1,719
Views
10
CrossRef citations to date
0
Altmetric
Invited Reviews

Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation

, , &
Pages 3787-3812 | Published online: 03 Aug 2021

References

  • Abo, B. O., Gao, M., Wang, Y., Wu, C., Wang, Q., & Ma, H. (2019). Production of butanol from biomass: Recent advances and future prospects. Environmental Science and Pollution Research International, 26(20), 20164–20182. https://doi.org/10.1007/s11356-019-05437-y
  • Agler, M. T., Spirito, C. M., Usack, J. G., Werner, J. J., & Angenent, L. T. (2012a). Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates. Energy & Environmental Science, 5(8), 8189–8192. https://doi.org/10.1039/c2ee22101b
  • Agler, M. T., Werner, J. J., Iten, L. B., Dekker, A., Cotta, M. A., Dien, B. S., & Angenent, L. T. (2012b). Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates. Environmental Science & Technology, 46(18), 10229–10238. https://doi.org/10.1021/es302352c
  • Agler, M. T., Spirito, C. M., Usack, J. G., Werner, J. J., & Angenent, L. T. (2014). Development of a highly specific and productive process for n-caproic acid production: Applying lessons from methanogenic microbiomes. Water Science and Technology, 69(1), 62–68. https://doi.org/10.2166/wst.2013.549
  • Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends in Biotechnology, 29(2), 70–78. https://doi.org/10.1016/j.tibtech.2010.11.006
  • Anderson, G. K., Donnelly, T., & McKeown, K. J. (1982). Identification and control of inhibition in the anaerobic treatment of industrial wastewaters. Process Biochemistry, 17, 28–32.
  • Angenent, L. T., Richter, H., Buckel, W., Spirito, C. M., Steinbusch, K. J., Plugge, C. M., Strik, D. P., Grootscholten, T. I., Buisman, C. J., & Hamelers, H. V. (2016). Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals. Environmental Science & Technology, 50(6), 2796–2810. https://doi.org/10.1021/acs.est.5b04847
  • Bao, S., Wang, Q., Zhang, P., Zhang, Q., Wu, Y., Li, F., Tao, X., Wang, S., Nabi, M., & Zhou, Y. (2019). Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: Insight into carbon balance and microbial community. Energies, 12(19), 3720. https://doi.org/10.3390/en12193720
  • Beschkov, V. N. (2020). Ion exchange in downstream processing in biotechnology. Physical Sciences Reviews, 5(7), 20180066. https://doi.org/10.1515/psr-2018-0066
  • Bolaji, I. O., & Dionisi, D. (2017). Acidogenic fermentation of vegetable and salad waste for chemicals production: Effect of pH buffer and retention time. Journal of Environmental Chemical Engineering, 5(6), 5933–5943. https://doi.org/10.1016/j.jece.2017.11.001
  • Bundhoo, M. A. Z., Mohee, R., & Hassan, M. A. (2015). Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management, 157, 20–48. https://doi.org/10.1016/j.jenvman.2015.04.006
  • Canari, R., & Eyal, A. M. (2003). Effect of pH on dicarboxylic acids extraction by amine-based extractants. Industrial & Engineering Chemistry Research, 42(7), 1293–1300. https://doi.org/10.1021/ie010579p
  • Candry, P., & Ganigué, R. (2021). Chain elongators, friends, and foes. Current Opinion in Biotechnology, 67, 99–110. https://doi.org/10.1016/j.copbio.2021.01.005
  • Candry, P., Radić, L., Favere, J., Carvajal-Arroyo, J. M., Rabaey, K., & Ganigué, R. (2020a). Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Research, 186, 116396. https://doi.org/10.1016/j.watres.2020.116396
  • Candry, P., Ulcar, B., Petrognani, C., Rabaey, K., & Ganigué, R. (2020b). Ethanol:propionate ratio drives product selectivity in odd-chain elongation with Clostridium kluyveri and mixed communities. Bioresource Technology, 313, 123651. https://doi.org/10.1016/j.biortech.2020.123651
