of the United States of America, 115(35), 8688–8693. https://doi.org/10.1073/pnas.1805234115
  • Butler, J. E., Kaufmann, F., Coppi, M. V., Nunez, C., & Lovley, D. R. (2004). MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. Journal of Bacteriology, 186(12), 4042–4045. https://doi.org/10.1128/JB.186.12.4042-4045.2004
  • Cai, P.-J., Xiao, X., He, Y.-R., Li, W.-W., Chu, J., Wu, C., He, M.-X., Zhang, Z., Sheng, G.-P., Lam, M. H.-W., Xu, F., & Yu, H.-Q. (2012). Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology, 93(4), 1769–1776. https://doi.org/10.1007/s00253-011-3508-8
  • Call, D. F., Wagner, R. C., & Logan, B. E. (2009). Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell. Applied and Environmental Microbiology, 75(24), 7579–7587. https://doi.org/10.1128/AEM.01760-09
  • Cao, B., Ahmed, B., Kennedy, D. W., Wang, Z., Shi, L., Marshall, M. J., Fredrickson, J. K., Isern, N. G., Majors, P. D., & Beyenal, H. (2011). Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environmental Science & Technology, 45(13), 5483–5490. https://doi.org/10.1021/es200095j
  • Chen, C. H., Chang, C. F., & Liu, S. M. (2010). Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. Journal of Hazardous Materials, 177(1-3), 281–289. https://doi.org/10.1016/j.jhazmat.2009.12.030
  • Chen, F., Liang, B., Li, Z.-L., Yang, J.-Q., Huang, C., Lyu, M., Yuan, Y., Nan, J., & Wang, A.-J. (2019). Bioelectrochemical assisted dechlorination of tetrachloroethylene and 1,2-dichloroethane by acclimation of anaerobic sludge. Chemosphere, 227, 514–521. https://doi.org/10.1016/j.chemosphere.2019.04.066
  • Chen, S., Rotaru, A. E., Liu, F., Philips, J., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2014). Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technology, 173, 82–86. https://doi.org/10.1016/j.biortech.2014.09.009
  • Cherkouk, A., Law, G. T. W., Rizoulis, A., Law, K., Renshaw, J. C., Morris, K., Livens, F. R., & Lloyd, J. R. (2016). Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1. Dalton Transactions (Cambridge, England: 2003), 45(12), 5030–5037. https://doi.org/10.1039/c4dt02929a
  • Childers, S. E., Ciufo, S., & Lovley, D. R. (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416(6882), 767–769. https://doi.org/10.1038/416767a
  • Ciullini, I., Gullotto, A., Tilli, S., Sannia, G., Basosi, R., Scozzafava, A., & Briganti, F. (2012). Enzymatic decolorization of spent textile dyeing baths composed by mixtures of synthetic dyes and additives. Applied Microbiology and Biotechnology, 96(2), 395–405. https://doi.org/10.1007/s00253-011-3809-y
  • Coates, J. D., Bhupathiraju, V. K., Achenbach, L. A., Mclnerney, M. J., & Lovley, D. R. (2001). Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 2), 581–588. https://doi.org/10.1099/00207713-51-2-581
  • Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D., & Reguera, G. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15248–15252. https://doi.org/10.1073/pnas.1108616108
  • Cologgi, D. L., Speers, A. M., Bullard, B. A., Kelly, S. D., & Reguera, G. (2014). Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms. Applied and Environmental Microbiology, 80(21), 6638–6646. https://doi.org/10.1128/AEM.02289-14
  • Coppi, M. V., Leang, C., Sandler, S. J., & Lovley, D. R. (2001). Development of a genetic system for Geobacter sulfurreducens. Applied and Environmental Microbiology, 67(7), 3180–3187. https://doi.org/10.1128/AEM.67.7.3180-3187.2001
  • Dantas, J. M., Campelo, L. M., Duke, N. E., Salgueiro, C. A., & Pokkuluri, P. R. (2015). The structure of PccH from Geobacter sulfurreducens – A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. The FEBS Journal, 282(11), 2215–2231. https://doi.org/10.1111/febs.13269
  • Dantas, J. M., Tomaz, D. M., Morgado, L., & Salgueiro, C. A. (2013). Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Letters, 587(16), 2662–2668. https://doi.org/10.1016/j.febslet.2013.07.003
  • De Schamphelaire, L., Van den Bossche, L., Dang, H. S., Höfte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 42(8), 3053–3058. https://doi.org/10.1021/es071938w
  • Deng, Y., Tang, L., Zeng, G., Zhu, Z., Yan, M., Zhou, Y., Wang, J., Liu, Y., & Wang, J. (2017). Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism. Applied Catalysis B: Environmental, 203, 343–354. https://doi.org/10.1016/j.apcatb.2016.10.046
  • Ding, C. M., Lv, M. L., Zhu, Y., Jiang, L., & Liu, H. (2015). Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angewandte Chemie (International ed. in English)), 54(5), 1446–1451. https://doi.org/10.1002/anie.201409163
  • Doong, R. A., Lee, C. C., & Lien, C. M. (2014). Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite. Chemosphere, 97, 54–63. https://doi.org/10.1016/j.chemosphere.2013.11.004
  • Ehrlich, H. L. (2008). Are gram-positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle? Geobiology, 6(3), 220–224. https://doi.org/10.1111/j.1472-4669.2007.00135.x
  • Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2013). Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 144, 165–171. https://doi.org/10.1016/j.biortech.2013.06.073
  • Flynn, J. M., Ross, D. E., Hunt, K. A., Bond, D. R., & Gralnick, J. A. (2010). Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio, 1(5), e00190–10. https://doi.org/10.1128/mBio.00190-10
  • Fonseca, B. M., Paquete, C. M., Neto, S. E., Pacheco, I., Soares, C. M., & Louro, R. O. (2013). Mind the gap: Cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. The Biochemical Journal, 449(1), 101–108. https://doi.org/10.1042/BJ20121467
  • Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscoll, M. E., Gardner, T. S., Nealson, K. H., Osterman, A. L., Pinchuk, G., Reed, J. L., Rodionov, D. A., Rodrigues, J. L. M., Saffarini, D. A., Serres, M. H., Spormann, A. M., Zhulin, I. B., & Tiedje, J. M. (2008). Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 6(8), 592–603. https://doi.org/10.1038/nrmicro1947
  • Geelhoed, J. S., & Stams, A. J. M. (2011). Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environmental Science & Technology, 45(2), 815–820. https://doi.org/10.1021/es102842p
  • Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 6(6), 596–604. https://doi.org/10.1111/j.1462-2920.2004.00593.x
  • Gregory, K. B., & Lovley, D. R. (2005). Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environmental Science & Technology, 39(22), 8943–8947. https://doi.org/10.1021/es050457e
  • Gupta, S., Yadav, A., & Verma, N. (2017). Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chemical Engineering Journal, 307, 729–738. https://doi.org/10.1016/j.cej.2016.08.130
  • Ha, P. T., Lindemann, S. R., Liang, S., Dohnalkova, A. C., Fredrickson, J. K., Madigan, M. T., & Beyenal, H. (2017). Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 8, 13924. https://doi.org/10.1038/ncomms13924
