3,631
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Toxicity in vitro reveals potential impacts of microplastics and nanoplastics on human health: A review

, , &
Pages 3863-3895 | Published online: 23 Jul 2021

References

  • Ahamed, M., Akhtar, M. J., Khan, M. A. M., Alrokayan, S. A., & Alhadlaq, H. A. (2019). Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere, 216, 823–831. https://doi.org/10.1016/j.chemosphere.2018.10.214
  • Ahmed, K. B. R., Nagy, A. M., Brown, R. P., Zhang, Q., Malghan, S. G., & Goering, P. L. (2017). Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicology in Vitro, 38, 179–192. https://doi.org/10.1016/j.tiv.2016.10.012
  • Akter, M., Sikder, M. T., Rahman, M. M., Ullah, A. K. M. A., Hossain, K. F. B., Banik, S., Hosokawa, T., Saito, T., & Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008
  • Almeida, M., Martins, M. A., Soares, A. M. V., Cuesta, A., & Oliveira, M. (2019). Polystyrene nanoplastics alter the cytotoxicity of human pharmaceuticals on marine fish cell lines. Environmental Toxicology and Pharmacology, 69, 57–65. https://doi.org/10.1016/j.etap.2019.03.019
  • Anderson, D., Dobrzyńska, M. M., & Basaran, N. (1997). Effect of various genotoxins and reproductive toxins in human lymphocytes and sperm in the comet assay. Teratogenesis, Carcinogenesis, and Mutagenesis, 17(1), 29–43. https://doi.org/10.1002/(SICI)1520-6866(1997)17:1<29::AID-TCM5>3.0.CO;2-H
  • Anderson, A. G., Grose, J., Pahl, S., Thompson, R. C., & Wyles, K. J. (2016). Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students. Marine Pollution Bulletin, 113(1–2), 454–460. https://doi.org/10.1016/j.marpolbul.2016.10.048
  • Andrews, D. A., & Low, P. S. (1999). Role of red blood cells in thrombosis. Current Opinion in Hematology, 6(2), 76–82. https://doi.org/10.1097/00062752-199903000-00004
  • Arvizo, R. R., Miranda, O. R., Thompson, M. A., Pabelick, C. M., Bhattacharya, R., Robertson, J. D., Rotello, V. M., Prakash, Y. S., & Mukherjee, P. (2010). Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 10(7), 2543–2548. https://doi.org/10.1021/nl101140t
  • Banerjee, A., Qi, J., Gogoi, R., Wong, J., & Mitragotri, S. (2016). Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release, 238, 176–185. https://doi.org/10.1016/j.jconrel.2016.07.051
  • Barbul, A., Singh, K., Horev-Azaria, L., Dasgupta, S., Auth, T., Korenstein, R., & Gompper, G. (2018). Nanoparticle-decorated erythrocytes reveal that particle size controls the extent of adsorption, cell shape, and cell deformability. ACS Applied Nano Materials, 1(8), 3785–3799. https://doi.org/10.1021/acsanm.8b00357
  • Barshtein, G., Arbell, D., & Yedgar, S. (2011). Hemolytic effect of polymeric nanoparticles: Role of albumin. IEEE Transactions on Nanobioscience, 10(4), 259–261. https://doi.org/10.1109/TNB.2011.2175745
  • Barshtein, G., Livshits, L., Shvartsman, L. D., Shlomai, N. O., Yedgar, S., & Arbell, D. (2016). Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells. Cell Biochemistry and Biophysics, 74(1), 19–27. https://doi.org/10.1007/s12013-015-0705-6
  • Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593–600. https://doi.org/10.1021/es302763x
  • Bexiga, M. G., Varela, J. A., Wang, F., Fenaroli, F., Salvati, A., Lynch, I., Simpson, J. C., & Dawson, K. A. (2011). Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology, 5(4), 557–567. https://doi.org/10.3109/17435390.2010.539713
  • Bhattacharjee, S., Ershov, D., Islam, M. A., Kampfer, A. M., Maslowska, K. A., van der Gucht, J., Alink, G. M., Marcelis, A. T. M., Zuilhof, H., & Rietjens, I. M. C. M. (2014). Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Advances, 4(37), 19321–19330. https://doi.org/10.1039/C3RA46869K
  • Boag, A. H., Colby, T. V., Fraire, A. E., Kuhn, C., Roggli, V. L., Travis, W. D., & Vallyathan, V. (1999). The pathology of interstitial lung disease in nylon flock workers. American Journal of Surgical Pathology, 23(12), 1539–1545. https://doi.org/10.1097/00000478-199912000-00012
  • Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P., & Rotello, V. M. (2000). Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 404(6779), 746–748. https://doi.org/10.1038/35008037
  • Bogdanova, A., Kaestner, L., Simionato, G., Wickrema, A., & Makhro, A. (2020). Heterogeneity of red blood cells: Causes and consequences. Frontiers in Physiology, 11, 392. https://doi.org/10.3389/fphys.2020.00392
  • Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environmental Science & Technology, 49(15), 8932–8947. https://doi.org/10.1021/acs.est.5b01090
  • Brennecke, D., Duarte, B., Paiva, F., Cacador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003
  • Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240
  • Busch, M., Bredeck, G., Kämpfer, A. A. M., & Schins, R. P. F. (2021). Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environmental Research, 193, 110536. https://doi.org/10.1016/j.envres.2020.110536
  • Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., & Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science and Pollution Research International, 24(32), 24928–24935. https://doi.org/10.1007/s11356-017-0116-x
  • Carr, K. E., Smyth, S. H., McCullough, M. T., Morris, J. F., & Moyes, S. M. (2012). Morphological aspects of interactions between microparticles and mammalian cells: Intestinal uptake and onward movement. Progress in Histochemistry and Cytochemistry, 46(4), 185–252. https://doi.org/10.1016/j.proghi.2011.11.001
  • Caruso, F. (2013). Engineering particles for therapeutic delivery: Prospects and challenges. Proceedings of the Royal Society of Victoria, 125(2), 77–81.