  • Carvajal-Arroyo, J. M., Andersen, S. J., Ganigué, R., Rozendal, R. A., Angenent, L. T., & Rabaey, K. (2021). Production and extraction of medium chain carboxylic acids at a semi-pilot scale. Chemical Engineering Journal, 416, 127886. https://doi.org/10.1016/j.cej.2020.127886
  • Cavalcante, W. A., Gehring, T. A., Santaella, S. T., Freitas, I. B. F., Angenent, L. T., van Haandel, A. C., & Leitão, R. C. (2020). Upgrading sugarcane biorefineries: Acetate addition allows for conversion of fermented sugarcane molasses into high-value medium chain carboxylic acids. Journal of Environmental Chemical Engineering, 8(2), 103649. https://doi.org/10.1016/j.jece.2019.103649
  • Cavalcante, WdA., Leitão, R. C., Gehring, T. A., Angenent, L. T., & Santaella, S. T. (2017). Anaerobic fermentation for n-caproic acid production: A review. Process Biochemistry, 54, 106–119. https://doi.org/10.1016/j.procbio.2016.12.024
  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
  • Chen, W.-S., Huang, S., Strik, D. P., & Buisman, C. J. N. (2017a). Isobutyrate biosynthesis via methanol chain elongation: Converting organic wastes to platform chemicals. Journal of Chemical Technology & Biotechnology, 92(6), 1370–1379. https://doi.org/10.1002/jctb.5132
  • Chen, W.-S., Strik, D. P. B. T. B., Buisman, C. J. N., & Kroeze, C. (2017b). Production of caproic acid from mixed organic waste: An environmental life cycle perspective. Environmental Science & Technology, 51(12), 7159–7168. https://doi.org/10.1021/acs.est.6b06220
  • Chen, Y., Yin, Y., & Wang, J. (2021). Recent advance in inhibition of dark fermentative hydrogen production. International Journal of Hydrogen Energy, 46(7), 5053–5073. https://doi.org/10.1016/j.ijhydene.2020.11.096
  • Chidthaisong, A., & Conrad, R. (2000). Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biology and Biochemistry, 32(7), 977–988. https://doi.org/10.1016/S0038-0717(00)00006-7
  • Choi, K., Jeon, B. S., Kim, B.-C., Oh, M.-K., Um, Y., & Sang, B.-I. (2013). In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Applied Biochemistry and Biotechnology, 171(5), 1094–1107. https://doi.org/10.1007/s12010-013-0310-3
  • Chwialkowska, J., Duber, A., Zagrodnik, R., Walkiewicz, F., Łężyk, M., & Oleskowicz-Popiel, P. (2019). Caproic acid production from acid whey via open culture fermentation - Evaluation of the role of electron donors and downstream processing. Bioresource Technology, 279, 74–83. https://doi.org/10.1016/j.biortech.2019.01.086
  • Colleran, E., Finnegan, S., & Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 67(1), 29–46. https://doi.org/10.1007/BF00872194
  • Coma, M., Vilchez-Vargas, R., Roume, H., Jauregui, R., Pieper, D. H., & Rabaey, K. (2016). Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environmental Science & Technology, 50(12), 6467–6476. https://doi.org/10.1021/acs.est.5b06021
  • Contreras-Dávila, C. A., Carrión, V. J., Vonk, V. R., Buisman, C. N. J., & Strik, D. P. B. T. B. (2020). Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Research, 169, 115215. https://doi.org/10.1016/j.watres.2019.115215
  • da Silva, A. H., & Miranda, E. A. (2013). Adsorption/desorption of organic acids onto different adsorbents for their recovery from fermentation broths. Journal of Chemical & Engineering Data, 58(6), 1454–1463. https://doi.org/10.1021/je3008759
  • Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248(Pt A), 2–12. https://doi.org/10.1016/j.biortech.2017.07.176
  • De Groof, V., Coma, M., Arnot, T., Leak, D. J., & Lanham, A. B. (2019). Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation. Molecules, 24(3), 398. https://doi.org/10.3390/molecules24030398