  • Han, J. C., Zhang, F., Cheng, L., Mu, Y., Liu, D. F., Li, W. W., & Yu, H. Q. (2017). Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria. Environmental Science & Technology Letters, 4, 350–355. https://doi.org/10.1021/acs.estlett.7b00227
  • Hartshorne, R. S., Reardon, C. L., Ross, D., Nuester, J., Clarke, T. A., Gates, A. J., Mills, P. C., Fredrickson, J. K., Zachara, J. M., Shi, L., Beliaev, A. S., Marshall, M. J., Tien, M., Brantley, S., Butt, J. N., & Richardson, D. J. (2009). Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22169–22174. https://doi.org/10.1073/pnas.0900086106
  • He, Y. X., Gong, Y. F., Su, Y. M., Zhang, Y. L., & Zhou, X. F. (2019). Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. Chemosphere, 221, 793–801. https://doi.org/10.1016/j.chemosphere.2019.01.039
  • Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., Eisen, J. A., Seshadri, R., Ward, N., Methe, B., Clayton, R. A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R. T., Dodson, R. J., … Fraser, C. M. (2002). Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnology, 20(11), 1118–1123. https://doi.org/10.1038/nbt749
  • Helder, M., Strik, D., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass and Bioenergy, 51, 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011
  • Héry, M., Gault, A. G., Rowland, H. A. L., Lear, G., Polya, D. A., & Lloyd, J. R. (2008). Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in South-East Asian aquifers. Applied Geochemistry, 23(11), 3215–3223. https://doi.org/10.1016/j.apgeochem.2008.07.003
  • Héry, M., Van Dongen, B. E., Gill, F., Mondal, D., Vaughan, D. J., Pancost, R. D., Polya, D. A., & Lloyd, J. R. (2010). Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology, 8(2), 155–168. https://doi.org/10.1111/j.1472-4669.2010.00233.x
  • Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methé, B. A., Liu, A., Ward, J. E., Woodard, T. L., Webster, J., & Lovley, D. R. (2006). Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environmental Microbiology, 8(10), 1805–1815. https://doi.org/10.1111/j.1462-2920.2006.01065.x
  • Holmes, D. E., Finneran, K. T., O'Neil, R. A., & Lovley, D. R. (2002). Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Applied and Environmental Microbiology, 68(5), 2300–2306. https://doi.org/10.1128/aem.68.5.2300-2306.2002
  • Holmes, D. E., Giloteaux, L., Chaurasia, A. K., Williams, K. H., Luef, B., Wilkins, M. J., Wrighton, K. C., Thompson, C. A., Comolli, L. R., & Lovley, D. R. (2015). Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. The ISME Journal, 9(2), 333–346. https://doi.org/10.1038/ismej.2014.128
  • Holmes, D. E., O'Neil, R. A., Vrionis, H. A., N'guessan, L. A., Ortiz-Bernad, I., Larrahondo, M. J., Adams, L. A., Ward, J. A., Nicoll, J. S., Nevin, K. P., Chavan, M. A., Johnson, J. P., Long, P. E., & Lovley, D. R. (2007). Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. The ISME Journal, 1(8), 663–677. https://doi.org/10.1038/ismej.2007.85
  • Holmes, D. E., Rotaru, A. E., Ueki, T., Shrestha, P. M., Ferry, J. G., & Lovley, D. R. (2018). Electron and proton flux for carbon dioxide reduction in Methanosarcina barkeri during direct interspecies electron transfer. Frontiers in Microbiology, 9, 3109. https://doi.org/10.3389/fmicb.2018.03109
  • Hu, H. Q., Fan, Y. Z., & Liu, H. (2008). Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Research, 42(15), 4172–4178. https://doi.org/10.1016/j.watres.2008.06.015
  • Huang, J., Ning, G., Li, F., & Sheng, G. D. (2015). Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions. Bioresource Technology, 180, 200–206. https://doi.org/10.1016/j.biortech.2014.12.108
  • Huang, W., Nie, X., Dong, F., Ding, C., Huang, R., Qin, Y., Liu, M., & Sun, S. (2017). Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 312(3), 531–541. https://doi.org/10.1007/s10967-017-5261-7
  • Inoue, K., Leang, C., Franks, A. E., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2011). Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environmental Microbiology Reports, 3(2), 211–217. https://doi.org/10.1111/j.1758-2229.2010.00210.x
  • Jiang, S., Kim, M. G., Kim, I. Y., Hwang, S. J., & Hur, H. G. (2013). Biological synthesis of free-standing uniformed goethite nanowires by Shewanella sp. HN-41. Journal of Materials Chemistry A, 1(5), 1646–1650. https://doi.org/10.1039/C2TA00466F
  • Jiang, X., Hu, J., Fitzgerald, L. A., Biffinger, J. C., Xie, P., Ringeisen, B. R., & Lieber, C. M. (2010). Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16806–16810. https://doi.org/10.1073/pnas.1011699107
  • Jiang, X. Y., Burger, B., Gajdos, F., Bortolotti, C., Futera, Z., Breuer, M., & Blumberger, J. (2019). Kinetics of trifurcated electron flow in the decaheme bacterial proteins MtrC and MtrF. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3425–3430. https://doi.org/10.1073/pnas.1818003116
  • Jin, X., Wang, F., Gu, C., Yang, X., Kengara, F. O., Bian, Y., Song, Y., & Jiang, X. (2015). The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. Chemosphere, 138, 18–24. https://doi.org/10.1016/j.chemosphere.2015.05.020
  • Kageyama, H., Hashimoto, Y., Oaki, Y., Saito, S., Konishi, Y., & Imai, H. (2015). Application of biogenic iron phosphate for lithiumion batteries. RSC Advances, 5(84), 68751–68757. https://doi.org/10.1039/C5RA11090D
  • Kato, S., Hashimoto, K., & Watanabe, K. (2012a). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 14(7), 1646–1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
  • Kato, S., Hashimoto, K., & Watanabe, K. (2012b). Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 10042–10046. https://doi.org/10.1073/pnas.1117592109
  • Kawaichi, S., Yamada, T., Umezawa, A., McGlynn, S. E., Suzuki, T., Dohmae, N., Yoshida, T., Sako, Y., Matsushita, N., Hashimoto, K., & Nakamura, R. (2018). Anodic and cathodic extracellular electron transfer by the filamentous bacterium Ardenticatena maritima 110S. Frontiers in Microbiology, 9, 68. https://doi.org/10.3389/fmicb.2018.00068
  • Kiely, P. D., Cusick, R., Call, D. F., Selembo, P. A., Regan, J. M., & Logan, B. E. (2011). Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology, 102(1), 388–394. https://doi.org/10.1016/j.biortech.2010.05.019
  • Kim, B.-H., Baek, K.-H., Cho, D.-H., Sung, Y., Koh, S.-C., Ahn, C.-Y., Oh, H.-M., & Kim, H.-S. (2010). Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnology Letters, 32(12), 1829–1835. https://doi.org/10.1007/s10529-010-0381-y
  • Kim, B.-H., Kim, H. J., Hyun, M. S., & Park, D. H. (1999). Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology & Biotechnology, 9, 127–131.
