1,414
Views
3
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on water stable metal-organic frameworks for large-scale preparation and applications in water quality management based on surveys made since 2015

, , , , , , & show all
Pages 4038-4071 | Published online: 28 Sep 2021

References

  • Abánades, L., I., & Forgan, R. S. (2019). Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 380, 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
  • Abdollahi, N., Akbar, R., Sayed, A., Morsali, A., & Hu, M. L. (2020). High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. Journal of Hazardous Materials, 387, 121667. https://doi.org/10.1016/j.jhazmat.2019.121667
  • Ahmad, M., Chen, S., Ye, F., Quan, X., Afzal, S., Yu, H., & Zhao, X. (2019). Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Applied Catalysis B: Environmental, 245, 428–438. https://doi.org/10.1016/j.apcatb.2018.12.057
  • Ahmadijokani, F., Shima, T., Addie, B., Hossein, M., Mashallah, R., Frank, K., Tejraj, M. A., & Mohammad, A. (2021). Chemosphere ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere, 264, 128466. https://doi.org/10.1016/j.chemosphere.2020.128466
  • Akpinar, I., Drout, R. J., Islamoglu, T., Kato, S., Lyu, J., & Farha, O. K. (2019). Exploiting pi-pi interactions to design an efficient sorbent for atrazine removal from water. ACS Applied Materials & Interfaces, 11(6), 6097–6103. https://doi.org/10.1021/acsami.8b20355
  • Al-Kutubi, H., Gascon, J., Sudhölter, E. J. R., & Rassaei, L. (2015). Electrosynthesis of metal-organic frameworks: Challenges and opportunities. ChemElectroChem, 2(4), 462–474.
  • Avci-Camur, C., Troyano, J., Pérez-Carvajal, J., Legr, &, A., Farrusseng, D., Imaz, I., & Maspoch, D. (2018). Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chemistry, 20(4), 873–878. https://doi.org/10.1039/C7GC03132G
  • Ayoub, G., Islamoglu, T., Goswami, S., Friscic, T., & Farha, O. K. (2019). Torsion angle effect on the activation of UiO metal-organic frameworks. ACS Applied Materials & Interfaces, 11(17), 15788–15794. https://doi.org/10.1021/acsami.9b02764
  • Ayoub, G., Karadeniz, B., Howarth, A. J., Farha, O. K., Đilović, I., Germann, L. S., Dinnebier, R. E., Užarević, K., & Friščić, T. (2019). Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chemistry of Materials, 31(15), 5494–5501. https://doi.org/10.1021/acs.chemmater.9b01068
  • Azhar, M. R., Vijay, P., Tade, M. O., Sun, H., & Wang, S. (2018). Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere, 196, 105–114. https://doi.org/10.1016/j.chemosphere.2017.12.164
  • Baati, T., Njim, L., Neffati, F., Kerkeni, A., Bouttemi, M., Gref, R., Najjar, M. F., Zakhama, A., Couvreur, P., Serre, C., & Horcajada, P. (2013). In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks. Chemical Science, 4(4), 1597–1607. https://doi.org/10.1039/c3sc22116d
  • Bădescu, S. I., Bulgariu, D., Ahmad, I., & Bulgariu, L. (2018). Valorisation possibilities of exhausted biosorbents loaded with metal ions—A review. Journal of Environmental Management, 224, 288–297. https://doi.org/10.1016/j.jenvman.2018.07.066
  • Barthe, P., Guermeur, C., Lobet, O., Moreno, M., Woehl, P., Roberge, D. M., Bieler, N., & Zimmermann, B. (2008). Continuous multi-injection reactor for multipurpose production—Part I. Chemical Engineering & Technology, 31(8), 1146–1154. https://doi.org/10.1002/ceat.200800132
  • Bingham, E., Cohrssen, B., & Powell, C. H. (2001). Patty’s toxicology, 6 volumes set (6th ed., pp. 379–380). John Wiley & Sons.
  • Biswas, S., Lan, Q., Xie, Y., Sun, X., & Wang, Y. (2021). Label-free electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 125 based on antibody-immobilized biocompatible mof-808/CNT. ACS Applied Materials & Interfaces, 13(2), 3295–3302.
  • Brekalo, I., Yuan, W., Mottillo, C., Lu, Y., Zhang, Y., Casaban, J., Holman, K. T., James, S. L., Duarte, F., Williams, P. A., Harris, K. D. M., & Friščić, T. (2020). Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chemical Science, 11(8), 2141–2147. https://doi.org/10.1039/c9sc05514b
  • Burckhart, J., Marx, S., Arnold, L., Hofmann, C., & Müller, U. (2018). Ultrafast high space-time-yield synthesis of metal-organic framework. U.S. Patent US 20180333696 A1.
  • Butova, V. V., Vetlitsyna-Novikova, K. S., Pankin, I. A., Charykov, K. M., Trigub, A. L., & Soldatov, A. V. (2020). Microwave synthesis and phase transition in UiO-66/MIL-140A system. Microporous and Mesoporous Materials, 296, 109998. https://doi.org/10.1016/j.micromeso.2020.109998
  • Chakraborty, G., Das, P., M., & Al, S. K. (2018). Strategic construction of highly stable metal-organic frameworks combining both semi-rigid tetrapodal and rigid ditopic linkers: Selective and ultrafast sensing of 4-nitroaniline in water. ACS Applied Materials & Interfaces, 10(49), 42406–42416. https://doi.org/10.1021/acsami.8b15894
  • Chakraborty, G., Park, I., Medishetty, R., & Vittal, J. J. (2021). Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications. Chemical Reviews, 121(7), 3751–3891. https://doi.org/10.1021/acs.chemrev.0c01049
  • Chang, H., Li, T., Liu, B., Vidic, R. D., Elimelech, M., & Crittenden, J. C. (2019). Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 455, 34–57. https://doi.org/10.1016/j.desal.2019.01.001
  • Chen, J. P. (2012). Decontamination of heavy metals: Processes, mechanisms, and applications. CRC Press.
  • Chen, J. P., Shen, T. T., Huang, Y., & Wang, L. K. (2004). Pollution prevention: Handbook of industrial and hazardous wastes treatment (2nd ed.). CRC Press.
