1,920
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Hydrogels: Novel materials for contaminant removal in water—A review

, , , &
Pages 1970-2014 | Published online: 11 Jun 2020

References

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. doi: 10.1016/j.jare.2013.07.006
  • Ahmed, E. M., Aggor, F. S., Awad, A. M., & El-Aref, A. T. (2013). An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydrate Polymers, 91(2), 693–698. doi: 10.1016/j.carbpol.2012.08.056
  • Ali, A. E.-H., Shawky, H., El Rehim, H. A., & Hegazy, E. (2003). Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. European Polymer Journal, 39(12), 2337–2344. doi: 10.1016/S0014-3057(03)00150-2
  • Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces. B, Biointerfaces, 63(1), 116–121. doi: 10.1016/j.colsurfb.2007.11.013
  • Ansari, R., & Fahim, N. K. (2007). Application of polypyrrole coated on wood sawdust for removal of Cr(VI) ion from aqueous solutions. Reactive and Functional Polymers, 67(4), 367–374. doi: 10.1016/j.reactfunctpolym.2007.02.001
  • Bang, S., Patel, M., Lippincott, L., & Meng, X. (2005). Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 60(3), 389–397. doi: 10.1016/j.chemosphere.2004.12.008
  • Barakat, M., & Sahiner, N. (2008). Cationic hydrogels for toxic arsenate removal from aqueous environment. Journal of Environmental Management, 88(4), 955–961. doi: 10.1016/j.jenvman.2007.05.003
  • Barbucci, R., Pasqui, D., Giani, G., De Cagna, M., Fini, M., Giardino, R., & Atrei, A. (2011). A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains. potential applications as a targeted drug delivery system. Soft Matter, 7(12), 5558–5565. doi: 10.1039/c1sm05174a
  • Basci, N., Kocadagistan, E., & Kocadagistan, B. (2004). Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination, 164(2), 135–140. doi: 10.1016/S0011-9164(04)00172-9
  • Benguella, B., & Benaissa, H. (2002). Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Research, 36(10), 2463–2474. doi: 10.1016/S0043-1354(01)00459-6
  • Brunsen, A., Utech, S., Maskos, M., Knoll, W., & Jonas, U. (2012). Magnetic composite thin films of FexOy nanoparticles and photocrosslinked dextran hydrogels. Journal of Magnetism and Magnetic Materials, 324(8), 1488–1497. doi: 10.1016/j.jmmm.2011.11.039
  • Chaudhry, S. A., Khan, T. A., & Ali, I. (2017). Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 26(2), 553–563. doi: 10.1016/j.ejpe.2016.11.006
  • Chen, Y., Chen, L., Bai, H., & Li, L. (2013). Graphene oxide–chitosan composite hydrogels as broad–spectrum adsorbents for water purification. Journal of Materials Chemistry A, 1(6), 1992–2001. doi: 10.1039/C2TA00406B
  • Chen, Y., Zhang, Q., Chen, L., Bai, H., & Li, L. (2013). Basic aluminum sulfate@ graphene hydrogel composites: Preparation and application for removal of fluoride. Journal of Materials Chemistry A, 1(42), 13101–13110. doi: 10.1039/c3ta13285d
  • Choi, J.-W., & Lee, S.-H. (2019). Phosphorus recovery and recycling (pp. 483–496). Springer.
  • Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S., & Choong, S. T. (2005). Rice husk as a potentially low–cost biosorbent for heavy metal and dye removal: An overview. Desalination, 175(3), 305–316. doi: 10.1016/j.desal.2004.10.014
  • Chuang, C., Fan, M., Xu, M., Brown, R., Sung, S., Saha, B., & Huang, C. (2005). Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere, 61(4), 478–483. doi: 10.1016/j.chemosphere.2005.03.012
  • Chubar, N., Carvalho, J. R., & Correia, M. J. N. (2003). Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230(1–3), 57–65. doi: 10.1016/j.colsurfa.2003.09.014
  • Cong, H.-P., Ren, X.-C., Wang, P., & Yu, S.-H. (2012). Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 6(3), 2693–2703. doi: 10.1021/nn300082k
  • Croll, H., Soroush, A., Pillsbury, M. E., & Castrillón, S. R.-V. (2019). Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal. Separation and Purification Technology, 210, 973–980. doi: 10.1016/j.seppur.2018.08.070
  • Cumbal, L., & SenGupta, A. K. (2005). Arsenic removal using polymer–supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect. Environmental Science & Technology, 39(17), 6508–6515. doi: 10.1021/es050175e
  • Dax, D., Chávez, M. S., Xu, C., Willför, S., Mendonça, R. T., & Sánchez, J. (2014). Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydrate Polymers, 111, 797–805. doi: 10.1016/j.carbpol.2014.05.045
  • Dong, S., & Wang, Y. (2016). Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal. Water Research, 88, 852–860. doi: 10.1016/j.watres.2015.11.013
  • Gang, D. D., Deng, B., & Lin, L. (2010). As(III) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 182(1–3), 156–161. doi: 10.1016/j.jhazmat.2010.06.008
  • Gao, H., Sun, Y., Zhou, J., Xu, R., & Duan, H. (2013). Mussel–inspired synthesis of polydopamine–functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Applied Materials & Interfaces, 5(2), 425–432. doi: 10.1021/am302500v
  • Gao, Y., & Tang, Z. (2011). Design and application of inorganic nanoparticle superstructures: Current status and future challenges. Small (Weinheim an der Bergstrasse, Germany), 7(15), 2133–2146. doi: 10.1002/smll.201100474
  • Goyal, M., Rattan, V., Aggarwal, D., & Bansal, R. (2001). Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190(3), 229–238. doi: 10.1016/S0927-7757(01)00656-2
  • Gross, A., Shmueli, O., Ronen, Z., & Raveh, E. (2007). Recycled vertical flow constructed wetland (RVFCW)-a novel method of recycling greywater for irrigation in small communities and households. Chemosphere, 66(5), 916–923. doi: 10.1016/j.chemosphere.2006.06.006
  • Gündoğan, R., Acemioğlu, B., & Alma, M. H. (2004). Copper(II) adsorption from aqueous solution by herbaceous peat. Journal of Colloid and Interface Science, 269(2), 303–309. doi: 10.1016/S0021-9797(03)00762-8
  • Guo, Y., Qi, J., Yang, S., Yu, K., Wang, Z., & Xu, H. (2003). Adsorption of Cr(VI) on micro–and mesoporous rice husk–based active carbon. Materials Chemistry and Physics, 78(1), 132–137. doi: 10.1016/S0254-0584(02)00302-4
  • Gupta, V. K., & Ali, I. (2000). Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18(2), 131–140. doi: 10.1016/S1383-5866(99)00058-1
  • Haraguchi, K., Li, H.-J., Matsuda, K., Takehisa, T., & Elliott, E. (2005). Mechanism of forming organic/inorganic network structures during in–situ free–radical polymerization in PNIPA − clay nanocomposite hydrogels. Macromolecules, 38(8), 3482–3490. doi: 10.1021/ma047431c
  • He, J., Cui, A., Ni, F., Deng, S., Shen, F., & Yang, G. (2018). A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. Journal of Colloid and Interface Science, 531, 37–46. doi: 10.1016/j.jcis.2018.07.017
  • Hou, C., Zhang, Q., Li, Y., & Wang, H. (2012). P25–graphene hydrogels: Room–temperature synthesis and application for removal of methylene blue from aqueous solution. Journal of Hazardous Materials, 205-206, 229–235. doi: 10.1016/j.jhazmat.2011.12.071
  • Jayawardhana, Y., Kumarathilaka, P., Herath, I., & Vithanage, M. (2016). Environmental materials and waste (pp. 117–148). Elsevier.