  • de Leeuw, K. D., de Smit, S. M., van Oossanen, S., Moerland, M. J., Buisman, C. J. N., & Strik, D. P. B. T. B. (2020). Methanol-based chain elongation with acetate to n-butyrate and isobutyrate at varying selectivities dependent on pH. ACS Sustainable Chemistry & Engineering, 8(22), 8184–8194. https://doi.org/10.1021/acssuschemeng.0c00907
  • de Vrije, T., Mars, A. E., Budde, M. A. W., Lai, M. H., Dijkema, C., de Waard, P., & Claassen, P. A. M. (2007). Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Applied Microbiology and Biotechnology, 74(6), 1358–1367. https://doi.org/10.1007/s00253-006-0783-x
  • Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. https://doi.org/10.1007/s00253-009-2355-3
  • Ding, H.-B., Tan, G.-Y. A., & Wang, J.-Y. (2010). Caproate formation in mixed-culture fermentative hydrogen production. Bioresource Technology, 101(24), 9550–9559. https://doi.org/10.1016/j.biortech.2010.07.056
  • Du, J., Lorenz, N., Beitle, R. R., & Hestekin, J. A. (2012). Application of wafer-enhanced electrodeionization in a continuous fermentation process to produce butyric acid with Clostridium tyrobutyricum. Separation Science and Technology, 47(1), 43–51. https://doi.org/10.1080/01496395.2011.618170
  • Eyal, A. M., & Canari, R. (1995). pH dependence of carboxylic and mineral acid extraction by amine-based extractants: Effects of pKa, amine basicity, and diluent properties. Industrial & Engineering Chemistry Research, 34(5), 1789–1798. https://doi.org/10.1021/ie00044a030
  • Fu, X., Jin, X., Ye, R., & Lu, W. (2021). Nano zero-valent iron: A pH buffer, electron donor and activator for chain elongation. Bioresource Technology, 329, 124899. https://doi.org/10.1016/j.biortech.2021.124899
  • Fu, X., Ye, R., Jin, X., & Lu, W. (2020). Effect of nano zero-valent iron addition on caproate fermentation in carboxylate chain elongation system. Science of the Total Environment, 743, 140664. https://doi.org/10.1016/j.scitotenv.2020.140664
  • Ganigué, R., Naert, P., Candry, P., de Smedt, J., Stevens, C. V., & Rabaey, K. (2019). Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate. Bioresource Technology, 289, 121574. https://doi.org/10.1016/j.biortech.2019.121574
  • Gao, M., Lin, Y., Wang, P., Jin, Y., Wang, Q., Ma, H., Sheng, Y., Van Le, Q., Xia, C., & Lam, S. S. (2021). Production of medium-chain fatty acid caproate from Chinese liquor distillers' grain using pit mud as the fermentation microbes. Journal of Hazardous Materials, 417, 126037. https://doi.org/10.1016/j.jhazmat.2021.126037
  • Garrett, R. H., & Grisham, C. M. (2017). Biochemistry (6th ed.). Cengage.
  • Ge, S., Usack, J. G., Spirito, C. M., & Angenent, L. T. (2015). Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environmental Science & Technology, 49(13), 8012–8021. https://doi.org/10.1021/acs.est.5b00238
  • Gehring, T., Cavalcante, W., Colares, A., Angenent, L. T., Santaella, S., Lübken, M., & Leitão, R. (2020). Optimal pH set point for simultaneous production and pertraction of n-caproic acid: An experimental and simulation study. Journal of Chemical Technology & Biotechnology, 95(12), 3105–3136. https://doi.org/10.1002/jctb.6486
  • Gómez, X., Cuetos, M. J., Prieto, J. I., & Morán, A. (2009). Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renewable Energy, 34(4), 970–975. https://doi.org/10.1016/j.renene.2008.08.011
  • Grootscholten, T. I. M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2013a). High rate heptanoate production from propionate and ethanol using chain elongation. Bioresource Technology, 136, 715–718. https://doi.org/10.1016/j.biortech.2013.02.085
  • Grootscholten, T. I. M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2013b). Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresource Technology, 136, 735–738. https://doi.org/10.1016/j.biortech.2013.02.114