  • Chen, S. S., Hu, C., Liu, C.-H., Chen, Y.-H., Ahamad, T., Alshehri, S. M., Huang, P.-H., & Wu, K. C. W. (2020). De novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. Journal of Hazardous Materials, 397, 122431. https://doi.org/10.1016/j.jhazmat.2020.122431
  • Chetprayoon, P., & Maniratanachote, R. (2021). Safety of nanomaterials for energy applications. In Handbook of nanotechnology applications (pp. 333–355). Elsevier.
  • Choi, J. S., Bae, J., Lee, E. J., & Jeong, N. C. (2018). A chemical role for trichloromethane: Room-temperature removal of coordinated solvents from open metal sites in the copper-based metal-organic frameworks. Inorganic Chemistry, 57(9), 5225–5231. https://doi.org/10.1021/acs.inorgchem.8b00267
  • Cindro, N., Tireli, M., Karadeniz, B., Mrla, T., & Užarević, K. (2019). Investigations of thermally controlled mechanochemical milling reactions. ACS Sustainable Chemistry & Engineering, 7(19), 16301–16309. https://doi.org/10.1021/acssuschemeng.9b03319
  • Crawford, D., Casaban, J., Haydon, R., Giri, N., McNally, T., & James, S. L. (2015). Synthesis by extrusion: Continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science, 6(3), 1645–1649. https://doi.org/10.1039/c4sc03217a
  • Cui, H., Huang, X., Yu, Z., Chen, P., & Cao, X. (2020). Application progress of enhanced coagulation in water treatment. RSC Advances, 10(34), 20231–20244. https://doi.org/10.1039/D0RA02979C
  • Darwish, S., Wang, S.-Q., Croker, D. M., Walker, G. M., & Zaworotko, M. J. (2019). Comparison of mechanochemistry vs solution methods for synthesis of 4,4’-bipyridine-based coordination polymers. ACS Sustainable Chemistry & Engineering, 7(24), 19505–19512. https://doi.org/10.1021/acssuschemeng.9b04552
  • Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-matrix membranes. Angewandte Chemie (International ed. in English), 56(32), 9292–9310. https://doi.org/10.1002/anie.201701109
  • Demirel, Ö. H., Rijnaarts, T., de Wit, P., Wood, J. A., & Benes, N. E. (2019). Electroforming of a metal-organic framework on porous copper hollow fibers. Journal of Materials Chemistry A, 7(20), 12616–12626. https://doi.org/10.1039/C8TA11296G
  • Deng, S. Q., Mo, X. J., Zheng, S. R., Jin, X., Gao, Y., Cai, S. L., Fan, J., & Zhang, W. G. (2019). Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient removal of toxic oxo-anions and dyes from water. Inorganic Chemistry, 58(4), 2899–2909. https://doi.org/10.1021/acs.inorgchem.9b00104
  • Dou, Y., Zhang, W., & Kaiser, A. (2020). Electrospinning of metal-organic frameworks for energy and environmental applications. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7(3), 1902590. https://doi.org/10.1002/advs.201902590
  • Du, C., Zhang, Z., Yu, G., Wu, H., Chen, H., Zhou, L., Zhang, Y., Su, Y., Tan, S., Yang, L., Song, J., & Wang, S. (2021). A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere, 272, 129501. https://doi.org/10.1016/j.chemosphere.2020.129501
  • Du, X. D., Yi, X. H., Wang, P., Zheng, W., Deng, J., & Wang, C.-C. (2019). Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chemical Engineering Journal and the Biochemical Engineering Journal, 356, 393–399. https://doi.org/10.1016/j.cej.2018.09.084
  • Echaide-Górriz, C., Zapata, J. A., Etxeberría-Benavides, M., Téllez, C., & Coronas, J. (2020). Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Separation and Purification Technology, 236, 116265. https://doi.org/10.1016/j.seppur.2019.116265
  • Emam, H. E., Mahmoud, E., & Reda, M. A. (2021). Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film. Journal of Hazardous Materials, 2021, 125509.
  • Espin, J., Garzon-Tovar, L., Carne-Sanchez, A., Imaz, I., & Maspoch, D. (2018). Photothermal activation of metal-organic frameworks using a UV-Vis light source. ACS Applied Materials & Interfaces, 10(11), 9555–9562. https://doi.org/10.1021/acsami.8b00557
  • Esrafili, L., Firuzabadi, D. F., Morsali, A., & Hu, M. (2021). Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. Journal of Hazardous Materials, 403, 123696. https://doi.org/10.1016/j.jhazmat.2020.123696
  • Fan, L., Xue, M., Kang, Z., Li, H., & Qiu, S. (2012). Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. Journal of Materials Chemistry, 22(48), 25272. https://doi.org/10.1039/c2jm35401b
  • Fang, X., Chen, X., Liu, Y., Li, Q., Zeng, Z., Maiyalagan, T., & Mao, S. (2019). Nanocomposites of Zr(IV)-based metal organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Applied Nano Materials, 2(4), 2367–2376.
  • Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydın, A. Ö., & Hupp, J. T. (2012). Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? Journal of the American Chemical Society, 134(36), 15016–15021. https://doi.org/10.1021/ja3055639
  • Firmino, A. D. G., Mendes, R. F., Tomé, J. P. C., & Almeida Paz, F. A. (2018). Synthesis of MOFs at the industrial scale. In H. García & S. Navalón (Eds.), Metal‐organic frameworks (pp. 57–80). Wiley-VCH Verlag GmbH and Co. KGaA.
  • Flage-Larsen, E., & Thorshaug, K. (2014). Linker conformation effects on the band gap in metal-organic frameworks. Inorganic chemistry, 53(5), 2569–2572.
  • Fu, L., Wang, S., Lin, G., Zhang, L., Liu, Q., Fang, J., Wei, C., & Liu, G. (2019). Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water. Journal of Hazardous Materials, 368, 42–51. https://doi.org/10.1016/j.jhazmat.2019.01.025
  • Furtado, D., Bjornmalm, M., Ayton, S., Bush, A. I., Kempe, K., & Caruso, F. (2018). Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Advanced Materials, 30(46), 1801362. https://doi.org/10.1002/adma.201801362
  • Furukawa, H., Cordova, K., O’Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444.