  • Karabulut, S., Karabakan, A., Denizli, A., & Yürüm, Y. (2000). Batch removal of copper(II) and zinc(II) from aqueous solutions with lowl–rank Turkish coals. Separation and Purification Technology, 18(3), 177–184. doi: 10.1016/S1383-5866(99)00067-2
  • Karakoyun, N., Kubilay, S., Aktas, N., Turhan, O., Kasimoglu, M., Yilmaz, S., & Sahiner, N. (2011). Hydrogel–Biochar composites for effective organic contaminant removal from aqueous media. Desalination, 280(1–3), 319–325. doi: 10.1016/j.desal.2011.07.014
  • Kaşgöz, H. (2006). New sorbent hydrogels for removal of acidic dyes and metal ions from aqueous solutions. Polymer Bulletin, 56(6), 517–528. doi: 10.1007/s00289-006-0515-5
  • Kaşgöz, H., Özgümüş, S., & Orbay, M. (2003). Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer, 44(6), 1785–1793. doi: 10.1016/S0032-3861(03)00033-8
  • Li, F., Wang, X., Yuan, T., & Sun, R. (2016). A lignosulfonatel–modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal. Journal of Materials Chemistry A, 4(30), 11888–11896. doi: 10.1039/C6TA03779H
  • Li, J., Liu, C-y., & Liu, Y. (2012). Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4l–nitrophenol. Journal of Materials Chemistry, 22(17), 8426–8430. doi: 10.1039/c2jm16386a
  • Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T., Lu, T. J., & Xu, F. (2013). Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials, 23(6), 660–672. doi: 10.1002/adfm.201201708
  • Liang, H. W., Cao, X., Zhang, W. J., Lin, H. T., Zhou, F., Chen, L. F., & Yu, S. H. (2011). Robust and highly efficient freel–standing carbonaceous nanofiber membranes for water purification. Advanced Functional Materials, 21(20), 3851–3858. doi: 10.1002/adfm.201100983
  • Liu, H., Wang, C., Gao, Q., Liu, X., & Tong, Z. (2010). Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomaterialia, 6(1), 275–281. doi: 10.1016/j.actbio.2009.06.018
  • Liu, Q., Zhong, L.-B., Zhao, Q.-B., Frear, C., & Zheng, Y.-M. (2015). Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Applied Materials & Interfaces, 7(27), 14573–14583. doi: 10.1021/acsami.5b04598
  • Liu, Y., Su, M., Fu, Y., Zhao, P., Xia, M., Zhang, Y., He, B., & He, P. (2018). Corrosive environments tolerant, ductile and self–healing hydrogel for highly efficient oil/water separation. Chemical Engineering Journal, 354, 1185–1196. doi: 10.1016/j.cej.2018.08.071
  • Liu, Z., Wang, H., Liu, C., Jiang, Y., Yu, G., Mu, X., & Wang, X. (2012). Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chemical Communications (Cambridge, England), 48(59), 7350–7352. doi: 10.1039/c2cc17795a
  • Ma, J., Jiang, Z., Cao, J., & Yu, F. (2020). Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere, 242, 125188. doi: 10.1016/j.chemosphere.2019.125188
  • Ma, J., Shen, Y., Shen, C., Wen, Y., & Liu, W. (2014). Al–doping chitosan–Fe(III) hydrogel for the removal of fluoride from aqueous solutions. Chemical Engineering Journal, 248, 98–106. doi: 10.1016/j.cej.2014.02.098
  • Madhuranthakam, C. M. R., Alsubaei, A., & Elkamel, A. (2018). Performance of polyacrylamide and poly(acrylamide/sodium acrylate) hydrogel–coated mesh for separation of oil/water mixtures. Journal of Water Process Engineering, 26, 62–71. doi: 10.1016/j.jwpe.2018.09.009
  • Malik, P. K. (2003). Use of activated carbons prepared from sawdust and rice–husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dyes and Pigments, 56(3), 239–249. doi: 10.1016/S0143-7208(02)00159-6