  • Grootscholten, T. I. M., Strik, D. P. B. T. B., Steinbusch, K. J. J., Buisman, C. J. N., & Hamelers, H. V. M. (2014). Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Applied Energy, 116, 223–229. https://doi.org/10.1016/j.apenergy.2013.11.061
  • Han, W., He, P., Shao, L., & Lü, F. (2018). Metabolic interactions of a chain elongation microbiome. Applied and Environmental Microbiology, 84(22), e01614-18. https://doi.org/10.1128/AEM.01614-18
  • Han, W., He, P., Shao, L., & Lü, F. (2019). Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. Journal of Environmental Sciences, 86, 50–64. https://doi.org/10.1016/j.jes.2019.05.018
  • Harper, S. R., & Suidan, M. T. (1991). Anaerobic treatment kinetics - discussers report. Water Science and Technology, 24(8), 61–78. https://doi.org/10.2166/wst.1991.0218
  • Hayward, G., & Lau, I. (1989). Toxicity of organic solvents to fatty acid forming bacteria. The Canadian Journal of Chemical Engineering, 67(1), 157–161. https://doi.org/10.1002/cjce.5450670122
  • Hoelzle, R. D., Virdis, B., & Batstone, D. J. (2014). Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnology and Bioengineering, 111(11), 2139–2154. https://doi.org/10.1002/bit.25321
  • Hollister, E. B., Forrest, A. K., Wilkinson, H. H., Ebbole, D. J., Tringe, S. G., Malfatti, S. A., Holtzapple, M. T., & Gentry, T. J. (2012). Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion. PLoS One, 7(6), e39689. https://doi.org/10.1371/journal.pone.0039689
  • Huang, S., Kleerebezem, R., Rabaey, K., & Ganigue, R. (2020). Open microbiome dominated by Clostridium and Eubacterium converts methanol into i-butyrate and n-butyrate. Applied Microbiology and Biotechnology, 104(11), 5119–5131. https://doi.org/10.1007/s00253-020-10551-w
  • Jang, J., Kang, Y., Han, J.-H., Jang, K., Kim, C.-M., & Kim, I. S. (2020). Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540. https://doi.org/10.1016/j.desal.2020.114540
  • Jeon, B. S., Kim, B.-C., Um, Y., & Sang, B.-I. (2010). Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Applied Microbiology and Biotechnology, 88(5), 1161–1167. https://doi.org/10.1007/s00253-010-2827-5
  • Jia, X., Xi, B., Li, M., Liu, D., Hou, J., Hao, Y., & Meng, F. (2017). Metaproteomic analysis of the relationship between microbial community phylogeny, function and metabolic activity during biohydrogen-methane coproduction under short-term hydrothermal pretreatment from food waste. Bioresource Technology, 245(Pt A), 1030–1039. https://doi.org/10.1016/j.biortech.2017.08.180
  • Kaur, G., Garcia-Gonzalez, L., Elst, K., Truzzi, F., Bertin, L., Kaushik, A., Balakrishnan, M., & De Wever, H. (2020). Reactive extraction for in-situ carboxylate recovery from mixed culture fermentation. Biochemical Engineering Journal, 160, 107641. https://doi.org/10.1016/j.bej.2020.107641
  • Kertes, A. S., & King, C. J. (1986). Extraction chemistry of fermentation product carboxylic acids. Biotechnology and Bioengineering, 28(2), 269–282. https://doi.org/10.1002/bit.260280217
  • Khor, W. C., Andersen, S., Vervaeren, H., & Rabaey, K. (2017). Electricity-assisted production of caproic acid from grass. Biotechnology for Biofuels, 10(1), 180. https://doi.org/10.1186/s13068-017-0863-4
  • Kim, H., Jeon, B. S., & Sang, B.-I. (2019). An efficient new process for the selective production of odd-chain carboxylic acids by simple carbon elongation using Megasphaera hexanoica. Scientific Reports, 9(1), 11999. https://doi.org/10.1038/s41598-019-48591-6
  • Kucek, L. A., Nguyen, M., & Angenent, L. T. (2016a). Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome. Water Research, 93, 163–171. https://doi.org/10.1016/j.watres.2016.02.018