  • Furukawa, H., Go, Y. B., Ko, N., Park, Y. K., Uribe-Romo, F. J., Kim, J., O'Keeffe, M., & Yaghi, O. M. (2011). Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorganic Chemistry, 50(18), 9147–9152. https://doi.org/10.1021/ic201376t
  • Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R., & Müller, U. (2012). The progression of Al-based metal-organic frameworks-From academic research to industrial production and applications. Microporous and Mesoporous Materials, 157, 131–136. https://doi.org/10.1016/j.micromeso.2011.08.016
  • Gao, M., Liu, G., Gao, Y., Chen, G., Huang, X., Xu, X., Wang, J., Yang, X., & Xu, D. (2021). Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trac Trends in Analytical Chemistry, 137, 116226. https://doi.org/10.1016/j.trac.2021.116226
  • Gao, Y., Li, S., Li, Y., Yao, L., & Zhang, H. (2017). Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 202, 165–174.
  • Gholami, F., Zinadini, S., Zinatizadeh, A. A., & Abbasi, A. R. (2018). TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment & fouling mitigation in PES ultrafiltration membrane. Separation and Purification Technology, 194, 272–280. https://doi.org/10.1016/j.seppur.2017.11.054
  • Goetjen, T. A., Liu, J., Wu, Y., Sui, J., Zhang, X., Hupp, J. T., & Farha, O. K. (2020). Metal-organic framework (MOF) materials as polymerization catalysts: A review and recent advances. Chemical Communications (Cambridge, England), 56(72), 10409–10418. https://doi.org/10.1039/d0cc03790g
  • Gong, T., Li, P., Sui, Q., Chen, J., Xu, J., & Gao, E. Q. (2018). A stable electron-deficient metal–organic framework for colorimetric and luminescence sensing of phenols and anilines. Journal of Materials Chemistry A, 66(19), 9236–9244. https://doi.org/10.1039/C8TA02794C
  • Gonzalez-Juarez, M., Flores, E., Martin-Gonzalez, M., Nandhakumar, I., & Bradshaw, D. (2020). Electrochemical deposition and thermoelectric characterization of a semiconducting 2-D metal-organic framework thin film. Journal of Materials Chemistry A, 8(26), 13197–13206. https://doi.org/10.1039/D0TA04939E
  • Goswami, R., Mandal, S. C., Pathak, B., & Neogi, S. (2019). Guest-induced ultrasensitive detection of multiple toxic organics and Fe(3+) ions in a strategically designed and regenerative smart fluorescent metal-organic framework. ACS Applied Materials & Interfaces, 11(9), 9042–9053. https://doi.org/10.1021/acsami.8b20013
  • Gu, Y., Xie, D., Wang, Y., Qin, W., Zhang, H., Wang, G., Zhang, Y., & Zhao, H. (2019). Facile fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional arsenate removal. Chemical Engineering Journal and the Biochemical Engineering Journal, 357, 579–588. https://doi.org/10.1016/j.cej.2018.09.174
  • Halada, G., & Orlov, A. (2018). Environmental degradation of engineered nanomaterials: Impact on materials design and use (3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-323-52472-8.00011-3
  • Haldar, D., Duarah, P., & Purkait, M. K. (2020). MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 251, 126388. https://doi.org/10.1016/j.chemosphere.2020.126388
  • Han, L., Zhang, J., Mao, Y., Zhou, W., Xu, W., & Sun, Y. (2019). Facile and green synthesis of MIL-53(Cr) and its excellent adsorptive desulfurization performance. Industrial & Engineering Chemistry Research, 58(34), 15489–15496. https://doi.org/10.1021/acs.iecr.9b02223
  • Hauser, J., Tso, M., Fitchmun, K. & Oliver, S. R. J. (2019). Anodic electrodeposition of several metal organic framework thin films on indium tin oxide glass. Crystal Growth & Design, 19(4), 2358–2365.
  • Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D'Arras, L., Sassoye, C., Rozes, L., Mellot-Draznieks, C., & Walsh, A. (2013). Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. Journal of the American Chemical Society, 135(30), 10942–10945. https://doi.org/10.1021/ja405350u
  • Howarth, A. J., Peters, A. W., Vermeulen, N. A., Wang, T. C., Hupp, J. T., & Farha, O. K. (2017). Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chemistry of Materials, 29(1), 26–39. https://doi.org/10.1021/acs.chemmater.6b02626
  • Huang, W., Jing, C., Zhang, X., Tang, M., Tang, L., Wu, M., & Liu, N. (2018). Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen. Chemical Engineering Journal and the Biochemical Engineering Journal, 349, 603–612. https://doi.org/10.1016/j.cej.2018.05.121
  • Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36–44. https://doi.org/10.1016/j.resconrec.2017.09.029
  • Hube, S., Eskafi, M., Hrafnkelsdottir, K. F., Bjarnadottir, B., Bjarnadottir, M. A., Axelsdottir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery: A review. The Science of the Total Environment, 710, 136375. https://doi.org/10.1016/j.scitotenv.2019.136375
  • Ibrahim, S., Shehzadi, K., Iqbal, B., Abbas, S., Turner, D. R., & Nadeem, M. A. (2019). A trinuclear cobalt-based coordination polymer as an efficient oxygen evolution electrocatalyst at neutral pH. Journal of Colloid and Interface Science, 545, 269–275. https://doi.org/10.1016/j.jcis.2019.03.018
  • Jamshidifard, S., Koushkbaghi, S., Hosseini, S., Rezaei, S., Karamipour, A., Jafari Rad, A., & Irani, M. (2019). Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials, 368, 10–20. https://doi.org/10.1016/j.jhazmat.2019.01.024
  • Jee, H.-W., Paeng, K.-J., Myung, N., & Rajeshwar, K. (2020). Electrochemical deposition of metal organic framework and subsequent conversion to cobalt selenide. ACS Applied Electronic Materials, 2(5), 1358–1364. https://doi.org/10.1021/acsaelm.0c00142
  • Jia, M., Feng, Y., Qiu, J., Zhang, X., & Yao, J. (2019). Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective separation. Separation and Purification Technology, 213, 63–69.