  • McKay, G., Ramprasad, G., & Mowli, P. P. (1986). Equilibrium studies for the adsorption of dyestuffs from aqueous solutions by low–cost materials. Water, Air, and Soil Pollution, 29(3), 273–283. doi: 10.1007/BF00158759
  • Mohan, D., Pittman, C. U., Jr, Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gómez-Serrano, V., & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio–oil production. Journal of Colloid and Interface Science, 310(1), 57–73. doi: 10.1016/j.jcis.2007.01.020
  • Nivala, J., Kahl, S., Boog, J., van Afferden, M., Reemtsma, T., & Müller, R. A. (2019). Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. The Science of the Total Environment, 649, 1144–1156. doi: 10.1016/j.scitotenv.2018.08.339
  • Otero, M., Rozada, F., Calvo, L. F., Garcı́a, A. I., & Morán, A. (2003a). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes and Pigments, 57(1), 55–65. doi: 10.1016/S0143-7208(03)00005-6
  • Otero, M., Rozada, F., Calvo, L. F., Garcı́a, A. I., & Morán, A. (2003b). Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochemical Engineering Journal, 15(1), 59–68. doi: 10.1016/S1369-703X(02)00177-8
  • Ozay, O., Aktas, N., & Sahiner, N. (2011). Hydrogels as a potential chromatographic system: Absorption, speciation, and separation of chromium species from aqueous media. Separation Science and Technology, 46(9), 1450–1461. doi: 10.1080/01496395.2011.560918
  • Ozay, O., Ekici, S., Aktas, N., & Sahiner, N. (2011). P(4-vinyl pyridine) hydrogel use for the removal of UO(2)(2+) and Th(4+) from aqueous environments. Journal of Environmental Management, 92(12), 3121–3129. doi: 10.1016/j.jenvman.2011.08.004
  • Ozay, O., Ekici, S., Baran, Y., Aktas, N., & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. Water Research, 43(17), 4403–4411. doi: 10.1016/j.watres.2009.06.058
  • Ozay, O., Ekici, S., Baran, Y., Kubilay, S., Aktas, N., & Sahiner, N. (2010). Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 260(1–3), 57–64. doi: 10.1016/j.desal.2010.04.067
  • Pekel, N., Şahiner, N., Akkaş, P., & Güven, O. (2000). Uranyl ion adsorptivity of N-vinyl 2-pyrrolidone/acrylonitrile copolymeric hydrogels containing amidoxime groups. Polymer Bulletin, 44(5–6), 593–600. doi: 10.1007/s002890070083
  • Pooresmaeil, M., & Namazi, H. (2020). Hydrogels based on natural polymers (pp. 411–455). Elsevier.
  • Prum, C., Dolphen, R., & Thiravetyan, P. (2018). Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius-endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 213, 11–19. doi: 10.1016/j.jenvman.2018.02.060
  • Reddad, Z., Gerente, C., Andres, Y., & Le Cloirec, P. (2002). Adsorption of several metal ions onto a low–cost biosorbent: Kinetic and equilibrium studies. Environmental Science & Technology, 36(9), 2067–2073. doi: 10.1021/es0102989
  • Rivas, B. L., Perič, I. M., Muñoz, C., & Alvear, R. (2012). Poly (N–hydroxymethyl acrylamide–co–acrylic acid) and poly (N–hydroxymethyl acrylamide–co–acrylamidoglycolic acid): synthesis, characterization, and metal ion removal properties. Polymer Bulletin, 68(2), 391–403. doi: 10.1007/s00289-011-0551-7
  • Sahiner, N. (2008). Hydrogels of versatile size and architecture for effective environmental applications. Turkish Journal of Chemistry, 32(1), 113–123.