  • Kucek, L. A., Spirito, C. M., & Angenent, L. T. (2016b). High n-caprylate productivities and specificities from dilute ethanol and acetate: Chain elongation with microbiomes to upgrade products from syngas fermentation. Energy & Environmental Science, 9(11), 3482–3494. https://doi.org/10.1039/C6EE01487A
  • Kucek, L. A., Xu, J., Mytien, N., & Angenent, L. T. (2016c). Waste conversion into n-caprylate and n-caproate: Resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction. Frontiers in Microbiology, 7, 1892. https://doi.org/10.3389/fmicb.2016.01892
  • Kusumocahyo, S. P., Sano, K., Sudoh, M., & Kensaka, M. (2000). Water permselectivity in the pervaporation of acetic acid–water mixture using crosslinked poly(vinyl alcohol) membranes. Separation and Purification Technology, 18(2), 141–150. https://doi.org/10.1016/S1383-5866(99)00060-X
  • Lee, W. S., Chua, A. S. M., Yeoh, H. K., & Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal, 235, 83–99. https://doi.org/10.1016/j.cej.2013.09.002
  • Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452–463. https://doi.org/10.1016/j.biotechadv.2007.05.002
  • Lim, S.-J., Kim, B. J., Jeong, C.-M., Choi, J-d-r., Ahn, Y. H., & Chang, H. N. (2008). Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 99(16), 7866–7874. https://doi.org/10.1016/j.biortech.2007.06.028
  • Lin, M., Dai, X., & Weimer, P. J. (2019). Shifts in fermentation end products and bacterial community composition in long-term, sequentially transferred in vitro ruminal enrichment cultures fed switchgrass with and without ethanol as a co-substrate. Bioresource Technology, 285, 121324. https://doi.org/10.1016/j.biortech.2019.121324
  • Ling, L.-P., Leow, H.-F., & Sarmidi, M. R. (2002). Citric acid concentration by electrodialysis: Ion and water transport modelling. Journal of Membrane Science, 199(1–2), 59–67. https://doi.org/10.1016/S0376-7388(01)00678-0
  • Li, Z., Qin, W., & Dai, Y. (2002). Liquid-liquid equilibria of acetic, propionic, butyric, and valeric acids with trioctylamine as extractant. Journal of Chemical & Engineering Data, 47(4), 843–848. https://doi.org/10.1021/je015526t
  • Liu, B., Kleinsteuber, S., Centler, F., Harms, H., & Sträuber, H. (2020a). Competition between butyrate fermenters and chain-elongating bacteria limits the efficiency of medium-chain carboxylate production. Frontiers in Microbiology, 11, 336. https://doi.org/10.3389/fmicb.2020.00336
  • Liu, Y., He, P., Han, W., Shao, L., & Lü, F. (2020b). Outstanding reinforcement on chain elongation through five-micrometer-sized biochar. Renewable Energy, 161, 230–239. https://doi.org/10.1016/j.renene.2020.07.126
  • Liu, Y., He, P., Shao, L., Zhang, H., & Lü, F. (2017). Significant enhancement by biochar of caproate production via chain elongation. Water Research, 119, 150–159. https://doi.org/10.1016/j.watres.2017.04.050
  • Li, L., Xiao, Z., Zhang, Z., & Tan, S. (2004). Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes. Chemical Engineering Journal, 97(1), 83–86. https://doi.org/10.1016/S1385-8947(03)00102-5
  • Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411), 313–319.
  • Lonkar, S., Fu, Z., & Holtzapple, M. (2016). Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate. Biotechnology and Bioengineering, 113(12), 2597–2604. https://doi.org/10.1002/bit.26024
  • López-Garzón, C. S., & Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 32(5), 873–904. https://doi.org/10.1016/j.biotechadv.2014.04.002
  • Mark, R., Liu, Y., Strik, D. P. B. T. B., Weusthuis, R. A., Bruins, M. E., & Buisman, C. J. N. (2018). Development of an effective chain elongation process from acidified food waste and ethanol into n-Caproate. Frontiers in Bioengineering & Biotechnology, 6, 50.