  • Jia, X. Z., Zhang, B., Chen, C., Fu, X., & Huang, Q. (2021). Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydrate Polymers, 253, 117305. https://doi.org/10.1016/j.carbpol.2020.117305
  • Kadhom, M., & Deng, B. (2018). Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Applied Materials Today, 11, 219–230. https://doi.org/10.1016/j.apmt.2018.02.008
  • Karadeniz, B., Howarth, A. J., Stolar, T., Islamoglu, T., Dejanović, I., Tireli, M., Wasson, M. C., Moon, S.-Y., Farha, O. K., Friščić, T., & Užarević, K. (2018). Benign by design: Green and scalable synthesis of zirconium UiO-metal-organic frameworks by water-assisted mechanochemistry. ACS Sustainable Chemistry & Engineering, 6(11), 15841–15849. https://doi.org/10.1021/acssuschemeng.8b04458
  • Karimi-Maleh, H., Yola, M. L., Atar, N., Orooji, Y., Karimi, F., Senthil Kumar, P., Rouhi, J., & Baghayeri, M. (2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science, 592, 174–185. https://doi.org/10.1016/j.jcis.2021.02.066
  • Keene, T. D., Price, D. J., & Kepert, C. J. (2011). Laboratory-based separation techniques for insoluble compound mixtures: Methods for the purification of metal-organic framework materials. Dalton Transactions (Cambridge, England: 2003), 40(27), 7122–7126. https://doi.org/10.1039/c1dt10251f
  • Kim, J., Choi, J., Soo Kang, Y., & Won, J. (2016). Matrix effect of mixed-matrix membrane containing CO2-selective MOFs. Journal of Applied Polymer Science, 133(1), n/a–n/a. https://doi.org/10.1002/app.42853
  • Koh, K. Y., Yang, Y., & Chen, J. P. (2021). Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants. Critical Reviews in Environmental Science and Technology, 2021, 1–52. https://doi.org/10.1080/10643389.2020.1864958
  • Koh, K. Y., Zhang, S., & Chen, J. P. (2020). Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance. Chemical Engineering Journal, 380, 122153. https://doi.org/10.1016/j.cej.2019.122153
  • Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S., & Seki, K. (1997). Three-dimensional framework with channeling cavities for small. Molecules: {[M2(4,4′‐bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angewandte Chemie International Edition, 36, 1725–1727.
  • Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A. J., & Hill, M. R. (2012). Methane storage in metal organic frameworks. Journal of Materials Chemistry, 22(33), 16698–16708. https://doi.org/10.1039/c2jm32719h
  • Kumar, P., Anand, B., Tsang, Y. F., Kim, K. H., Khullar, S., & Wang, B. (2019). Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 176, 108488. https://doi.org/10.1016/j.envres.2019.05.019
  • Kumar, P., Pournara, A., Kim, K.-H., Bansal, V., Rapti, S., & Manos, M. J. (2017). Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 86, 25–74. https://doi.org/10.1016/j.pmatsci.2017.01.002
  • Laybourn, A., López-Fernández, A. M., Thomas-Hillman, I., Katrib, J., Lewis, W., Dodds, C., Harvey, A. P., & Kingman, S. W. (2019). Combining continuous flow oscillatory baffled reactors and microwave heating: Process intensification and accelerated synthesis of metal-organic frameworks. Chemical Engineering Journal and the Biochemical Engineering Journal, 356, 170–177. https://doi.org/10.1016/j.cej.2018.09.011
  • Lee, E. J., Bae, J., Choi, K. M., & Jeong, N. C. (2019). Exploiting microwave chemistry for activation of metal-organic frameworks. ACS Applied Materials & Interfaces, 11(38), 35155–35161. https://doi.org/10.1021/acsami.9b12201
  • Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. https://doi.org/10.1039/b807080f
  • Li, C., Zhang, X., Wen, S., Xiang, R., Han, Y., Tang, W., Yue, T., & Li, Z. (2020). Interface engineering of zeolite imidazolate framework-8 on two-dimensional Al-metal-organic framework nanoplates enhancing performance for simultaneous capture and sensing tetracyclines. Journal of Hazardous Materials, 395, 122615. https://doi.org/10.1016/j.jhazmat.2020.122615
  • Li, H., Eddaoudi, M., O'Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276–279. https://doi.org/10.1038/46248
  • Li, J., Wang, H., Yuan, X., Zhang, J., & Chew, J. W. (2020). Metal-organic framework membranes for wastewater treatment & water regeneration. Coordination Chemistry Reviews, 404, 213116. https://doi.org/10.1016/j.ccr.2019.213116
  • Li, L., Xu, Y., Zhong, D., & Zhong, N. (2020). CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124255. https://doi.org/10.1016/j.colsurfa.2019.124255
  • Li, Q., Fan, Z., Xue, D., Zhang, Y., Zhang, Z., Wang, Q., Sun, H., Gao, Z., & Bai, J. (2018). Multi-dyes@MOF composite boosts highly efficient photodegradation of ultra-stubborn dye of reactive blue 21 under visible-light irradiation. Journal of Materials Chemistry A, 6(5), 2148–2156. https://doi.org/10.1039/C7TA10184H
  • Li, W.-J., Lü, J., Gao, S.-Y., Li, Q.-H., & Cao, R. (2014). Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives. Journal of Materials Chemistry A, 22(45), 19473–19478. https://doi.org/10.1039/C4TA04203D
  • Lin, Z., Zheng, H., Zheng, H., Lin, L., Xin, Q., & Cao, R. (2017). Efficient capture and effective sensing of Cr2O72- from water using a zirconium metal-organic framework. Inorganic Chemistry, 56(22), 14178–14188.