  • Sahiner, N., & Demirci, S. (2016). PEI-based hydrogels with different morphology and sizes: Bulkgel, microgel, and cryogel for catalytic energy and environmental catalytic applications. European Polymer Journal, 76, 156–169. doi: 10.1016/j.eurpolymj.2016.01.046
  • Sahiner, N., Karakoyun, N., Sahan, T., Butun, S., & Aktas, N. (2013). Reusable soft hydrogels for gold recovery from acidic environments. Separation Science and Technology, 48(5), 805–812. doi: 10.1080/01496395.2012.710704
  • Sahiner, N., Ozay, O., & Aktas, N. (2013). The removal of cyanide ions from aquatic environments by quaternizable p (4-vp) hydrogels of different dimensions. Water, Air, & Soil Pollution, 224(1), 1393. doi: 10.1007/s11270-012-1393-0
  • Sahiner, N., Ozay, O., Aktas, N., Blake, D. A., & John, V. T. (2011). Arsenic (V) removal with modifiable bulk and nano p (4-vinylpyridine)-based hydrogels: The effect of hydrogel sizes and quarternization agents. Desalination, 279(1–3), 344–352. doi: 10.1016/j.desal.2011.06.028
  • Sahiner, N., Pekel, N., Akkas, P., & Güven, O. (2000). Amidoximation and characterization of new complexing hydrogels prepared from N-vinyl 2-pyrrolidone/acrylonitrile systems. Journal of Macromolecular Science, Part A, 37(10), 1159–1172. doi: 10.1081/MA-100101146
  • Şahiner, N., Saraydin, D., Karadağ, E., & Güven, O. (1998). Swelling and dye adsorption properties of radiation induced N-vinyl-2-pyrrolidone/acrylonitrile hydrogels. Polymer Bulletin, 41(3), 371–378. doi: 10.1007/s002890050376
  • Sanyang, M., Ghani, W. A. W. A. K., Idris, A., & Ahmad, M. B. (2016). Hydrogel biochar composite for arsenic removal from wastewater. Desalination and Water Treatment, 57(8), 3674–3688. doi: 10.1080/19443994.2014.989412
  • Sapir, Y., Cohen, S., Friedman, G., & Polyak, B. (2012). The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials, 33(16), 4100–4109. doi: 10.1016/j.biomaterials.2012.02.037
  • Saraydin, D., Isikver, Y., & Sahiner, N. (2001). Uranyl ion binding properties of poly (hydroxamic acid) hydrogels. Polymer Bulletin, 47(1), 81–89. doi: 10.1007/s002890170024
  • Saul, J. M., & Williams, D. F. (2011). Handbook of polymer applications in medicine and medical devices (pp. 279–302). Elsevier.
  • Shafiq, Z., Ajmal, M., Kiran, S., Zulfiqar, S., Yasmeen, G., Iqbal, M., Farooqi, Z. H., Ahmad, Z., Sahiner, N., Mahmood, K., Ahmad, H. B., & Al-Harrasi, A. (2019). Facile synthesis of hydrogel-nickel nanoparticle composites and their applications in adsorption and catalysis. Pure and Applied Chemistry, 91(10), 1567–1582. doi: 10.1515/pac-2018-1201
  • Shawabkeh, R., Al-Harahsheh, A., & Al-Otoom, A. (2004). Copper and zinc sorption by treated oil shale ash. Separation and Purification Technology, 40(3), 251–257. doi: 10.1016/j.seppur.2004.03.006
  • Shin, M. K., Kim, S. I., Kim, S. J., Park, S. Y., Hyun, Y. H., Lee, Y., Lee, K. E., Han, S.-S., Jang, D.-P., Kim, Y.-B., Cho, Z.-H., So, I., & Spinks, G. M. (2008). Controlled magnetic nanofiber hydrogels by clustering ferritin. Langmuir : The ACS Journal of Surfaces and Colloids, 24(21), 12107–12111. doi: 10.1021/la802155a
  • Sikareepaisan, P., Ruktanonchai, U., & Supaphol, P. (2011). Preparation and characterization of asiaticoside–loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymers, 83(4), 1457–1469. doi: 10.1016/j.carbpol.2010.09.048
  • Singh, A., Sharma, P. K., Garg, V. K., & Garg, G. (2010). Hydrogels: A review. International Journal of Pharmaceutical Sciences Review and Research, 4(2), 97–105.