  • Chae, Y., & An, Y.-J. (2017). Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 124(2), 624–632. https://doi.org/10.1016/j.marpolbul.2017.01.070
  • Chambers, E., & Mitragotri, S. (2007). Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Experimental Biology and Medicine (Maywood, N.J.), 232(7), 958–966.
  • Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668. https://doi.org/10.1021/nl052396o
  • Chiu, H.-W., Xia, T., Lee, Y.-H., Chen, C.-W., Tsai, J.-C., & Wang, Y.-J. (2015). Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale, 7(2), 736–746. https://doi.org/10.1039/C4NR05509H
  • Coffin, S., Dudley, S., Taylor, A., Wolf, D., Wang, J., Lee, I., & Schlenk, D. (2018). Comparisons of analytical chemistry and biological activities of extracts from North Pacific gyre plastics with UV-treated and untreated plastics using in vitro and in vivo models. Environment International, 121(Pt 1), 942–954. https://doi.org/10.1016/j.envint.2018.10.012
  • Cortes, C., Domenech, J., Salazar, M., Pastor, S., Marcos, R., & Hernandez, A. (2020). Nanoplastics as a potential environmental health factor: Effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environmental Science: Nano, 7(1), 272–285. https://doi.org/10.1039/C9EN00523D
  • Cozar, A., Echevarria, F., Ignacio Gonzalez-Gordillo, J., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A. T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10239–10244. https://doi.org/10.1073/pnas.1314705111
  • da Costa Araújo, A. P., & Malafaia, G. (2021). Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish. Journal of Hazardous Materials, 401, 123263. https://doi.org/10.1016/j.jhazmat.2020.123263
  • Dausend, J., Musyanovych, A., Dass, M., Walther, P., Schrezenmeier, H., Landfester, K., & Mailänder, V. (2008). Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromolecular Bioscience, 8(12), 1135–1143. https://doi.org/10.1002/mabi.200800123
  • Davis, B. K., Wen, H., & Ting, J. P. Y. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annual Review of Immunology, 29(1), 707–735. https://doi.org/10.1146/annurev-immunol-031210-101405
  • de Sa, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? The Science of the Total Environment, 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207
  • Dekkers, S., Krystek, P., Peters, R. J. B., Lankveld, D. P. K., Bokkers, B. G. H., van Hoeven-Arentzen, P. H., Bouwmeester, H., & Oomen, A. G. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5(3), 393–405. https://doi.org/10.3109/17435390.2010.519836
  • Domenech, J., Hernandez, A., Rubio, L., Marcos, R., & Cortes, C. (2020). Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Archives of Toxicology, 94(9), 2997–3012. https://doi.org/10.1007/s00204-020-02805-3
  • Donahue, N. D., Acar, H., & Wilhelm, S. (2019). Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 143, 68–96. https://doi.org/10.1016/j.addr.2019.04.008
  • Dong, C.-D., Chen, C.-W., Chen, Y.-C., Chen, H.-H., Lee, J.-S., & Lin, C.-H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385, 121575. https://doi.org/10.1016/j.jhazmat.2019.121575
  • dos Santos, T., Varela, J., Lynch, I., Salvati, A., & Dawson, K. A. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLOS One, 6(9), e24438. https://doi.org/10.1371/journal.pone.0024438
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013
  • Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12(5), 592–599. https://doi.org/10.1071/EN14167
  • EFSA Scientific Committee. (2011). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 9(5), 2140. https://doi.org/10.2903/j.efsa.2011.2140
  • Ekkapongpisit, M., Giovia, A., Follo, C., Caputo, G., & Isidoro, C. (2012). Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: Effects of size and surface charge groups. International Journal of Nanomedicine, 7, 4147–4158. https://doi.org/10.2147/IJN.S33803
  • Erkekoglu, P., Rachidi, W., De Rosa, V., Giray, B., Favier, A., & Hincal, F. (2010a). Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radical Biology & Medicine, 49(4), 559–566. https://doi.org/10.1016/j.freeradbiomed.2010.04.038
  • Erkekoglu, P., Rachidi, W., Yuzugullu, O. G., Giray, B., Favier, A., Ozturk, M., & Hincal, F. (2010b). Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicology and Applied Pharmacology, 248(1), 52–62. https://doi.org/10.1016/j.taap.2010.07.016
  • Eschenbacher, W. L., Kreiss, K., Lougheed, M. D., Pransky, G. S., Day, B., & Castellan, R. M. (1999). Nylon flock-associated interstitial lung disease. American Journal of Respiratory and Critical Care Medicine, 159(6), 2003–2008. https://doi.org/10.1164/ajrccm.159.6.9808002
  • Fadeel, B., Pietroiusti, A., & Shvedova, A. A. (2017). Adverse effects of engineered nanomaterials: Exposure, toxicology, and impact on human health. Academic Press.