  • Niu, Z.-s., Pan, H., Guo, X.-p., Lu, D.-p., Feng, J.-n., Chen, Y.-r., Tou, F.-y., Liu, M., & Yang, Y. (2018). Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Science of the Total Environment, 634, 296–304. https://doi.org/10.1016/j.scitotenv.2018.03.345
  • Nzeteu, C. O., Trego, A. C., Abram, F., & O'Flaherty, V. (2018). Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 11(1), 108. https://doi.org/10.1186/s13068-018-1101-4
  • Pal, P., Sikder, J., Roy, S., & Giorno, L. (2009). Process intensification in lactic acid production: A review of membrane based processes. Chemical Engineering and Processing: Process Intensification, 48(11–12), 1549–1559. https://doi.org/10.1016/j.cep.2009.09.003
  • Qian, D.-K., Geng, Z.-Q., Sun, T., Dai, K., Zhang, W., Jianxiong Zeng, R., & Zhang, F. (2020). Caproate production from xylose by mesophilic mixed culture fermentation. Bioresource Technology, 308, 123318. https://doi.org/10.1016/j.biortech.2020.123318
  • Qin, Y., & Sheth, J. P. (2003). Pervaporation membranes that are highly selective for acetic acid over water. Industrial & Engineering Chemistry Research, 42(3), 582–595. https://doi.org/10.1021/ie020414w
  • Raunkjaer, K., Hvitved-Jacobsen, T., & Nielsen, P. H. (1994). Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research, 28(2), 251–262. https://doi.org/10.1016/0043-1354(94)90261-5
  • Reddy, M. V., Mohan, S. V., & Chang, Y.-C. (2018). Medium-chain fatty acids (MCFA) production through anaerobic fermentation using clostridium kluyveri: Effect of ethanol and acetate. Applied Biochemistry and Biotechnology, 185(3), 594–605. https://doi.org/10.1007/s12010-017-2674-2
  • Rodríguez-Abalde, Á., Guivernau, M., Prenafeta-Boldú, F. X., Flotats, X., & Fernández, B. (2019). Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess and Biosystems Engineering, 42(7), 1175–1184. https://doi.org/10.1007/s00449-019-02115-8
  • Roghair, M., Hoogstad, T., Strik, D. P. B. T. B., Plugge, C. M., Timmers, P. H. A., Weusthuis, R. A., Bruins, M. E., & Buisman, C. J. N. (2018a). Controlling ethanol use in chain elongation by CO2 loading rate. Environmental Science & Technology, 52(3), 1496–1505. https://doi.org/10.1021/acs.est.7b04904
  • Roghair, M., Liu, Y., Adiatma, J. C., Weusthuis, R. A., Bruins, M. E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2018b). Effect of n-caproate concentration on chain elongation and competing processes. ACS Sustainable Chemistry & Engineering, 6(6), 7499–7506. https://doi.org/10.1021/acssuschemeng.8b00200
  • Saadoun, L., Campitelli, A., Kannengiesser, J., Stanojkovski, D., El Alaoui El Fels, A., Mandi, L., & Ouazzani, N. (2021). Potential of medium chain fatty acids production from municipal solid waste leachate: Effect of age and external electron donors. Waste Management (New York, N.Y.), 120, 503–512. https://doi.org/10.1016/j.wasman.2020.10.013
  • San-Valero, P., Abubackar, H. N., Veiga, M. C., & Kennes, C. (2020). Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresource Technology, 300, 122659. https://doi.org/10.1016/j.biortech.2019.122659
  • San-Valero, P., Fernández-Naveira, Á., Veiga, M. C., & Kennes, C. (2019). Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri. Journal of Environmental Management, 242, 515–521. https://doi.org/10.1016/j.jenvman.2019.04.093
  • Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J., & Noguera, D. R. (2018a). Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems, 3(6), e00221-00218. https://doi.org/10.1128/mSystems.00221-18
  • Scarborough, M. J., Lynch, G., Dickson, M., McGee, M., Donohue, T. J., & Noguera, D. R. (2018b). Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production. Biotechnology for Biofuels, 11, 200. https://doi.org/10.1186/s13068-018-1193-x
  • Schink, B. (2015). Electron confurcation in anaerobic lactate oxidation. Environmental Microbiology, 17(3), 543–543. https://doi.org/10.1111/1462-2920.12568
  • Scown, C. D., Baral, N. R., Yang, M., Vora, N., & Huntington, T. (2021). Technoeconomic analysis for biofuels and bioproducts. Current Opinion in Biotechnology, 67, 58–64. https://doi.org/10.1016/j.copbio.2021.01.002
  • Seedorf, H., Fricke, W. F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., Hagemeier, C., Thauer, R. K., & Gottschalk, G. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences, 105(6), 2128–2133. https://doi.org/10.1073/pnas.0711093105
  • Sharma, P., & Melkania, U. (2018). Effect of sulfate on hydrogen production from the organic fraction of municipal solid waste using co-culture of E. coli and Enterobacter aerogenes. International Journal of Hydrogen Energy, 43(2), 676–684. https://doi.org/10.1016/j.ijhydene.2017.11.044
  • Spirito, C. M., Marzilli, A. M., & Angenent, L. T. (2018). Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environmental Science & Technology, 52(22), 13438–13447. https://doi.org/10.1021/acs.est.8b03856
  • Spirito, C. M., Richter, H., Rabaey, K., Stams, A. J. M., & Angenent, L. T. (2014). Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Current Opinion in Biotechnology, 27, 115–122. https://doi.org/10.1016/j.copbio.2014.01.003
  • Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2008). Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Research, 42(15), 4059–4066. https://doi.org/10.1016/j.watres.2008.05.032
  • Steinbusch, K. J. J., Hamelers, H. V. M., Plugge, C. M., & Buisman, C. J. N. (2011). Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass. Energy & Environmental Science, 4(1), 216–224. https://doi.org/10.1039/C0EE00282H
  • Straathof, A. J. J. (2011). Comprehensive biotechnology (2nd ed., pp. 811–814, M. Moo-Young, ed.). Academic Press.
  • Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651. https://doi.org/10.3390/ijms9091621
  • Thongsukmak, A., & Sirkar, K. K. (2007). Pervaporation membranes highly selective for solvents present in fermentation broths. Journal of Membrane Science, 302(1–2), 45–58. https://doi.org/10.1016/j.memsci.2007.06.013
  • Tong, J., Fang, P., Zhang, J., Wei, Y., Su, Y., & Zhang, Y. (2019). Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Bioresource Technology, 288, 121575. https://doi.org/10.1016/j.biortech.2019.121575
  • Venkata Mohan, S. (2009). Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: Process evaluation towards optimization. International Journal of Hydrogen Energy, 34(17), 7460–7474. https://doi.org/10.1016/j.ijhydene.2009.05.062
  • Ventorino, V., Romano, I., Pagliano, G., Robertiello, A., & Pepe, O. (2018). Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste. Waste Management (New York, N.Y.), 73, 69–77. https://doi.org/10.1016/j.wasman.2017.12.005
  • Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437–458. https://doi.org/10.1080/21655979.2019.1673937
  • Wallace, R. J., Chaudhary, L. C., Miyagawa, E., McKain, N., & Walker, N. D. (2004). Metabolic properties of Eubacterium pyruvativorans, a ruminal 'hyper-ammonia-producing' anaerobe with metabolic properties analogous to those of Clostridium kluyveri. Microbiology (Reading, England), 150(Pt 9), 2921–2930. https://doi.org/10.1099/mic.0.27190-0
  • Wang, J., Cui, Z., Li, Y., Cao, L., & Lu, Z. (2020a). Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods. Journal of Cleaner Production, 249, 119315. https://doi.org/10.1016/j.jclepro.2019.119315
  • Wang, Y., Mu, Y., & Yu, H.-Q. (2007). Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. International Journal of Hydrogen Energy, 32(8), 1086–1094. https://doi.org/10.1016/j.ijhydene.2006.07.016
  • Wang, Y., Wei, W., Wu, S.-L., & Ni, B.-J. (2020b). Zerovalent iron effectively enhances medium-chain fatty acids production from waste activated sludge through improving sludge biodegradability and electron transfer efficiency. Environmental Science & Technology, 54(17), 10904–10915. https://doi.org/10.1021/acs.est.0c03029
  • Wei, Y., Ren, B., Zheng, S., Feng, X., He, Y., Zhu, X., Zhou, L., & Li, D. (2021). Effect of high concentration of ammonium on production of n-caproate: Recovery of a high-value biochemical from food waste via lactate-driven chain elongation. Waste Management (New York, N.Y.), 128, 25–35. https://doi.org/10.1016/j.wasman.2021.04.015
  • Weimer, P. J., & Kohn, R. A. (2016). Impacts of ruminal microorganisms on the production of fuels: How can we intercede from the outside? Applied Microbiology and Biotechnology, 100(8), 3389–3398. https://doi.org/10.1007/s00253-016-7358-2
  • Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., Cummings, T. A., Beers, A. R., Knight, R., & Angenent, L. T. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences, 108(10), 4158–4163. https://doi.org/10.1073/pnas.1015676108
  • Wu, Q., Bao, X., Guo, W., Wang, B., Li, Y., Luo, H., Wang, H., & Ren, N. (2019). Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnology Advances, 37(5), 599–615. https://doi.org/10.1016/j.biotechadv.2019.03.003
  • Wu, Q., Feng, X., Chen, Y., Liu, M., & Bao, X. (2021a). Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. Journal of Hazardous Materials, 402, 123471. https://doi.org/10.1016/j.jhazmat.2020.123471
  • Wu, Q., Feng, X., Guo, W., Bao, X., & Ren, N. (2020a). Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation. Chemical Engineering Journal, 388, 124218. https://doi.org/10.1016/j.cej.2020.124218