  • Singh, A., Singh, D., Panday, K., & Singh, V. (1988). Wollastonite as adsorbent for removal of Fe(II) from water. Journal of Chemical Technology & Biotechnology, 42(1), 39–49. doi: 10.1002/jctb.280420106
  • Song, X., Chen, F., & Liu, S. (2016). A lignin–containing hemicellulose–based hydrogel and its adsorption behavior. BioResources, 11(3), 6378–6392. doi: 10.15376/biores.11.3.6378-6392
  • Sun, X., Peng, B., Ji, Y., Chen, J., & Li, D. (2009). Chitosan (chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE Journal, 55(8), 2062–2069. doi: 10.1002/aic.11797
  • Sun, Y., Ma, Y., Fang, G., Li, S., & Fu, Y. (2016). Synthesis of acid hydrolysis lignin–g-poly–(acrylic acid) hydrogel superabsorbent composites and adsorption of lead ions. BioResources, 11(3), 5731–5742. doi: 10.15376/biores.11.3.5731-5742
  • Sun, Y., Zhou, T., Li, W., Yu, F., & Ma, J. (2020). Amino-functionalized alginate/graphene double-network hydrogel beads for emerging contaminant removal from aqueous solution. Chemosphere, 241, 125110. doi: 10.1016/j.chemosphere.2019.125110
  • Talaat, H., Sorour, M., Aboulnour, A., Shaalan, H., Ahmed, E. M., Awad, A., & Ahmed, M. (2008). Development of a multi–component fertilizing hydrogel with relevant techno–economic indicators. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(5), 764–770.
  • Tang, S. C., Wang, P., Yin, K., & Lo, I. M. (2010). Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water. Environmental Engineering Science, 27(11), 947–954. doi: 10.1089/ees.2010.0112
  • Tang, S. C., Yin, K., & Lo, I. M. (2011). Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil. Journal of Contaminant Hydrology, 125(1–4), 39–46. doi: 10.1016/j.jconhyd.2011.04.005
  • Tarley, C. R. T., Ferreira, S. L. C., & Arruda, M. A. Z. (2004). Use of modified rice husks as a natural solid adsorbent of trace metals: Characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 77(2), 163–175.
  • Thakur, S., Govender, P. P., Mamo, M. A., Tamulevicius, S., Mishra, Y. K., & Thakur, V. K. (2017). Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum, 146, 342–355. doi: 10.1016/j.vacuum.2017.08.011
  • Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: A review. International Journal of Biological Macromolecules, 72, 834–847. doi: 10.1016/j.ijbiomac.2014.09.044
  • Usman, A. R., Sallam, A. S., Al-Omran, A., El-Naggar, A. H., Alenazi, K. K., Nadeem, M., & Al-Wabel, M. I. (2013). Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science & Technology, 31(7), 625–640. doi: 10.1260/0263-6174.31.7.625
  • Wang, L., He, J., Zhu, L., Wang, Y., Feng, X., Chang, B., Karahan, H. E., & Chen, Y. (2019). Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. Journal of Colloid and Interface Science, 535, 149–158. doi: 10.1016/j.jcis.2018.09.084
  • Wang, P., & Lo, I. M. (2009). Synthesis of mesoporous magnetic gamma-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Research, 43(15), 3727–3734. doi: 10.1016/j.watres.2009.05.041
  • Wichterle, O., & Lim, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117–118. doi: 10.1038/185117a0
  • Wong, K., Lee, C., Low, K., & Haron, M. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50(1), 23–28. doi: 10.1016/S0045-6535(02)00598-2