  • Fazlollahi, F., Angelow, S., Yacobi, N. R., Marchelletta, R., Yu, A. S. L., Hamm-Alvarez, S. F., Borok, Z., Kim, K.-J., & Crandall, E. D. (2011). Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine-Nanotechnology Biology and Medicine, 7(5), 588–594. https://doi.org/10.1016/j.nano.2011.01.008
  • Ferraro, D., Anselmi-Tamburini, U., Tredici, I. G., Ricci, V., & Sommi, P. (2016). Overestimation of nanoparticles-induced DNA damage determined by the comet assay. Nanotoxicology, 10(7), 861–870. https://doi.org/10.3109/17435390.2015.1130274
  • Fiorentino, I., Gualtieri, R., Barbato, V., Mollo, V., Braun, S., Angrisani, A., Turano, M., Furia, M., Netti, P. A., Guarnieri, D., Fusco, S., & Talevi, R. (2015). Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Experimental Cell Research, 330(2), 240–247. https://doi.org/10.1016/j.yexcr.2014.09.017
  • Firdessa, R., Oelschlaeger, T. A., & Moll, H. (2014). Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems. European Journal of Cell Biology, 93(8–9), 323–337. https://doi.org/10.1016/j.ejcb.2014.08.001
  • Forte, M., Iachetta, G., Tussellino, M., Carotenuto, R., Prisco, M., De Falco, M., Laforgia, V., & Valiante, S. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro, 31, 126–136. https://doi.org/10.1016/j.tiv.2015.11.006
  • Fred-Ahmadu, O. H., Bhagwat, G., Oluyoye, I., Benson, N. U., Ayejuyo, O. O., & Palanisami, T. (2020). Interaction of chemical contaminants with microplastics: Principles and perspectives. The Science of the Total Environment, 706, 135978. https://doi.org/10.1016/j.scitotenv.2019.135978
  • Fuchs, A.-K., Syrovets, T., Haas, K. A., Loos, C., Musyanovych, A., Mailänder, V., Landfester, K., & Simmet, T. (2016). Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 85, 78–87. https://doi.org/10.1016/j.biomaterials.2016.01.064
  • Furumoto, K., Ogawara, K., Yoshida, M., Takakura, Y., Hashida, M., Higaki, K., & Kimura, T. (2001). Biliary excretion of polystyrene microspheres depends on the type of receptor-mediated uptake in rat liver. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1526(2), 221–226. https://doi.org/10.1016/S0304-4165(01)00132-5
  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., Semmler, M., Hof, V. I., Heyder, J., & Gehr, P. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 113(11), 1555–1560. https://doi.org/10.1289/ehp.8006
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Gouin, T., Roche, N., Lohmann, R., & Hodges, G. (2011). A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environmental Science & Technology, 45(4), 1466–1472. https://doi.org/10.1021/es1032025
  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., & Xing, B. (2012). Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science & Technology, 46(13), 7252–7259. https://doi.org/10.1021/es301386z
  • Hartmann, N. I. B., Nolte, T., Sørensen, M. A., Jensen, P. R., & Baun, A. (2015). Aquatic ecotoxicity testing of nanoplastics: Lessons learned from nanoecotoxicology. ASLO Aquatic Sciences Meeting 2015.