  • Liu, H., Zhang, M., Zhao, H., Jiang, Y., Liu, G., & Gao, J. (2020). Enhanced dispersibility of metal-organic frameworks (MOFs) in the organic phase via surface modification for TFN nanofiltration membrane preparation. RSC Advances, 10(7), 4045–4057. https://doi.org/10.1039/C9RA09672H
  • Liu, R., Chi, L., Wang, X., Wang, Y., Sui, Y., Xie, T., & Arandiyan, H. (2019). Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs. Chemical Engineering Journal and the Biochemical Engineering Journal, 357, 159–168. https://doi.org/10.1016/j.cej.2018.09.122
  • Liu, S., Liu, M., Guo, M., Wang, Z., Wang, X., Cui, W., & Tian, Z. (2021). Development of Eu-based metal-organic frameworks (MOFs) for luminescence sensing and entrapping of arsenate ion. Journal of Luminescense, 236, 118102. https://doi.org/10.1016/j.jlumin.2021.118102
  • Liu, T., Zou, L., Feng, D., Chen, Y., Fordham, S., Wang, X., Liu, Y., & Zhou, H. (2014). Stepwise synthesis of robust metal-organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. Journal of the American Chemical Society, 136(22), 7813–7816. https://doi.org/10.1021/ja5023283
  • Liu, X., Dang, R., Dong, W., Huang, X., Tang, J., Gao, H., & Wang, G. (2017). A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe): A platform for efficient visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 209, 506–513. https://doi.org/10.1016/j.apcatb.2017.02.073
  • Liu, Y., Wei, Y., Liu, M., Bai, Y., & Liu, Y. (2020). Electrochemical synthesis of large area two-dimensional metal–organic framework films on copper anodes. Angewandte Chemie International Edition, 59, 1–6.
  • Lohe, M. R., Rose, M., & Kaskel, S. (2009). Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chemical Communications, 2009(40), 6056–6058. https://doi.org/10.1039/b910175f
  • López-Periago, A. M., Portoles-Gil, N., López-Domínguez, P., Fraile, J., Saurina, J., Aliaga-Alcalde, N., Tobias, G., Ayllón, J. A., & Domingo, C. (2017). Metal-organic frameworks precipitated by reactive crystallization in supercritical CO2. Crystal Growth and Design, 17(5), 2864–2872. https://doi.org/10.1021/acs.cgd.7b00378
  • Lorignon, F., Gossard, A., & Carboni, M. (2020). Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chemical Engineering Journal and the Biochemical Engineering Journal, 393, 124765. https://doi.org/10.1016/j.cej.2020.124765
  • Lu, S., Liu, L., Demissie, H., An, G., & Wang, D. (2021). Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 146, 106273.
  • Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J., & Ghosh, S. K. (2017). Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46(11), 3242–3285. https://doi.org/10.1039/c6cs00930a]
  • Lv, J., Wang, B., Xie, Y., Wang, P., Shu, L., Su, X., & Li, J.-R. (2019). Selective detection of two representative organic arsenic compounds in aqueous medium with metal–organic frameworks. Environmental Science: Nano, 6(9), 2759–2766. https://doi.org/10.1039/C9EN00316A
  • Lv, Z. M., Fan, Q., Xie, Y., Chen, Z., Alsaedi, A., Hayat, T., Wang, X., & Chen, C. (2019). MOFs-derived magnetic chestnut shell-like hollow sphere NiO/Ni@C composites and their removal performance for arsenic(V). Chemical Engineering Journal and the Biochemical Engineering Journal, 362, 413–421. https://doi.org/10.1016/j.cej.2019.01.046
  • Lyu, Q., Deng, X., Hu, S., Lin, L.-C., & Ho, W. S. W. (2019). Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. The Journal of Physical Chemistry C, 123(26), 16118–16126. https://doi.org/10.1021/acs.jpcc.9b01765
  • Ma, J., Kalenak, A. P., Wong-Foy, A. G., & Matzger, A. J. (2017). Rapid guest exchange and ultra-low surface tension solvents optimize metal-organic framework activation. Angewandte Chemie (International ed. in English), 56(46), 14618–14621. https://doi.org/10.1002/anie.201709187
  • Ma, J., Li, S., Wu, G., Wang, S., Guo, X., Wang, L., Wang, X., Li, J., & Chen, L. (2019). Preparation of mixed-matrix membranes from metal organic framework (MIL-53) and poly (vinylidene fluoride) for use in determination of sulfonylurea herbicides in aqueous environments by high performance liquid chromatography. Journal of Colloid and Interface Science, 553, 834–844. https://doi.org/10.1016/j.jcis.2019.06.082
  • Ma, X.-H., Yang, Z., Yao, Z.-K., Xu, Z.-L., & Tang, C. Y. (2017). A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 525, 269–276. https://doi.org/10.1016/j.memsci.2016.11.015
  • Mahanta, N., & Chen, J. P. (2013). A novel route to the engineering of zirconium immobilized nano-scale carbon for arsenate removal from water. Journal of Materials Chemistry A, 1(30), 8636–8644. https://doi.org/10.1039/c3ta10858a
  • Mahmoodi, N. M., Abdi, J., Taghizadeh, M., Taghizadeh, A., Hayati, B., Shekarchi, A. A., & Vossoughi, M. (2019). Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. Journal of Environmental Management, 233, 660–672. https://doi.org/10.1016/j.jenvman.2018.12.026
  • Mao, Y., Qi, H., Ye, G., Han, L., Zhou, W., Xu, W., & Sun, Y. (2019). Green & time-saving synthesis of MIL-100 (Cr) and its catalytic performance. Microporous and Mesoporous Materials, 274, 70–75. https://doi.org/10.1016/j.micromeso.2018.07.026
  • Marti, A. M., Venna, S. R., Roth, E. A., Culp, J. T., & Hopkinson, D. P. (2018). Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation. ACS Applied Materials & Interfaces, 10(29), 24784–24790. https://doi.org/10.1021/acsami.8b06592
  • Martinez Joaristi, A., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2012). Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth and Design, 12(7), 3489–3498. https://doi.org/10.1021/cg300552w
  • McKinstry, C., Cathcart, R. J., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V., & Sefcik, J. (2016). Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chemical Engineering Journal and the Biochemical Engineering Journal, 285, 718–725. https://doi.org/10.1016/j.cej.2015.10.023
  • McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V., & Sefcik, J. (2017). Scalable continuous production of high quality HKUST-1 via conventional and microwave heating. Chemical Engineering Journal and the Biochemical Engineering Journal, 326, 570–577. https://doi.org/10.1016/j.cej.2017.05.169
  • Moghadam, P. Z., Li, A., Wiggin, S. B., Tao, A., Maloney, A. G. P., Wood, P. A., Ward, S. C., & Fairen-Jimenez, D. (2017). Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chemistry of Materials, 29(7), 2618–2625. https://doi.org/10.1021/acs.chemmater.7b00441
  • Mohammadnezhad, F., Feyzi, M., & Zinadini, S. (2019). A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation. Journal of Industrial and Engineering Chemistry, 71, 99–111. https://doi.org/10.1016/j.jiec.2018.09.032
  • Mon, M., Lloret, F., Soria, J., Martí-Gastaldo, C., Armentano, D., & Pardo, E. (2016). Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angewandte Chemie, 128(37), 11333–11338. https://doi.org/10.1002/ange.201606015
  • Mondloch, J. E., Katz, M. J., Planas, N., Semrouni, D., Gagliardi, L., Hupp, J. T., & Farha, O. K. (2014). Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications (Cambridge, England), 50(64), 8944–8946. https://doi.org/10.1039/c4cc02401j
  • Mondloch, J. E., Karagiaridi, O., Farha, O. K., & Hupp, J. T. (2013). Activation of metal-organic framework materials. CrystEngComm, 15(45), 9258. https://doi.org/10.1039/c3ce41232f
  • Mondol, M., & Jhung, S. H. (2021). Adsorptive removal of pesticides from water with metal-organic framework-based materials. Chemical Engineering Journal and the Biochemical Engineering Journal, 421(1), 129688. https://doi.org/10.1016/j.cej.2021.129688
  • Morris, R. E. (2009). Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chemical Communications, 2009(21), 2990–2998. https://doi.org/10.1039/b902611h
  • Munn, A. S., Dunne, P. W., Tang, S. V. Y., & Lester, E. H. (2015). Large-scale continuous hydrothermal production and activation of ZIF-8. Chemical Communications (Cambridge, England), 51(64), 12811–12814. https://doi.org/10.1039/c5cc04636j
  • Nalaparaju, A., & Jiang, J. (2021). Metal-organic frameworks: Metal-organic frameworks for liquid phase applications. Advanced Science, 8(5), 2170025.