  • Xu, Y., Wu, Q., Sun, Y., Bai, H., & Shi, G. (2010). Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano, 4(12), 7358–7362. doi: 10.1021/nn1027104
  • Yan, E., Cao, M., Ren, X., Jiang, J., An, Q., Zhang, Z., Gao, J., Yang, X., & Zhang, D. (2018). Synthesis of Fe3O4 nanoparticles functionalized polyvinyl alcohol/chitosan magnetic composite hydrogel as an efficient adsorbent for chromium(VI) removal. Journal of Physics and Chemistry of Solids, 121, 102–109. doi: 10.1016/j.jpcs.2018.05.028
  • Yan, W. L., & Bai, R. (2005). Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research, 39(4), 688–698. doi: 10.1016/j.watres.2004.11.007
  • Yan, Y.-Z., Zheng, W., Huang, D.-Z., Xiao, Z.-Y., Park, S. S., Ha, C.-S., & Zhai, S.-R. (2020). Hierarchical multi-porous carbonaceous beads prepared with nano-CaCO3 in-situ encapsulated hydrogels for efficient batch and column removal of antibiotics from water. Microporous and Mesoporous Materials, 293, 109830. doi: 10.1016/j.micromeso.2019.109830
  • Yao, Q., Xie, J., Liu, J., Kang, H., & Liu, Y. (2014). Adsorption of lead ions using a modified lignin hydrogel. Journal of Polymer Research, 21(6), 465. doi: 10.1007/s10965-014-0465-9
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102(10), 6273–6278. doi: 10.1016/j.biortech.2011.03.006
  • Yin, H., Kong, M., Gu, X., & Chen, H. (2017). Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. Journal of Cleaner Production, 166, 88–97. doi: 10.1016/j.jclepro.2017.08.026
  • Yin, W., Yang, X., Feng-Ling, S., Yi-Qiong, Y., & Xiao-Dong, Z. (2016). Ultrasonic–assisted synthesis of a superabsorbent composite hydrogel for the responsive and removal properties of Pb (II). Acta Physico–Chimica Sinica, 32(10), 2563–2573.
  • Yoon, K., Cho, D.-W., Tsang, D. C., Bolan, N., Rinklebe, J., & Song, H. (2017). Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresource Technology, 246, 69–75. doi: 10.1016/j.biortech.2017.07.020
  • Yu, C., Wang, F., Zhang, C., Fu, S., & Lucia, L. A. (2016). The synthesis and absorption dynamics of a lignin–based hydrogel for remediation of cationic dye–contaminated effluent. Reactive and Functional Polymers, 106, 137–142. doi: 10.1016/j.reactfunctpolym.2016.07.016
  • Zhang, L., Li, K., Xiao, W., Zheng, L., Xiao, Y., Fan, H., & Zhang, X. (2011). Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydrate Polymers, 84(1), 118–125. doi: 10.1016/j.carbpol.2010.11.009
  • Zhang, Z., Xiao, F., Guo, Y., Wang, S., & Liu, Y. (2013). One–pot self–assembled three–dimensional TiO2–graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Applied Materials & Interfaces, 5(6), 2227–2233. doi: 10.1021/am303299r
  • Zheng, W., Li, X-m., Wang, F., Yang, Q., Deng, P., & Zeng, G-m. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste. Journal of Hazardous Materials, 157(2–3), 490–495. doi: 10.1016/j.jhazmat.2008.01.029
  • Zhou, D., Zhang, L., & Guo, S. (2005). Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 39(16), 3755–3762. doi: 10.1016/j.watres.2005.06.033
  • Zohuriaan-Mehr, M. J., & Kabiri, K. (2008). Superabsorbent polymer materials: A review. Iranian Polymer Journal, 17(6), 451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.