  • He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657–3666. https://doi.org/10.1016/j.biomaterials.2010.01.065
  • He, Y., Li, J., Chen, J., Miao, X., Li, G., He, Q., Xu, H., Li, H., & Wei, Y. (2020). Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. The Science of the Total Environment, 723, 138180–138180. https://doi.org/10.1016/j.scitotenv.2020.138180
  • Hesler, M., Aengenheister, L., Ellinger, B., Drexel, R., Straskraba, S., Jost, C., Wagner, S., Meier, F., von Briesen, H., Büchel, C., Wick, P., Buerki-Thurnherr, T., & Kohl, Y. (2019). Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicology in Vitro, 61, 104610. https://doi.org/10.1016/j.tiv.2019.104610
  • Hou, J., Yin, W., Li, P., Hu, C., Xu, T., Cheng, J., Li, T., Wang, L., Yu, Z., & Yuan, J. (2020). Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function. Journal of Hazardous Materials, 386, 121663. https://doi.org/10.1016/j.jhazmat.2019.121663
  • Huang, W., Yin, H., Yang, Y., Jin, L., Lu, G., & Dang, Z. (2021). Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. The Science of the Total Environment, 778, 146264–146264. https://doi.org/10.1016/j.scitotenv.2021.146264
  • Hwang, J., Choi, D., Han, S., Choi, J., & Hong, J. (2019). An assessment of the toxicity of polypropylene microplastics in human derived cells. The Science of the Total Environment, 684, 657–669. https://doi.org/10.1016/j.scitotenv.2019.05.071
  • Inkielewicz-Stepniak, I., Tajber, L., Behan, G., Zhang, H., Radomski, M. W., Medina, C., & Santos-Martinez, M. J. (2018). The role of mucin in the toxicological impact of polystyrene nanoparticles. Materials, 11(5), 724. https://doi.org/10.3390/ma11050724
  • Jiang, X., Dausend, J., Hafner, M., Musyanovych, A., Röcker, C., Landfester, K., Mailänder, V., & Nienhaus, G. U. (2010a). Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Biomacromolecules, 11(3), 748–753. https://doi.org/10.1021/bm901348z
  • Jiang, X., Weise, S., Hafner, M., Röcker, C., Zhang, F., Parak, W. J., & Nienhaus, G. U. (2010b). Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. Journal of the Royal Society Interface, 7(suppl_1), S5–S13. https://doi.org/10.1098/rsif.2009.0272.focus
  • Johnston, H. J., Semmler-Behnke, M., Brown, D. M., Kreyling, W., Tran, L., & Stone, V. (2010). Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicology and Applied Pharmacology, 242(1), 66–78. https://doi.org/10.1016/j.taap.2009.09.015
  • Kang, T., Park, C., & Lee, B.-J. (2016). Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines. Archives of Pharmacal Research, 39(12), 1663–1670. https://doi.org/10.1007/s12272-016-0847-0
  • Kawata, K., Osawa, M., & Okabe, S. (2009). In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environmental Science & Technology, 43(15), 6046–6051. https://doi.org/10.1021/es900754q
  • Kim, H., Nam, K., Oh, S., Son, S., Jeon, D., Gye, M. C., & Shin, I. (2019). Toxicological assessment of phthalates and their alternatives using human keratinocytes. Environmental Research, 175, 316–322. https://doi.org/10.1016/j.envres.2019.05.007
  • Kleinsasser, N. H., Kastenbauer, E. R., Weissacher, H., Muenzenrieder, R. K., & Harréus, U. A. (2000). Phthalates demonstrate genotoxicity on human mucosa of the upper aerodigestive tract. Environmental and Molecular Mutagenesis, 35(1), 9–12. https://doi.org/10.1002/(SICI)1098-2280(2000)35:1<9::AID-EM2>3.0.CO;2-1
  • Kleinsasser, N. H., Wallner, B. C., Kastenbauer, E. R., Weissacher, H., & Harreus, U. A. (2001). Genotoxicity of di-butyl-phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells. Teratogenesis, Carcinogenesis, and Mutagenesis, 21(3), 189–196. https://doi.org/10.1002/tcm.1007
  • Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315–3326. https://doi.org/10.1021/acs.est.5b06069
  • Koelmans, A. A., Besseling, E., Wegner, A., & Foekema, E. M. (2013). Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environmental Science & Technology, 47(14), 7812–7820. https://doi.org/10.1021/es401169n
  • Kroemer, G., & Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nature Reviews. Cancer, 5(11), 886–897. https://doi.org/10.1038/nrc1738
  • Kulkarni, S. A., & Feng, S.-S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical Research, 30(10), 2512–2522. https://doi.org/10.1007/s11095-012-0958-3
  • Lai, S. K., Hida, K., Man, S. T., Chen, C., Machamer, C., Schroer, T. A., & Hanes, J. (2007). Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 28(18), 2876–2884. https://doi.org/10.1016/j.biomaterials.2007.02.021