  • Nauman, E. B. (2008). Chemical reactor design, optimization, and scaleup. John Wiley & Sons, Inc.
  • Nelson, A. P., Farha, O. K., Mulfort, K. L., & Hupp, J. T. (2009). Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. Journal of the American Chemical Society, 131(2), 458–460. https://doi.org/10.1021/ja808853q
  • Newman, S. G., & Jensen, K. F. (2013). The role of flow in green chemistry and engineering. Green Chemistry, 15(6), 1456–1472. https://doi.org/10.1039/c3gc40374b
  • Nicomel, N. R., Leus, K., Folens, K., Voort, P. V. D., & Laing, G. D. (2015). Technologies for arsenic removal from water: current status and future perspectives. International Journal of Environmental Research and Public Health, 13(1), 62.
  • Okur, S., Qin, P., Chandresh, A., Li, C., Zhang, Z., Lemmer, U., & Heinke, L. (2021). An enantioselective e-nose: An array of nanoporous homochiral MOF films for stereospecific sensing of chiral odors. Angewandte Chemie (International ed. in English), 60(7), 3566–3571. https://doi.org/10.1002/anie.202013227
  • Oladipo, A. A., Vaziri, R., & Abureesh, M. A. (2018). Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: Application of artificial neural networks modelling. Journal of the Taiwan Institute of Chemical Engineers, 83, 133–142. https://doi.org/10.1016/j.jtice.2017.12.013
  • Ouyang, H., Chen, N., Chang, G., Zhao, X., Sun, Y., Chen, S., Zhang, H., & Yang, D. (2018). Selective capture of toxic selenite anions by bismuth-based metal-organic frameworks. Angewandte Chemie (International ed. in English), 57(40), 13197–13201. https://doi.org/10.1002/anie.201807891
  • Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Advances, 9(45), 26142–26164. https://doi.org/10.1039/C9RA05188K
  • Park, H. J., Lim, D. W., Yang, W. S., Oh, T. R., & Suh, M. P. (2011). A highly porous metal-organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature. Chemistry (Weinheim an der Bergstrasse, Germany), 17(26), 7251–7260. https://doi.org/10.1002/chem.201003376
  • Park, H. M., Jee, K. Y., & Lee, Y. T. (2017). Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. Journal of Membrane Science, 541, 510–518. https://doi.org/10.1016/j.memsci.2017.07.034
  • Peng, Y., Huang, H., Zhang, Y., Kang, C., Chen, S., Song, L., Liu, D., & Zhong, C. (2018). A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 9(1), 187. https://doi.org/10.1038/s41467-017-02600-2
  • Polyzoidis, Z., Altenburg, T., Schwarzer, M., Loebbecke, S., & Kaskel, S. (2016). Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chemical Engineering Journal, 283, 971–977.
  • Qian, X., Zhang, R., Chen, L., Lei, Y., & Xu, A. (2019). Surface hydrophobic treatment of water sensitive DUT-4 metal-organic framework to enhance water stability for hydrogen storage. ACS Sustainable Chemistry & Engineering, 7(19), 16007–16012. https://doi.org/10.1021/acssuschemeng.9b02559
  • Qiao, X., Ma, X., Ma, X., Yue, T., & Sheng, Q. (2021). A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets. Sensors and Actuators B: Chemical, 334, 129682. https://doi.org/10.1016/j.snb.2021.129682
  • Ragab, D., Gomaa, H. G., Sabouni, R., Salem, M., Ren, M., & Zhu, J. (2016). Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs). Chemical Engineering Journal and the Biochemical Engineering Journal, 300, 273–279. https://doi.org/10.1016/j.cej.2016.04.033
  • Rego, R. M., Kuriya, G., Kurkuri, M. D., & Kigga, M. (2021). MOF based engineered materials in water remediation: Recent trends. Journal of Hazardous Materials, 403, 123605. https://doi.org/10.1016/j.jhazmat.2020.123605
  • Ren, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordin. Chemical Reviews, 352, 187–219.