  • Wu, Q., Guo, W., Bao, X., Meng, X., Yin, R., Du, J., Zheng, H., Feng, X., Luo, H., & Ren, N. (2018). Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest. Water Research, 145, 650–659. https://doi.org/10.1016/j.watres.2018.08.046
  • Wu, S.-L., Luo, G., Sun, J., Wei, W., Song, L., & Ni, B.-J. (2021b). Medium chain fatty acids production from anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 279, 123482. https://doi.org/10.1016/j.jclepro.2020.123482
  • Wu, S. L., Sun, J., Chen, X., Wei, W., Song, L., Dai, X., & Ni, B. J. (2020c). Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations. Water Research, 169, 115218. https://doi.org/10.1016/j.watres.2019.115218
  • Wu, S.-L., Wei, W., Sun, J., Xu, Q., Dai, X., & Ni, B.-J. (2020b). Medium-Chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation. Water Research, 186, 116381. https://doi.org/10.1016/j.watres.2020.116381
  • Xie, S., Ma, J., Li, L., He, Q., Xu, P., Ke, S., & Shi, Z. (2021). Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode. Bioresource Technology, 329, 124893. https://doi.org/10.1016/j.biortech.2021.124893
  • Xu, J., Guzman, J. J. L., Andersen, S. J., Rabaey, K., & Angenent, L. T. (2015). In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chemical Communications (Cambridge, England), 51(31), 6847–6850. https://doi.org/10.1039/c5cc01897h
  • Xu, J., Guzman, J. J. L., & Angenent, L. T. (2021). Direct medium-chain carboxylic acid oil separation from a bioreactor by an electrodialysis/phase separation cell. Environmental Science & Technology, 55(1), 634–644. https://doi.org/10.1021/acs.est.0c04939
  • Xu, J., Hao, J., Guzman, J. J. L., Spirito, C. M., Harroff, L. A., & Angenent, L. T. (2018). Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: No external e-donor. Joule, 2(2), 280–295. https://doi.org/10.1016/j.joule.2017.11.008
  • Yang, P., Leng, L., Tan, G.-Y. A., Dong, C., Leu, S.-Y., Chen, W.-H., & Lee, P.-H. (2018). Upgrading lignocellulosic ethanol for caproate production via chain elongation fermentation. International Biodeterioration & Biodegradation, 135, 103–109. https://doi.org/10.1016/j.ibiod.2018.09.011
  • Yesil, H., Taner, H., Nigiz, F. U., Hilmioglu, N., & Tugtas, A. E. (2020). Pervaporative separation of mixed volatile fatty acids: A study towards integrated VFA production and separation. Waste and Biomass Valorization, 11(5), 1737–1753. https://doi.org/10.1007/s12649-018-0504-6
  • Yin, Y., Zhang, Y., Karakashev, D. B., Wang, J., & Angelidaki, I. (2017). Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresource Technology, 241, 638–644. https://doi.org/10.1016/j.biortech.2017.05.184
  • Yu, J., Huang, Z., Wu, P., Zhao, M., Miao, H., Liu, C., & Ruan, W. (2019). Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia. Bioresource Technology, 284, 398–405. https://doi.org/10.1016/j.biortech.2019.03.124
  • Zagrodnik, R., Duber, A., Łężyk, M., & Oleskowicz-Popiel, P. (2020). Enrichment versus bioaugmentation-microbiological production of caproate from mixed carbon sources by mixed bacterial culture and Clostridium kluyveri. Environmental Science & Technology, 54(9), 5864–5873. https://doi.org/10.1021/acs.est.9b07651
  • Zhang, Y., Liu, H., Liu, X., Zhu, H., Fan, T., Deng, L., & Wang, F. (2020). A high efficient method for simultaneous fermentation and separation of fumaric acid with a fixed bed ion exchange column. Biochemical Engineering Journal, 160, 107610. https://doi.org/10.1016/j.bej.2020.107610
  • Zhu, X., Tao, Y., Liang, C., Li, X., Wei, N., Zhang, W., Zhou, Y., Yang, Y., & Bo, T. (2015). The synthesis of n-caproate from lactate: A new efficient process for medium-chain carboxylates production. Scientific Reports, 5(1), 14360. https://doi.org/10.1038/srep14360

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.