  • Lehner, R., Weder, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2019). Emergence of nanoplastic in the environment and possible impact on human health. Environmental Science & Technology, 53(4), 1748–1765. https://doi.org/10.1021/acs.est.8b05512
  • Lehner, R., Wohlleben, W., Septiadi, D., Landsiedel, R., Petri-Fink, A., & Rothen-Rutishauser, B. (2020). A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Archives of Toxicology, 94(7), 2463–2479. https://doi.org/10.1007/s00204-020-02750-1
  • Li, X., Sun, X., & Carmeliet, P. (2019). Hallmarks of endothelial cell metabolism in health and disease. Cell Metabolism, 30(3), 414–433. https://doi.org/10.1016/j.cmet.2019.08.011
  • Li, Z., Yi, X., Zhou, H., Chi, T., Li, W., & Yang, K. (2020). Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Environmental Pollution, 257, 113604. https://doi.org/10.1016/j.envpol.2019.113604
  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution (Barking, Essex: 1987), 237, 460–467. https://doi.org/10.1016/j.envpol.2018.02.050
  • Liang, M., Lin, I. C., Whittaker, M. R., Minchin, R. F., Monteiro, M. J., & Toth, I. (2010). Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano, 4(1), 403–413. https://doi.org/10.1021/nn9011237
  • Lim, S. L., Ng, C. T., Zou, L., Lu, Y., Chen, J., Bay, B. H., Shen, H.-M., & Ong, C. N. (2019). Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology, 13(8), 1117–1132. https://doi.org/10.1080/17435390.2019.1640913
  • Liu, Z., Cai, M., Wu, D., Yu, P., Jiao, Y., Jiang, Q., & Zhao, Y. (2020). Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations. Environmental Pollution (Barking, Essex: 1987), 256, 113506. https://doi.org/10.1016/j.envpol.2019.113506
  • Liu, S., Wu, X., Gu, W., Yu, J., & Wu, B. (2020). Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. Chemosphere, 256, 127204. https://doi.org/10.1016/j.chemosphere.2020.127204
  • Loos, C., Syrovets, T., Musyanovych, A., Mailänder, V., Landfester, K., & Simmet, T. (2014). Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials, 35(6), 1944–1953. https://doi.org/10.1016/j.biomaterials.2013.11.056
  • Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., Nienhaus, G. U., Musyanovych, A., Mailänder, V., Landfester, K., & Simmet, T. (2011a). Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 5(3), 1657–1669. https://doi.org/10.1021/nn2000756
  • Lunov, O., Syrovets, T., Loos, C., Nienhaus, G. U., Mailänder, V., Landfester, K., Rouis, M., & Simmet, T. (2011b). Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano, 5(12), 9648–9657. https://doi.org/10.1021/nn203596e
  • Magri, D., Sanchez-Moreno, P., Caputo, G., Gatto, F., Veronesi, M., Bardi, G., Catelani, T., Guarnieri, D., Athanassiou, A., Pompa, P. P., & Fragouli, D. (2018). Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: Characterization and toxicology assessment. ACS Nano, 12(8), 7690–7700. https://doi.org/10.1021/acsnano.8b01331
  • Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P., & Shuler, M. L. (2012). Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 7(4), 264–U1500. https://doi.org/10.1038/nnano.2012.3
  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35(2), 318–324. https://doi.org/10.1021/es0010498
  • Meeker, J. D., Sathyanarayana, S., & Swan, S. H. (2009). Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philosophical Transactions of the Royal Society of London, Series B, 364(1526), 2097–2113. https://doi.org/10.1098/rstb.2008.0268
  • Meindl, C., Kueznik, T., Bösch, M., Roblegg, E., & Fröhlich, E. (2015). Intracellular calcium levels as screening tool for nanoparticle toxicity. Journal of Applied Toxicology: JAT, 35(10), 1150–1159. https://doi.org/10.1002/jat.3160
  • Mendoza, L. M. R., & Jones, P. R. (2015). Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environmental Chemistry, 12(5), 611–617. https://doi.org/10.1071/EN14236
  • Merhi, M., Dombu, C. Y., Brient, A., Chang, J., Platel, A., Le Curieux, F., Marzin, D., Nesslany, F., & Betbeder, D. (2012). Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. International Journal of Pharmaceutics, 423(1), 37–44. https://doi.org/10.1016/j.ijpharm.2011.07.014
  • MohanKumar, S. M. J., Campbell, A., Block, M., & Veronesi, B. (2008). Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology, 29(3), 479–488. https://doi.org/10.1016/j.neuro.2007.12.004
  • Monti, D. M., Guarnieri, D., Napolitano, G., Piccoli, R., Netti, P., Fusco, S., & Arciello, A. (2015). Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. Journal of Biotechnology, 193, 3–10. https://doi.org/10.1016/j.jbiotec.2014.11.004
  • Muittari, A., & Veneskoski, T. (1978). Natural and synthetic fibers as causes of asthma and rhinitis. Annals of Allergy, 41(1), 48–50.