  • Ren, J., Musyoka, N. M., Langmi, H. W., Swartbooi, A., North, B. C., & Mathe, M. (2015). A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. International Journal of Hydrogen Energy, 40(13), 4617–4622. https://doi.org/10.1016/j.ijhydene.2015.02.011
  • Ren, Y., Li, T., Zhang, W., Wang, S., Shi, M., Shan, C., Zhang, W., Guan, X., Lv, L., Hua, M., & Pan, B. (2019). MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. Journal of Hazardous Materials, 365, 312–321. https://doi.org/10.1016/j.jhazmat.2018.11.013
  • Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Lado Ribeiro, A. R., Mascolo, G., McArdell, C. S., Schaar, H., Silva, A. M. T., & Fatta-Kassinos, D. (2019). Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. The Science of the Total Environment, 655, 986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265
  • Rubio-Martinez, M., Avci-Camur, C., Thornton, A. W., Imaz, I., Maspoch, D., & Hill, M. R. (2017). New synthetic routes towards MOF production at scale. Chemical Society Reviews, 46(11), 3453–3480. https://doi.org/10.1039/c7cs00109f
  • Sabetghadam, A., Liu, X., Gottmer, S., Chu, L., Gascon, J., & Kapteijn, F. (2019). Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactive™ for CO2 capture. Journal of Membrane Science, 570-571, 226–235. https://doi.org/10.1016/j.memsci.2018.10.047
  • Samari, M., Zinadini, S., Zinatizadeh, A. A., Jafarzadeh, M., & Gholami, F. (2020). Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Separation and Purification Technology, 251, 117010. https://doi.org/10.1016/j.seppur.2020.117010
  • Samsami, S., Mohamadi, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034
  • Seo, Y. K., Yoon, J. W., Lee, J. S., Lee, U. H., Hwang, Y. K., Jun, C. H., Horcajada, P., Serre, C., & Chang, J. S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137–145. https://doi.org/10.1016/j.micromeso.2012.02.027
  • Seoane, B., Coronas, J., Gascon, I., Etxeberria Benavides, M., Karvan, O., Caro, J., Kapteijn, F., & Gascon, J. (2015). Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture? Chemical Society Reviews, 44(8), 2421–2454. https://doi.org/10.1039/c4cs00437j
  • Shahrokhian, S., Sanati, E. K., & Hosseini, H. (2018). Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosensors & Bioelectronics, 112, 100–107. https://doi.org/10.1016/j.bios.2018.04.039
  • Shen, L., Liang, R., Luo, M., Jing, F., & Wu, L. (2015). Electronic effects of ligand substitution on metal-organic framework photocatalysts: The case study of UiO-66. Physical Chemistry Chemical Physics: PCCP, 17(1), 117–121. https://doi.org/10.1039/c4cp04162c
  • Soltani, R., Pelalak, R., Pishnamazi, M., & Marjani, A. (2021). A novel and facile green synthesis method to prepare LDH/MOF nanocomposite for removal of Cd(II) and Pb(II). Scientific Reports, 11, 1609.
  • Song, J. Y., & Jhung, S. H. (2017). Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chemical Engineering Journal and the Biochemical Engineering Journal, 322, 366–374. https://doi.org/10.1016/j.cej.2017.04.036
  • Song, D., Bae, J., Ji, H., Kim, M., Bae, Y., Park, K., Moon, D., & Jeong, N. (2019). Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework. Journal of the American Chemical Society, 141(19), 7853–7864. https://doi.org/10.1021/jacs.9b02114
  • Song, Y., Xu, M., Liu, X., Li, Z., Wang, C., Jia, Q., Zhang, Z., & Du, M. (2021). A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal – organic framework (MOF). Electrochimica Acta, 368, 137609. https://doi.org/10.1016/j.electacta.2020.137609
  • Sorribas, S., Gorgojo, P., Tellez, C., Coronas, J., & Livingston, A. G. (2013). High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 135(40), 15201–15208. https://doi.org/10.1021/ja407665w
  • Stolar, T., Batzdorf, L., Lukin, S., Zilic, D., Motillo, C., Friscic, T., Emmerling, F., Halasz, I., & Uzarevic, K. (2017). In situ monitoring of the mechanosynthesis of the archetypal metal-organic framework HKUST-1: Effect of liquid additives on the milling reactivity. Inorganic Chemistry, 56(11), 6599–6608. https://doi.org/10.1021/acs.inorgchem.7b00707
  • Sun, H., Tang, B., & Wu, P. (2018). Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. Journal of Membrane Science, 551, 283–293. https://doi.org/10.1016/j.memsci.2018.01.053
  • Taddei, M., Steitz, D. A., van Bokhoven, J. A., & Ranocchiari, M. (2016). Continuous-flow microwave synthesis of metal-organic frameworks: A highly efficient method for large-scale production. Chemistry (Weinheim an der Bergstrasse, Germany), 22(10), 3245–3249. https://doi.org/10.1002/chem.201505139
  • Tamames-Tabar, C., Cunha, D., Imbuluzqueta, E., Ragon, F., Serre, C., Blanco-Prieto, M. J., & Horcajada, P. (2014). Cytotoxicity of nanoscaled metal-organic frameworks. Journal of Materials Chemistry. B, 2(3), 262–271. https://doi.org/10.1039/c3tb20832j
  • Tan, T. L., Krusnamurthy, P. A. P., Nakajima, H., & Rashid, S. A. (2020). Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks. RSC Advances, 10(32), 18740–18752. https://doi.org/10.1039/D0RA01268H
  • Thomas-Hillman, I., Stevens, L. A., Lange, M., Möllmer, J., Lewis, W., Dodds, C., Kingman, S. W., & Laybourn, A. (2019). Developing a sustainable route to environmentally relevant metal-organic frameworks: Ultra-rapid synthesis of MFM-300(Al) using microwave heating. Green Chemistry, 21(18), 5039–5045. https://doi.org/10.1039/C9GC02375E
  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015). Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326–342.