  • Kim, M. G., Kim, D.-H., Kim, T., Park, S., Kwon, G., Kim, M. S., Shin, T. J., Ahn, H., & Hur, H.-G. (2015). Unusual Li-ion storage through anionic redox processes of bacteria-driven tellurium nanorods. Journal of Materials Chemistry A, 3(33), 16978–16987. https://doi.org/10.1039/C5TA04038H
  • Kim, T. Y., Ahn, H., Jeon, J., Kim, M. S., Kim, M. G., & Hur, H. G. (2017). Biogenic realgar As4S4 molecular clusters formed by a one-pot microbial-driven process as a Li-ion storage material. Advanced Sustainable Systems, 1(7), 1700056. https://doi.org/10.1002/adsu.201700056
  • Kim, T. Y., Kim, M. G., Lee, J. H., & Hur, H. G. (2018). Biosynthesis of nanomaterials by Shewanella species for application in lithium ion batteries. Frontiers in Microbiology, 9, 2817. https://doi.org/10.3389/fmicb.2018.02817
  • Kracke, F., Vassilev, I., & Kromer, J. O. (2015). Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575. https://doi.org/10.3389/fmicb.2015.00575
  • Kumar, G., Bakonyi, P., Zhen, G., Sivagurunathan, P., Koók, L., Kim, S.-H., Tóth, G., Nemestóthy, N., & Bélafi-Bakó, K. (2017). Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint. Renewable and Sustainable Energy Reviews, 70, 589–597. https://doi.org/10.1016/j.rser.2016.11.107
  • La, J. A., Jeon, J. M., Sang, B. I., Yang, Y. H., & Cho, E. C. (2017). A hierarchically modified graphite cathode with Au nanoislands, cysteamine, and Au nanocolloids for increased electricity-assisted production of isobutanol by engineered Shewanella oneidensis MR-1. ACS Applied Materials & Interfaces, 9(50), 43563–43574. https://doi.org/10.1021/acsami.7b09874
  • Le, Q. A. T., Kim, H. G., & Kim, Y. H. (2018). Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme and Microbial Technology, 116, 1–5. https://doi.org/10.1016/j.enzmictec.2018.05.005
  • Leang, C., Malvankar, N. S., Franks, A. E., Nevin, K. P., & Lovley, D. R. (2013). Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy & Environmental Science, 6(6), 1901–1908. https://doi.org/10.1039/c3ee40441b
  • Lee, J.-H., Kim, M.-G., Yoo, B., Myung, N. V., Maeng, J., Lee, T., Dohnalkova, A. C., Fredrickson, J. K., Sadowsky, M. J., & Hur, H.-G. (2007). Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20410–20415. https://doi.org/10.1073/pnas.0707595104
  • Lee, J. Y., Lee, S. H., & Park, H. D. (2016). Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource Technology, 205, 205–212. https://doi.org/10.1016/j.biortech.2016.01.054
  • Lee, S., Kim, D.-H., & Kim, K.-W. (2018). The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere, 194, 515–522. https://doi.org/10.1016/j.chemosphere.2017.12.007
  • Levar, C. E., Chan, C. H., Mehta-Kolte, M. G., & Bond, D. R. (2014). An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio, 5(6), e02034–14. https://doi.org/10.1128/mBio.02034-14
  • Li, H., Wen, Y., Cao, A., Huang, J., Zhou, Q., & Somasundaran, P. (2012). The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms. Bioresource Technology, 114, 188–194. https://doi.org/10.1016/j.biortech.2012.03.043
  • Li, L. L., Tong, Z. H., Fang, C. Y., Chu, J., & Yu, H. Q. (2015). Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Research, 70, 1–8. https://doi.org/10.1016/j.watres.2014.11.042
  • Li, W. W., Yu, H. Q., & He, Z. (2013). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 7(3), 911–924. https://doi.org/10.1039/C3EE43106A
  • Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K., & Murphy, J. D. (2017). Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 239, 345–352. https://doi.org/10.1016/j.biortech.2017.05.017
  • Liu, D.-F., Min, D., Cheng, L., Zhang, F., Li, D.-B., Xiao, X., Sheng, G.-P., & Yu, H.-Q. (2017). Anaerobic reduction of 2,6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 114(4), 761–768. https://doi.org/10.1002/bit.26212
  • Liu, F., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., & Lovley, D. R. (2012). Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 5(10), 8982–8989. https://doi.org/10.1039/c2ee22459c
  • Liu, F., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., & Lovley, D. R. (2015). Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology, 17(3), 648–655. https://doi.org/10.1111/1462-2920.12485
  • Liu, G., Zhou, J., Chen, C., Wang, J., Jin, R., & Lv, H. (2013). Decolorization of azo dyes by Geobacter metallireducens. Applied Microbiology and Biotechnology, 97(17), 7935–7942. https://doi.org/10.1007/s00253-012-4545-7
  • Liu, S., Liu, H., Wang, Z., Cui, Y., Chen, R., Peng, Z., Yuan, S., & Shi, L. (2019). Benzene promotes microbial Fe(III) reduction and flavins secretion. Geochimica Et Cosmochimica Acta, 264, 92–104. https://doi.org/10.1016/j.gca.2019.08.013
  • Liu, X., Tremblay, P. L., Malvankar, N. S., Nevin, K. P., Lovley, D. R., & Vargas, M. (2014). A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Applied and Environmental Microbiology, 80(3), 1219–1224. https://doi.org/10.1128/AEM.02938-13
  • Liu, X., Zhuo, S., Rensing, C., & Zhou, S. (2018). Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. The ISME Journal, 12(9), 2142–2151. https://doi.org/10.1038/s41396-018-0193-y
  • Liu, Y. N., Zhang, F., Li, J., Li, D. B., Liu, D. F., Li, W. W., & Yu, H. Q. (2017). Exclusive extracellular bioreduction of methyl orange by azo reductase-free Geobacter sulfurreducens. Environmental Science & Technology, 51(15), 8616–8623. https://doi.org/10.1021/acs.est.7b02122
  • Lloyd, J. R., Byrne, J. M., & Coker, V. S. (2011). Biotechnological synthesis of functional nanomaterials. Current Opinion in Biotechnology, 22(4), 509–515. https://doi.org/10.1016/j.copbio.2011.06.008
  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381. https://doi.org/10.1038/nrmicro2113
  • Logan, B. E., Call, D., Cheng, S., Hamelers, H. V., Sleutels, T. H., Jeremiasse, A. W., & Rozendal, R. A. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology, 42(23), 8630–8640. https://doi.org/10.1021/es801553z
  • Logan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319. https://doi.org/10.1038/s41579-019-0173-x