  • Murali, K., Kenesei, K., Li, Y., Demeter, K., Környei, Z., & Madarász, E. (2015). Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: In vitro studies on neural tissue cells. Nanoscale, 7(9), 4199–4210. https://doi.org/10.1039/c4nr06849a
  • Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2013). Unique properties of nanomaterials. In B. S. Murty, P. Shankar, B. Raj, B. B. Rath, & J. Murday (Eds.), Textbook of nanoscience and nanotechnology (pp. 29–65). Springer. https://doi.org/10.1007/978-3-642-28030-6_2
  • Ogata, Y., Takada, H., Mizukawa, K., Hirai, H., Iwasa, S., Endo, S., Mato, Y., Saha, M., Okuda, K., Nakashima, A., Murakami, M., Zurcher, N., Booyatumanondo, R., Zakaria, M. P., Dung, L. Q., Gordon, M., Miguez, C., Suzuki, S., Moore, C., … Thompson, R. C. (2009). International Pellet Watch: Global monitoring of persistent organic pollutants (POPs) in coastal Waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Marine Pollution Bulletin, 58(10), 1437–1446. https://doi.org/10.1016/j.marpolbul.2009.06.014
  • Osmond, M. J., & McCall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15–41. https://doi.org/10.3109/17435390903502028
  • Paget, V., Dekali, S., Kortulewski, T., Grall, R., Gamez, C., Blazy, K., Aguerre-Chariol, O., Chevillard, S., Braun, A., Rat, P., & Lacroix, G. (2015). Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLOS One, 10(4), e0123297. https://doi.org/10.1371/journal.pone.0123297
  • Pant, A. B., Agarwal, A. K., Sharma, V. P., & Seth, P. K. (2001). In vitro cytotoxicity evaluation of plastic biomedical devices. Human & Experimental Toxicology, 20(8), 412–417. https://doi.org/10.1191/096032701682692919
  • Parkin, J., & Cohen, B. (2001). An overview of the immune system. The Lancet, 357(9270), 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7
  • Poma, A., Vecchiotti, G., Colafarina, S., Zarivi, O., Aloisi, M., Arrizza, L., Chichiricco, G., & Di Carlo, P. (2019). In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. Nanomaterials, 9(9), 1299. https://doi.org/10.3390/nano9091299
  • Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
  • Prietl, B., Meindl, C., Roblegg, E., Pieber, T. R., Lanzer, G., & Fröhlich, E. (2014). Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biology and Toxicology, 30(1), 1–16. https://doi.org/10.1007/s10565-013-9265-y
  • Qian, J., Wang, Y., Gao, X., Zhan, Q., Xu, Z., & He, S. (2010). Carboxyl-functionalized and bio-conjugated silica-coated quantum dots as targeting probes for cell imaging. Journal of Nanoscience and Nanotechnology, 10(3), 1668–1675. https://doi.org/10.1166/jnn.2010.2043
  • Qu, M., & Wang, D. (2020). Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans. The Science of the Total Environment, 703, 134817. https://doi.org/10.1016/j.scitotenv.2019.134817
  • Radlinska, E. Z., Gulik-Krzywicki, T., Lafuma, F., Langevin, D., Urbach, W., Williams, C. E., & Ober, R. (1995). Polymer confinement in surfactant bilayers of a lyotropic lamellar phase. Physical Review Letters, 74(21), 4237–4240. https://doi.org/10.1103/PhysRevLett.74.4237
  • Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T., & Radomski, M. W. (2005). Nanoparticle-induced platelet aggregation and vascular thrombosis. British Journal of Pharmacology, 146(6), 882–893. https://doi.org/10.1038/sj.bjp.0706386
  • Rejman, J., Oberle, V., Zuhorn, I. S., & Hoekstra, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1), 159–169. https://doi.org/10.1042/bj20031253
  • Revel, M., Châtel, A., & Mouneyrac, C. (2018). Micro (nano) plastics: A threat to human health? Current Opinion in Environmental Science & Health, 1, 17–23. https://doi.org/10.1016/j.coesh.2017.10.003
  • Rhee, G. S., Kim, S. H., Kim, S. S., Sohn, K. H., Kwack, S. J., Kim, B. H., & Park, K. L. (2002). Comparison of embryotoxicity of ESBO and phthalate esters using an in vitro battery system. Toxicology in Vitro, 16(4), 443–448. https://doi.org/10.1016/s0887-2333(02)00026-7
  • Rios Mendoza, L. M., Karapanagioti, H., & Álvarez, N. R. (2018). Micro(nanoplastics) in the marine environment: Current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47–51. https://doi.org/10.1016/j.coesh.2017.11.004
  • Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S., & Thompson, R. C. (2013a). Policy: Classify plastic waste as hazardous. Nature, 494(7436), 169–171. https://doi.org/10.1038/494169a
  • Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013b). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3(1), 3263. https://doi.org/10.1038/srep03263
  • Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Möhwald, H., Eychmüller, A., & Weller, H. (2000). Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Advanced Materials, 12(5), 333–337. https://doi.org/10.1002/(SICI)1521-4095(200003)12:5<333::AID-ADMA333>3.0.CO;2-X
  • Rossi, G., Barnoud, J., & Monticelli, L. (2014). Polystyrene nanoparticles perturb lipid membranes. The Journal of Physical Chemistry Letters, 5(1), 241–246. https://doi.org/10.1021/jz402234c
  • Rothen-Rutishauser, B. M., Schürch, S., Haenni, B., Kapp, N., & Gehr, P. (2006). Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environmental Science & Technology, 40(14), 4353–4359. https://doi.org/10.1021/es0522635
  • Rubio, L., Marcos, R., & Hernandez, A. (2020). Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. Journal of Toxicology and Environmental Health, Part B, 23(2), 51–68. https://doi.org/10.1080/10937404.2019.1700598
  • Ruenraroengsak, P., Novak, P., Berhanu, D., Thorley, A. J., Valsami-Jones, E., Gorelik, J., Korchev, Y. E., & Tetley, T. D. (2012). Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology, 6(1), 94–108. https://doi.org/10.3109/17435390.2011.558643
  • Ruenraroengsak, P., & Tetley, T. D. (2015). Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: Robust response of alveolar type 1 epithelial cells. Particle and Fibre Toxicology, 12(1), 19. https://doi.org/10.1186/s12989-015-0091-7
  • Rummel, C. D., Escher, B. I., Sandblom, O., Plassmann, M. M., Arp, H. P. H., MacLeod, M., & Jahnke, A. (2019). Effects of leachates from UV-weathered microplastic in cell-based bioassays. Environmental Science & Technology, 53(15), 9214–9223. https://doi.org/10.1021/acs.est.9b02400
  • Schirinzi, G. F., Perez-Pomeda, I., Sanchis, J., Rossini, C., Farre, M., & Barcelo, D. (2017). Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research, 159, 579–587. https://doi.org/10.1016/j.envres.2017.08.043
  • Schulz, M., Olubummo, A., & Binder, W. H. (2012). Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes. Soft Matter., 8(18), 4849–4864. https://doi.org/10.1039/c2sm06999g
  • Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 171(7), 453–457. https://doi.org/10.7326/M19-0618
  • Scopetani, C., Cincinelli, A., Martellini, T., Lombardini, E., Ciofini, A., Fortunati, A., Pasquali, V., Ciattini, S., & Ugolini, A. (2018). Ingested microplastic as a two-way transporter for PBDEs in Talitrus saltator. Environmental Research, 167, 411–417. https://doi.org/10.1016/j.envres.2018.07.030
  • Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., & Ren, X. (2019). Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution (Barking, Essex: 1987), 252(Pt A), 511–521. https://doi.org/10.1016/j.envpol.2019.05.102
  • Shi, Q., Tang, J., Wang, L., Liu, R., & Giesy, J. P. (2021). Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism. Ecotoxicology and Environmental Safety, 213, 112041. https://doi.org/10.1016/j.ecoenv.2021.112041
  • Smith, P. J., Giroud, M., Wiggins, H. L., Gower, F., Thorley, J. A., Stolpe, B., Mazzolini, J., Dyson, R. J., & Rappoport, J. Z. (2012). Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. International Journal of Nanomedicine, 7, 2045–2055. https://doi.org/10.2147/IJN.S29334
  • Smyth, E., Solomon, A., Vydyanath, A., Luther, P. K., Pitchford, S., Tetley, T. D., & Emerson, M. (2015). Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles. Nanotoxicology, 9(3), 356–364. https://doi.org/10.3109/17435390.2014.933902
  • Song, W., Popp, L., Yang, J., Kumar, A., Gangoli, V. S., & Segatori, L. (2015). The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. Journal of Nanobiotechnology, 13, 87. https://doi.org/10.1186/s12951-015-0149-6
  • Stock, V., Böhmert, L., Lisicki, E., Block, R., Cara-Carmona, J., Pack, L. K., Selb, R., Lichtenstein, D., Voss, L., Henderson, C. J., Zabinsky, E., Sieg, H., Braeuning, A., & Lampen, A. (2019). Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Archives of Toxicology, 93(7), 1817–1833. https://doi.org/10.1007/s00204-019-02478-7
  • Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Bjorn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Pham Hung, V., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., … Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London, Series B, 364(1526), 2027–2045. https://doi.org/10.1098/rstb.2008.0284
  • Thubagere, A., & Reinhard, B. M. (2010). Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: Insights from a human intestinal epithelium in vitro model. ACS Nano, 4(7), 3611–3622. https://doi.org/10.1021/nn100389a
  • Varela, J. A., Bexiga, M. G., Åberg, C., Simpson, J. C., & Dawson, K. A. (2012). Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. Journal of Nanobiotechnology, 10(1), 39. https://doi.org/10.1186/1477-3155-10-39
  • Velev, O. D., & Kaler, E. W. (1999). In situ assembly of colloidal particles into miniaturized biosensors. Langmuir, 15(11), 3693–3698. https://doi.org/10.1021/la981729c