  • Lovley, D. R. (2003). Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology, 1(1), 35–44. https://doi.org/10.1038/nrmicro731
  • Lovley, D. R. (2011a). Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3(1), 27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x
  • Lovley, D. R. (2011b). Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science, 4(12), 4896–4906. https://doi.org/10.1039/c1ee02229f
  • Lovley, D. R. (2017a). e-Biologics: Fabrication of sustainable electronics with “green” biological materials. mBio, 8(3), e00695–17. https://doi.org/10.1128/mBio.00695-17
  • Lovley, D. R. (2017b). Syntrophy goes electric: Direct interspecies electron transfer. Annual Review of Microbiology, 71, 643–664. https://doi.org/10.1146/annurev-micro-030117-020420
  • Lovley, D. R. (2017c). Electrically conductive pili: Biological function and potential applications in electronics. Current Opinion in Electrochemistry, 4(1), 190–198. https://doi.org/10.1016/j.coelec.2017.08.015
  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., & Siegel, D. I. (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339(6222), 297–300. https://doi.org/10.1038/339297a0
  • Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., & Woodward, J. C. (1996). Humic substances as electron acceptors for microbial respiration. Nature, 382(6590), 445–448. https://doi.org/10.1038/382445a0
  • Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P., & Coates, J. D. (1998). Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica, 26(3), 152–157. https://doi.org/10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
  • Lovley, D. R., Fraga, J. L., Coates, J. D., & Blunt-Harris, E. L. (1999). Humics as an electron donor for anaerobic respiration. Environmental Microbiology, 1(1), 89–98. https://doi.org/10.1046/j.1462-2920.1999.00009.x
  • Lovley, D. R., & Lonergan, D. J. (1990). Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Applied and Environmental Microbiology, 56(6), 1858–1864. https://doi.org/10.1128/AEM.56.6.1858-1864.1990
  • Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., & Landa, E. R. (1991). Microbial reduction of uranium. Nature, 350(6317), 413–416. https://doi.org/10.1038/350413a0
  • Lovley, D. R., Stolz, J. F., Nord, G. L., & Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252–254. https://doi.org/10.1038/330252a0
  • Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The microbe electric’s physiology, ecology, and practical applications. In R. K. Poole (Ed.), Advances in microbial physiology (pp. 1–100). Academic Press.
  • Lovley, D. R., & Walker, D. J. F. (2019). Geobacter protein nanowires. Frontiers in Microbiology, 10, 2078. https://doi.org/10.3389/fmicb.2019.02078
  • Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098
  • Luan, F., Liu, Y., Griffin, A. M., Gorski, C. A., & Burgos, W. D. (2015). Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32. Environmental Science & Technology, 49(3), 1418–1426. https://doi.org/10.1021/es504149y
  • Malvankar, N. S., & Lovley, D. R. (2014). Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology, 27, 88–95. https://doi.org/10.1016/j.copbio.2013.12.003
  • Malvankar, N. S., Mester, T., Tuominen, M. T., & Lovley, D. R. (2012). Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Chemphyschem, 13(2), 463–468. https://doi.org/10.1002/cphc.201100865
  • Malvankar, N. S., Tuominen, M. T., & Lovley, D. R. (2012). Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy & Environmental Science, 5(2), 5790–5797. https://doi.org/10.1039/c2ee03388g
  • Malvankar, N. S., Tuominen, M. T., & Lovley, D. R. (2012). Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energy & Environmental Science, 5(9), 8651–8659. https://doi.org/10.1039/c2ee22330a
  • Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S. F., Johnson, J. P., Rotello, V. M., Tuominen, M. T., & Lovley, D. R. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 6(9), 573–579. https://doi.org/10.1038/nnano.2011.119
  • Marritt, S. J., Lowe, T. G., Bye, J., McMillan, D. G. G., Shi, L., Fredrickson, J., Zachara, J., Richardson, D. J., Cheesman, M. R., Jeuken, L. J. C., & Butt, J. N. (2012). A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. The Biochemical Journal, 444(3), 465–474. https://doi.org/10.1042/BJ20120197
  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3968–3973. https://doi.org/10.1073/pnas.0710525105
  • Martinez, C. M., & Alvarez, L. H. (2018). Application of redox mediators in bioelectrochemical systems. Biotechnology Advances, 36(5), 1412–1423. https://doi.org/10.1016/j.biotechadv.2018.05.005
  • Martins, G., Salvador, A. F., Pereira, L., & Alves, M. M. (2018). Methane production and conductive materials: A critical review. Environmental Science & Technology, 52(18), 10241–10253. https://doi.org/10.1021/acs.est.8b01913
  • McFarlane, I. R., Lazzari-Dean, J. R., & El-Naggar, M. Y. (2015). Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers. Acta Biomaterialia, 13, 364–373. https://doi.org/10.1016/j.actbio.2014.11.005
  • Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12(12), 797–808. https://doi.org/10.1038/nrmicro3347
  • Morgado, L., Bruix, M., Pessanha, M., Londer, Y. Y., & Salgueiro, C. A. (2010). Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. Biophysical Journal, 99(1), 293–301. https://doi.org/10.1016/j.bpj.2010.04.017
  • Morita, M., Malvankar, N. S., Franks, A. E., Summers, Z. M., Giloteaux, L., Rotaru, A. E., Rotaru, C., & Lovley, D. R. (2011). Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio, 2(4), e00159–11. https://doi.org/10.1128/mBio.00159-11
  • Müller, J. B., Ramos, D. T., Larose, C., Fernandes, M., Lazzarin, H. S. C., Vogel, T. M., & Corseuil, H. X. (2017). Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 326, 229–236. https://doi.org/10.1016/j.jhazmat.2016.12.005
  • Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science (New York, N.Y.), 240(4857), 1319–1321. https://doi.org/10.1126/science.240.4857.1319
  • Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., Snoeyenbos-West, O. L., & Lovley, D. R. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Applied and Environmental Microbiology, 77(9), 2882–2886. https://doi.org/10.1128/AEM.02642-10
  • Nevin, K. P., Holmes, D. E., Woodard, T. L., Hinlein, E. S., Ostendorf, D. W., & Lovley, D. R. (2005). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 4), 1667–1674. https://doi.org/10.1099/ijs.0.63417-0
  • Nevin, K. P., Kim, B.-C., Glaven, R. H., Johnson, J. P., Woodard, T. L., Methé, B. A., DiDonato, R. J., Covalla, S. F., Franks, A. E., Liu, A., & Lovley, D. R. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. Plos One, 4(5), e5628. https://doi.org/10.1371/journal.pone.0005628
  • Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., Jia, H., Zhang, M., & Lovley, D. R. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514. https://doi.org/10.1111/j.1462-2920.2008.01675.x
  • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1(2), e00103–10. https://doi.org/10.1128/mBio.00103-10
  • Nimje, V. R., Chen, C.-Y., Chen, H.-R., Chen, C.-C., Huang, Y. M., Tseng, M.-J., Cheng, K.-C., & Chang, Y.-F. (2012). Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresource Technology, 104, 315–323. https://doi.org/10.1016/j.biortech.2011.09.129
  • Ntarlagiannis, D., Atekwana, E. A., Hill, E. A., & Gorby, Y. (2007). Microbial nanowires: Is the subsurface “hardwired”? Geophysical Research Letters, 34(17). https://doi.org/10.1029/2007GL030426
  • Okamoto, A., Hashimoto, K., Nealson, K. H., & Nakamura, R. (2013). Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7856–7861. https://doi.org/10.1073/pnas.1220823110
  • Okamoto, A., Saito, K., Inoue, K., Nealson, K. H., Hashimoto, K., & Nakamura, R. (2014). Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy & Environmental Science, 7(4), 1357–1361. https://doi.org/10.1039/C3EE43674H
  • Patil, S. A., Górecki, K., Hägerhäll, C., & Gorton, L. (2013). Cisplatin-induced elongation of Shewanella oneidensis MR-1 cells improves microbe-electrode interactions for use in microbial fuel cells. Energy & Environmental Science, 6(9), 2626–2630. https://doi.org/10.1039/c3ee41974f
  • Pearce, C. I., Pattrick, R. A. D., Law, N., Charnock, J. M., Coker, V. S., Fellowes, J. W., Oremland, R. S., & Lloyd, J. R. (2009). Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environmental Technology, 30(12), 1313–1326. https://doi.org/10.1080/09593330902984751
  • Pei, Y., Yu, Z., Ji, J., Khan, A., & Li, X. (2018). Microbial community structure and function indicate the severity of chromium contamination of the Yellow River. Frontiers in Microbiology, 9, 38. https://doi.org/10.3389/fmicb.2018.00038
  • Picardal, F., Arnold, R. G., & Huey, B. B. (1995). Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200. Applied and Environmental Microbiology, 61(1), 8–12. https://doi.org/10.1128/AEM.61.1.8-12.1995
  • Rabaey, K., & Rozendal, R. A. (2010). Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8(10), 706–716. https://doi.org/10.1038/nrmicro2422
  • Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101. https://doi.org/10.1038/nature03661
  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72(11), 7345–7348. https://doi.org/10.1128/AEM.01444-06
  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., & Deng, R. (2018). Sorption, transport and biodegradation-an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610-611, 1154–1163. https://doi.org/10.1016/j.scitotenv.2017.08.089
  • Richardson, D. J., Butt, J. N., Fredrickson, J. K., Zachara, J. M., Shi, L., Edwards, M. J., White, G., Baiden, N., Gates, A. J., Marritt, S. J., & Clarke, T. A. (2012). The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Molecular Microbiology, 85(2), 201–212. https://doi.org/10.1111/j.1365-2958.2012.08088.x
  • Richter, H., Nevin, K. P., Jia, H. F., Lowy, D. A., Lovley, D. R., & Tender, L. M. (2009). Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy & Environmental Science, 2(5), 506–516. https://doi.org/10.1039/b816647a
  • Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., & Jones-Meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science & Technology, 40(8), 2629–2634. https://doi.org/10.1021/es400446w
  • Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D., & Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Applied and Environmental Microbiology, 65(7), 3056–3063. https://doi.org/10.1128/AEM.65.7.3056-3063.1999
  • Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., & Bond, D. R. (2011). Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism. Plos One, 6(2), e16649. https://doi.org/10.1371/journal.pone.0016649
  • Rotaru, A.-E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P. M., Weber, H. S., Snoeyenbos-West, O. L. O., Hall, P. O. J., Richnow, H. H., Musat, N., & Thamdrup, B. (2018). Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. Mbio, 9(3), e00226–18. https://doi.org/10.1128/mBio.00226-18
  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P., & Lovley, D. R. (2014). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15), 4599–4605. https://doi.org/10.1128/AEM.00895-14
  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K. P., & Lovley, D. R. (2014). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1), 408–415. https://doi.org/10.1039/C3EE42189A
  • Rotaru, A.-E., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2015). Link between capacity for current production and syntrophic growth in Geobacter species. Frontiers in Microbiology, 6, 744. https://doi.org/10.3389/fmicb.2015.00744
  • Rowe, A. R., Rajeev, P., Jain, A., Pirbadian, S., Okamoto, A., Gralnick, J. A., El-Naggar, M. Y., & Nealson, K. H. (2018). Tracking electron uptake from a cathode into Shewanella cells: Implications for energy acquisition from solid-substrate electron donors. mBio, 9(1), e02203–17. https://doi.org/10.1128/mBio.02203-17
  • Rózsenberszki, T., Koók, L., Bakonyi, P., Nemestóthy, N., Logroño, W., Pérez, M., Urquizo, G., Recalde, C., Kurdi, R., & Sarkady, A. (2017). Municipal waste liquor treatment via bioelectrochemical and fermentation (H2 + CH4) processes: Assessment of various technological sequences. Chemosphere, 171, 692–701. https://doi.org/10.1016/j.chemosphere.2016.12.114
  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. a review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
  • Schroder, U., Harnisch, F., & Angenent, L. T. (2015). Microbial electrochemistry and technology: Terminology and classification. Energy & Environmental Science, 8(2), 513–519. https://doi.org/10.1039/C4EE03359K
  • Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M., & Gescher, J. (2009). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 75(24), 7789–7796. https://doi.org/10.1128/AEM.01834-09
  • Shelobolina, E. S., Vrionis, H. A., Findlay, R. H., & Lovley, D. R. (2008). Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 5), 1075–1078. https://doi.org/10.1099/ijs.0.65377-0
  • Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q., & Fredrickson, J. K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10), 651–662. https://doi.org/10.1038/nrmicro.2016.93
  • Shi, L., Richardson, D. J., Wang, Z., Kerisit, S. N., Rosso, K. M., Zachara, J. M., & Fredrickson, J. K. (2009). The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environmental Microbiology Reports, 1(4), 220–227. https://doi.org/10.1111/j.1758-2229.2009.00035.x
  • Shin, H. Y., Singhal, N., & Park, J. W. (2007). Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY. Chemosphere, 68(6), 1129–1134. https://doi.org/10.1016/j.chemosphere.2007.01.059
  • Shrestha, P. M., Rotaru, A. E., Summers, Z. M., Shrestha, M., Liu, F. H., & Lovley, D. R. (2013). Transcriptomic and genetic analysis of direct interspecies electron transfer. Applied and Environmental Microbiology, 79(7), 2397–2404. https://doi.org/10.1128/AEM.03837-12
  • Silveira, C. M., Castro, M. A., Dantas, J. M., Salgueiro, C., Murgida, D. H., & Todorovic, S. (2017). Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase. Physical Chemistry Chemical Physics: PCCP, 19(13), 8908–8918. https://doi.org/10.1039/c6cp08361g
  • Slate, A. J., Whitehead, K. A., Brownson, D. A. C., & Banks, C. E. (2019). Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60–81. https://doi.org/10.1016/j.rser.2018.09.044
  • Smith, J. A., Nevin, K. P., & Lovley, D. R. (2015). Syntrophic growth via quinone-mediated interspecies electron transfer. Frontiers in Microbiology, 6, 121. https://doi.org/10.3389/fmicb.2015.00121
  • Soussan, L., Riess, J., Erable, B., Delia, M.-L., & Bergel, A. (2013). Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochemistry Communications, 28, 27–30. https://doi.org/10.1016/j.elecom.2012.11.033
  • Strycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., Nevin, K. P., & Lovley, D. R. (2011). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry (Amsterdam, Netherlands), 80(2), 142–150. https://doi.org/10.1016/j.bioelechem.2010.07.005
  • Strycharz, S. M., Woodard, T. L., Johnson, J. P., Nevin, K. P., Sanford, R. A., Loffler, F. E., & Lovley, D. R. (2008). Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Applied and Environmental Microbiology, 74(19), 5943–5947. https://doi.org/10.1128/AEM.00961-08
  • Sturm, G., Richter, K., Doetsch, A., Heide, H., Louro, R. O., & Gescher, J. (2015). A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. The ISME Journal, 9(8), 1802–1811. https://doi.org/10.1038/ismej.2014.264
  • Subramanian, P., Pirbadian, S., El-Naggar, M. Y., & Jensen, G. J. (2018). Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proceedings of the National Academy of Sciences of the United States of America, 115(14), E3246–E3255. https://doi.org/10.1073/pnas.1718810115
  • Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science (New York, N.Y.), 330(6009), 1413–1415. https://doi.org/10.1126/science.1196526
  • Sun, D., Call, D., Wang, A., Cheng, S., & Logan, B. E. (2014). Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions. Environmental Microbiology Reports, 6(6), 723–729. https://doi.org/10.1111/1758-2229.12193
  • Sun, Y.-L., Tang, H.-Y., Ribbe, A., Duzhko, V., Woodard, T. L., Ward, J. E., Bai, Y., Nevin, K. P., Nonnenmann, S. S., Russell, T., Emrick, T., & Lovley, D. R. (2018). Conductive composite materials fabricated from microbially produced protein nanowires. Small, 14(44), 1802624. https://doi.org/10.1002/smll.201802624
  • Sung, Y., Fletcher, K. E., Ritalahti, K. M., Apkarian, R. P., Ramos-Hernández, N., Sanford, R. A., Mesbah, N. M., & Löffler, F. E. (2006). Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology, 72(4), 2775–2782. https://doi.org/10.1128/AEM.72.4.2775-2782.2006
  • Tan, Y., Adhikari, R. Y., Malvankar, N. S., Ward, J. E., Nevin, K. P., Woodard, T. L., Smith, J. A., Snoeyenbos-West, O. L., Franks, A. E., Tuominen, M. T., & Lovley, D. R. (2016). The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Frontiers in Microbiology, 7, 980. https://doi.org/10.3389/fmicb.2016.00980
  • Tan, Y., Adhikari, R. Y., Malvankar, N. S., Ward, J. E., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2017). Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens pields pili with exceptional conductivity. mBio, 8(1), e02203–16. https://doi.org/10.1128/mBio.02203-16
  • Tang, L., Feng, H., Tang, J., Zeng, G., Deng, Y., Wang, J., Liu, Y., & Zhou, Y. (2017). Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism. Water Research, 117, 175–186. https://doi.org/10.1016/j.watres.2017.03.059
  • Tang, L., Yang, G.-D., Zeng, G.-M., Cai, Y., Li, S.-S., Zhou, Y.-Y., Pang, Y., Liu, Y.-Y., Zhang, Y., & Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114–122. https://doi.org/10.1016/j.cej.2013.10.104
  • Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., & Lovley, D. R. (2002). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20(8), 821–825. https://doi.org/10.1038/nbt716