  • Walczak, A. P., Kramer, E., Hendriksen, P. J. M., Tromp, P., Helsper, J. P. F. G., van der Zande, M., Rietjens, I. M. C. M., & Bouwmeester, H. (2015). Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology, 9(4), 453–461. https://doi.org/10.3109/17435390.2014.944599
  • Wang, F., Bexiga, M. G., Anguissola, S., Boya, P., Simpson, J. C., Salvati, A., & Dawson, K. A. (2013). Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale, 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c
  • Wang, F., Salvati, A., & Boya, P. (2018). Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biology, 8(4), 170271. https://doi.org/10.1098/rsob.170271
  • Wang, Q., Bai, J., Ning, B., Fan, L., Sun, T., Fang, Y., Wu, J., Li, S., Duan, C., Zhang, Y., Liang, J., & Gao, Z. (2020). Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells. Chemosphere, 254, 126788. https://doi.org/10.1016/j.chemosphere.2020.126788
  • Wang, T., Bai, J., Jiang, X., & Nienhaus, G. U. (2012). Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano, 6(2), 1251–1259. https://doi.org/10.1021/nn203892h
  • Wang, W., & Wang, J. (2018). Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicology and Environmental Safety, 147, 648–655. https://doi.org/10.1016/j.ecoenv.2017.09.029
  • Wang, Z., Chen, M., Zhang, L., Wang, K., Yu, X., Zheng, Z., & Zheng, R. (2018). Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China. The Science of the Total Environment, 628–629, 1617–1626. https://doi.org/10.1016/j.scitotenv.2018.02.146
  • Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423
  • Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031
  • Wu, B., Wu, X., Liu, S., Wang, Z., & Chen, L. (2019). Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere, 221, 333–341. https://doi.org/10.1016/j.chemosphere.2019.01.056
  • Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B. (2019). Environmental occurrences, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612. https://doi.org/10.1016/j.ecoenv.2019.109612
  • Wu, S., Wu, M., Tian, D., Qiu, L., & Li, T. (2020). Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells. Environmental Toxicology, 35(4), 495–506. https://doi.org/10.1002/tox.22885
  • Xu, H. Y., Dinsdale, D., Nemery, B., & Hoet, P. H. M. (2003). Role of residual additives in the cytotoxicity and cytokine release caused by polyvinyl chloride particles in pulmonary cell cultures. Toxicological Sciences, 72(1), 92–102. https://doi.org/10.1093/toxsci/kfg003
  • Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., Li, Y., & Zhang, H. (2019a). Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. The Science of the Total Environment, 694, 133794. https://doi.org/10.1016/j.scitotenv.2019.133794
  • Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., Li, Y., & Zhang, H. (2019b). Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Science of the Total Environment, 694, 133794. https://doi.org/10.1016/j.scitotenv.2019.133794
  • Yameen, B., Choi, W. I., Vilos, C., Swami, A., Shi, J., & Farokhzad, O. C. (2014). Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release, 190, 485–499. https://doi.org/10.1016/j.jconrel.2014.06.038
  • Yang, Y., Shao, H., Wu, Q., & Wang, D. (2020). Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. Environmental Pollution, 256, 113439. https://doi.org/10.1016/j.envpol.2019.113439
  • Yin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380, 120861. https://doi.org/10.1016/j.jhazmat.2019.120861
  • Zauner, W., Farrow, N. A., & Haines, A. M. R. (2001). In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. Journal of Controlled Release, 71(1), 39–51. https://doi.org/10.1016/S0168-3659(00)00358-8
  • Zhang, M., Li, J., Xing, G., He, R., Li, W., Song, Y., & Guo, H. (2011). Variation in the internalization of differently sized nanoparticles induces different DNA-damaging effects on a macrophage cell line. Archives of Toxicology, 85(12), 1575–1588. https://doi.org/10.1007/s00204-011-0725-y
  • Zhang, R., Silic, M. R., Schaber, A., Wasel, O., Freeman, J. L., & Sepúlveda, M. S. (2020). Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. The Science of the Total Environment, 724, 138065. https://doi.org/10.1016/j.scitotenv.2020.138065
  • Zhao, Y., Bao, Z., Wan, Z., Fu, Z., & Jin, Y. (2020). Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. The Science of the Total Environment, 710, 136279. https://doi.org/10.1016/j.scitotenv.2019.136279
  • Zolnik, B. S., Gonzalez-Fernandez, A., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Minireview: Nanoparticles and the Immune System. Endocrinology, 151(2), 458–465. https://doi.org/10.1210/en.2009-1082

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.