  • Thomas, A. W., Garner, L. E., Nevin, K. P., Woodard, T. L., Franks, A. E., Lovley, D. R., Sumner, J. J., Sund, C. J., & Bazan, G. C. (2013). A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella. Energy & Environmental Science, 6(6), 1761–1765. https://doi.org/10.1039/c3ee00071k
  • Tian, T., Qiao, S., Yu, C., & Zhou, J. (2019). Effects of nano-sized MnO2 on methanogenic propionate and butyrate degradation in anaerobic digestion. Journal of Hazardous Materials, 364, 11–18. https://doi.org/10.1016/j.jhazmat.2018.09.081
  • Tobler, N. B., Hofstetter, T. B., Straub, K. L., Fontana, D., & Schwarzenbach, R. P. (2007). Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions. Environmental Science & Technology, 41(22), 7765–7772. https://doi.org/10.1021/es071128k
  • Tong, H., Hu, M., Li, F. B., Liu, C. S., & Chen, M. J. (2014). Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biology and Biochemistry, 70, 142–150. https://doi.org/10.1016/j.soilbio.2013.12.012
  • Trapero, J. R., Horcajada, L., Linares, J. J., & Lobato, J. (2017). Is microbial fuel cell technology ready? an economic answer towards industrial commercialization. Applied Energy, 185, 698–707. https://doi.org/10.1016/j.apenergy.2016.10.109
  • Tremblay, P. L., Angenent, L. T., & Zhang, T. (2017). Extracellular electron uptake: Among autotrophs and mediated by surfaces. Trends in Biotechnology, 35(4), 360–371. https://doi.org/10.1016/j.tibtech.2016.10.004
  • Tremblay, P. L., & Zhang, T. (2015). Electrifying microbes for the production of chemicals. Frontiers in Microbiology, 6, 201. https://doi.org/10.3389/fmicb.2015.00201
  • Ueki, T., Nevin, K. P., Rotaru, A. E., Wang, L. Y., Ward, J. E., Woodard, T. L., & Lovley, D. R. (2018). Geobacter strains expressing poorly conductive pili reveal constraints on direct interspecies electron transfer mechanisms. mBio, 9(4), e01273–18. https://doi.org/10.1128/mBio.01273-18
  • Ueki, T., Nevin, K. P., Woodard, T. L., Aklujkar, M. A., Holmes, D. E., & Lovley, D. R. (2018). Construction of a Geobacter strain with exceptional growth on cathodes. Frontiers in Microbiology, 9, 1512. https://doi.org/10.3389/fmicb.2018.01512
  • Ueki, T., Walker, D. J. F., Tremblay, P.-L., Nevin, K. P., Ward, J. E., Woodard, T. L., Nonnenmann, S. S., & Lovley, D. R. (2019). Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synthetic Biology, 8(8), 1809–1817. https://doi.org/10.1021/acssynbio.9b00131
  • Vargas, M., Malvankar, N. S., Tremblay, P.-L., Leang, C., Smith, J. A., Patel, P., Snoeyenbos-West, O., Synoeyenbos-West, O., Nevin, K. P., & Lovley, D. R. (2013). Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio, 4(2), e00105–13. https://doi.org/10.1128/mBio.00210-13
  • Viggi, C. C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., & Aulenta, F. (2014). Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental Science & Technology, 48(13), 7536–7543. https://doi.org/10.1021/es5016789
  • Wagner, D. D., Hug, L. A., Hatt, J. K., Spitzmiller, M. R., Padilla-Crespo, E., Ritalahti, K. M., Edwards, E. A., Konstantinidis, K. T., & Löffler, F. E. (2012). Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. Bmc Genomics, 13, 200. https://doi.org/10.1186/1471-2164-13-200
  • Wang, D., Han, Y., Han, H., Li, K., & Xu, C. (2017). Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: A pilot scale study. Bioresource Technology, 238, 333–342. https://doi.org/10.1016/j.biortech.2017.04.056
  • Wang, F., Gu, Y., O'Brien, J. P., Yi, S. M., Yalcin, S. E., Srikanth, V., Shen, C., Vu, D., Ing, N. L., Hochbaum, A. I., Egelman, E. H., & Malvankar, N. S. (2019). Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell, 177(2), 361–369. https://doi.org/10.1016/j.cell.2019.03.029
  • Wang, H., Sun, Y., Wu, Y., Tu, W., Wu, S., Yuan, X., Zeng, G., Xu, Z. J., Li, S., & Chew, J. W. (2019). Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Applied Catalysis B: Environmental, 245, 290–301. https://doi.org/10.1016/j.apcatb.2018.12.051
  • Wang, H., Wu, Y., Xiao, T., Yuan, X., Zeng, G., Tu, W., Wu, S., Lee, H. Y., Tan, Y. Z., & Chew, J. W. (2018). Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Applied Catalysis B: Environmental, 233, 213–225. https://doi.org/10.1016/j.apcatb.2018.04.012
  • Wang, H., Wu, Y., Yuan, X. Z., Zeng, G. M., Zhou, J., Wang, X., & Chew, J. W. (2018). Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Advanced Materials, 30(12), 1704561. https://doi.org/10.1002/adma.201704561
  • Wang, J., Tang, L., Zeng, G., Deng, Y., Liu, Y., Wang, L., Zhou, Y., Guo, Z., Wang, J., & Zhang, C. (2017). Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Applied Catalysis B: Environmental, 209, 285–294. https://doi.org/10.1016/j.apcatb.2017.03.019
  • White, G. F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A. C., Marshall, M. J., Fredrickson, J. K., Zachara, J. M., Butt, J. N., Richardson, D. J., & Clarke, T. A. (2013). Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6346–6351. https://doi.org/10.1073/pnas.1220074110
  • Williams, K. H., Bargar, J. R., Lloyd, J. R., & Lovley, D. R. (2013). Bioremediation of uranium-contaminated groundwater: A systems approach to subsurface biogeochemistry. Current Opinion in Biotechnology, 24(3), 489–497. https://doi.org/10.1016/j.copbio.2012.10.008
  • Williams, K. H., Nevin, K. P., Franks, A., Englert, A., Long, P. E., & Lovley, D. R. (2010). Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environmental Science & Technology, 44(1), 47–54. https://doi.org/10.1021/es9017464
  • Wu, Y., Xiao, X., Xu, C., Cao, D., & Du, D. (2013). Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Applied Microbiology and Biotechnology, 97(16), 7439–7446. https://doi.org/10.1007/s00253-012-4476-3
  • Xiao, X., Xu, C. C., Wu, Y. M., Cai, P. J., Li, W. W., Du, D. L., & Yu, H. Q. (2012). Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 110, 86–90. https://doi.org/10.1016/j.biortech.2012.01.099
  • Xu, M., Guo, J., Zeng, G., Zhong, X., & Sun, G. (2006). Decolorization of anthraquinone dye by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 71(2), 246–251. https://doi.org/10.1007/s00253-005-0144-1
  • Xu, M., Wu, W.-M., Wu, L., He, Z., Van Nostrand, J. D., Deng, Y., Luo, J., Carley, J., Ginder-Vogel, M., Gentry, T. J., Gu, B., Watson, D., Jardine, P. M., Marsh, T. L., Tiedje, J. M., Hazen, T., Criddle, C. S., & Zhou, J. (2010). Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. The ISME Journal, 4(8), 1060–1070. https://doi.org/10.1038/ismej.2010.31
  • Yan, F. F., He, Y. R., Wu, C., Cheng, Y. Y., Li, W. W., & Yu, H. Q. (2014). Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1. Environmental Science & Technology Letters, 1(1), 128–132. https://doi.org/10.1021/ez4000093
  • Yang, G. Q., Huang, L. Y., You, L. X., Zhuang, L., & Zhou, S. G. (2017). Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms. Electrochemistry Communications, 77, 93–97. https://doi.org/10.1016/j.elecom.2017.03.004
  • Yang, H., Zhao, J. S., & Hawari, J. (2009). Effect of 2,4-dinitrotoluene on the anaerobic bacterial community in marine sediment. Journal of Applied Microbiology, 107(6), 1799–1808. https://doi.org/10.1111/j.1365-2672.2009.04366.x
  • Ye, J., Hu, A., Cheng, X., Lin, W., Liu, X., Zhou, S., & He, Z. (2018). Response of enhanced sludge methanogenesis by red mud to temperature: Spectroscopic and electrochemical elucidation of endogenous redox mediators. Water Research, 143, 240–249. https://doi.org/10.1016/j.watres.2018.06.061
  • Ye, J., Hu, A., Ren, G., Chen, M., Tang, J., Zhang, P., Zhou, S., & He, Z. (2018). Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Research, 134, 54–62. https://doi.org/10.1016/j.watres.2018.01.062
  • Ye, J., Hu, A., Ren, G., Zhou, T., Zhang, G., & Zhou, S. (2018). Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity. Bioresource Technology, 247, 131–137. https://doi.org/10.1016/j.biortech.2017.08.063
  • Yee, M. O., & Rotaru, A.-E. (2020). Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes. Scientific Reports, 10(1), 372. https://doi.org/10.1038/s41598-019-57206-z
  • Yee, M. O., Snoeyenbos-West, O. L., Thamdrup, B., Ottosen, L. D. M., & Rotaru, A. E. (2019). Extracellular electron uptake by two Methanosarcina species. Frontiers in Energy Research, 7, 29. https://doi.org/10.3389/fenrg.2019.00029
  • Yi, H. N., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., & Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors & Bioelectronics, 24(12), 3498–3503. https://doi.org/10.1016/j.bios.2009.05.004
  • Yu, B., Tian, J., & Feng, L. (2017). Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community. Journal of Hazardous Materials, 336, 110–118. https://doi.org/10.1016/j.jhazmat.2017.04.066
  • Yu, L. P., Yuan, Y., Tang, J., Wang, Y. Q., & Zhou, S. G. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5, 16221. https://doi.org/10.1038/srep16221
  • Yu, Y., Wu, Y., Cao, B., Gao, Y.-G., & Yan, X. (2015). Adjustable bidirectional extracellular electron transfer between Comamonas testosteroni biofilms and electrode via distinct electron mediators. Electrochemistry Communications, 59, 43–47. https://doi.org/10.1016/j.elecom.2015.07.007
  • Yue, L., Zhang, Y., Yang, Y., Xie, Q., & Zhao, Z. (2017). Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresource Technology, 234, 303–309. https://doi.org/10.1016/j.biortech.2017.03.054
  • Yun, J., Malvankar, N. S., Ueki, T., & Lovley, D. R. (2016). Functional environmental proteomics: Elucidating the role of a c-type cytochrome abundant during uranium bioremediation. The ISME Journal, 10(2), 310–320. https://doi.org/10.1038/ismej.2015.113
  • Zacharoff, L., Chan, C. H., & Bond, D. R. (2016). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry (Amsterdam, Netherlands), 107, 7–13. https://doi.org/10.1016/j.bioelechem.2015.08.003
  • Zhang, J. J., Wang, H., Yuan, X. Z., Zeng, G. M., Tu, W. G., & Wang, S. B. (2019). Tailored indium sulfide-based materials for solar-energy conversion and utilization. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 38, 1–26. https://doi.org/10.1016/j.jphotochemrev.2018.11.001
  • Zhang, S., Chang, J., Lin, C., Pan, Y., Cui, K., Zhang, X., Liang, P., & Huang, X. (2017). Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon. Bioresource Technology, 245(Pt A), 132–137. https://doi.org/10.1016/j.biortech.2017.08.111
  • Zhang, T., Gannon, S. M., Nevin, K. P., Franks, A. E., & Lovley, D. R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology, 12(4), 1011–1020. https://doi.org/10.1111/j.1462-2920.2009.02145.x
  • Zhang, T., Tremblay, P. L., Chaurasia, A. K., Smith, J. A., Bain, T. S., & Lovley, D. R. (2013). Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Applied and Environmental Microbiology, 79(24), 7800–7806. https://doi.org/10.1128/AEM.03134-13
  • Zhang, Y., Li, G., Wen, J., Xu, Y., Sun, J., Ning, X.-A., Lu, X., Wang, Y., Yang, Z., & Yuan, Y. (2018). Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Chemosphere, 196, 377–385. https://doi.org/10.1016/j.chemosphere.2018.01.009
  • Zhao, Z., Zhang, Y., Holmes, D. E., Dang, Y., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2016). Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresource Technology, 209, 148–156. https://doi.org/10.1016/j.biortech.2016.03.005
  • Zhao, Z., Zhang, Y., Li, Y., Dang, Y., Zhu, T., & Quan, X. (2017). Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chemical Engineering Journal, 313, 10–18. https://doi.org/10.1016/j.cej.2016.11.149
  • Zhou, S. G., Yang, G. Q., Lu, Q., & Wu, M. (2014). Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 11), 3786–3791. https://doi.org/10.1099/ijs.0.066662-0
  • Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., & Lovley, D. R. (2011). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. The ISME Journal, 5(2), 305–316. https://doi.org/10.1038/ismej.2010.117
  • Zou, L., Wu, X., Huang, Y. H., Ni, H. Y., & Long, Z. E. (2018). Promoting Shewanella bidirectional extracellular electron transfer for bioelectrocatalysis by electropolymerized riboflavin interface on carbon electrode. Frontiers in Microbiology, 9, 3293. https://doi.org/10.3389/fmicb.2018.03293

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.