  • Wagner, M., Lin, K. A., Oh, W., & Lisak, G. (2021). Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption—A mini review. Journal of Hazardous Materials, 413, 125325. https://doi.org/10.1016/j.jhazmat.2021.125325
  • Wang, C., Lee, M., Liu, X., Wang, B., Chen, J. P., & Li, K. (2016). A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation. Chemical Communications (Cambridge, England), 52(57), 8869–8872. https://doi.org/10.1039/C6CC02317G
  • Wang, C., Liu, X., Demir, N. K., Chen, J. P., & Li, K. (2016). Applications of water stable metal-organic frameworks. Chemical Society Reviews, 45(18), 5107–5134. https://doi.org/10.1039/c6cs00362a
  • Wang, F., Zheng, T., Xiong, R., Wang, P., & Ma, J. (2019). Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Chemosphere, 233, 524–531. https://doi.org/10.1016/j.chemosphere.2019.06.008
  • Wang, H., Wang, X., Liang, M., Chen, G., Kong, R. M., Xia, L., & Qu, F. (2020). A Boric acid-functionalized lanthanide metal-organic framework as a fluorescence “turn-on” probe for selective monitoring of Hg2+ and CH3Hg+. Analytical chemistry, 92(4), 3366–3372. https://doi.org/10.1021/acs.analchem.9b05410
  • Wang, H., Zhao, S., Liu, Y., Yao, R., Wang, X., Cao, Y., Ma, D., Zou, M., Cao, A., Feng, X., & Wang, B. (2019). Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications, 10(1), 4204. https://doi.org/10.1038/s41467-019-12114-8
  • Wang, S., Liao, Y., Farha, O. K., Xing, H., & Mirkin, C. A. (2018). Electrostatic purification of mixed-phase metal–organic framework nanoparticles. Chemistry of Materials, 30(15), 4877–4881. https://doi.org/10.1021/acs.chemmater.8b01164
  • Wang, S., & Wang, X. (2015). Multifunctional metal-organic frameworks for photocatalysis. Small, 11(26), 3097–3112.
  • Wang, Z., Zhang, J., Jiang, J., Wang, H., Wei, Z., Zhu, X., Pan, M., & Su, C. (2018). A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 6(36), 17698–17705. 6, https://doi.org/10.1039/C8TA06249H
  • Wei, R., Chi, H., Li, X., Lu, D., Wan, Y., Yang, C., & Lai, Z. (2020). Aqueously cathodic deposition of ZIF‐8 membranes for superior propylene/propane separation. Advanced Functional Materials, 30(7), 1907089. https://doi.org/10.1002/adfm.201907089
  • Whelan, É., W., Steuber, F., Gunnlaugsson, T., & Schmitt, W. (2021). Tuning photoactive metal-organic frameworks for luminescence and photocatalytic applications. Coordination Chemistry Reviews, 437(15), 213757. https://doi.org/10.1016/j.ccr.2020.213757
  • Wilbur, S., Abadin, H., Fay, M., Yu, D., Tencza, B., Ingerman, L., Klotzbach, J., & James, S. (2012). Toxicological Profile for Chromium. Agency for Toxic Substances and Disease Registry (US).
  • Woodliffe, J. L., Ferrari, R. S., Ahmed, I., & Laybourn, A. (2021). Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 428, 213578. https://doi.org/10.1016/j.ccr.2020.213578
  • Worrall, S. D., Bissett, M. A., Attfield, M. P., & Dryfe, R. A. W. (2018). Anodic dissolution growth of metal–organic framework HKUST-1 monitored via in situ electrochemical atomic force microscopy. CrystEngComm, 20(31), 4421–4427. https://doi.org/10.1039/C8CE00761F
  • Wu, G., Ma, J., Li, S., Guan, J., Jiang, B., Wang, L., Li, J., Wang, X., & Chen, L. (2018). Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. Journal of Colloid and Interface Science, 528, 360–371. https://doi.org/10.1016/j.jcis.2018.05.105
  • Xiao, S., Huo, X., Fan, S., Zhao, K., Yu, S., & Tan, X. (2021). Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance. Chinese Journal of Chemical Engineering, 29, 110–120. https://doi.org/10.1016/j.cjche.2020.05.030
  • Xu, G., An, Z., Xu, K., Liu, Q., Das, R., & Zhao, H. (2021). Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 427, 213554. https://doi.org/10.1016/j.ccr.2020.213554
  • Xu, N., Zhang, Q., Hou, B., Cheng, Q., & Zhang, G. (2018). A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(III) ions, pesticides, and antibiotics with high selectivity and sensitivity. Inorganic Chemistry, 57(21), 13330–13340. https://doi.org/10.1021/acs.inorgchem.8b01903
  • Xu, R., Jian, M., Ji, Q., Hu, C., Tang, C., Liu, R., Zhang, X., & Qu, J. (2020). 2D water-stable zinc-benzimidazole framework nanosheets for ultrafast and selective removal of heavy metals. Chemical Engineering Journal and the Biochemical Engineering Journal, 382, 122658. https://doi.org/10.1016/j.cej.2019.122658
  • Xu, W., Chen, H., Jie, K., Yang, Z., Li, T., & Dai, S. (2019). Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angewandte Chemie (International ed. in English), 58(15), 5018–5022. https://doi.org/10.1002/anie.201900787
  • Xu, W., Xue, W., Huang, H., Wang, J., Zhong, C., & Mei, D. (2021). Morphology controlled synthesis of α−Fe2O3−X with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis.
  • Xu, Y., Xiao, Y., Zhang, W., Lin, H., Shen, L., Li, R., Jiao, Y., & Liao, B. (2021). Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficiecnt desalination. Journal of Membrane Science, 618, 118726. https://doi.org/10.1016/j.memsci.2020.118726
  • Xue, Y., Ding, J., Sun, D., Cheng, W., Chen, X., Huang, X., & Wang, J. (2021). 3D Ln-MOFs as multi-responsive luminescent probes for efficient sensing of Fe3+, Cr2O72−, and antibiotics in aqueous solution. CrystEngComm, 23(21), 3838–3848. https://doi.org/10.1039/D1CE00399B
  • Xue, Y., Wang, P., Wang, C., & Ao, Y. (2018). Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere, 203, 497–505.
  • Yaghi, O. M., Li, G., & Li, H. (1995). Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378(6558), 703–706. https://doi.org/10.1038/378703a0
  • Yang, G., Jiang, X., Xu, H., & Zhao, B. (2021). Applications of MOFs as luminescent sensors for environmental pollutants. Small, 2021, 2005327.
  • Yang, J., & Yang, Y. W. (2020). Metal-organic frameworks for biomedical applications. Nano. Micro. Small, 16(10), 1906846.
  • Yang, J., Bai, H., Zhang, F., Liu, J., Winarta, J., Wang, Y., & Mu, B. (2019). Effects of activation temperature and densification on adsorption performance of MOF MIL-100(Cr). Journal of Chemical & Engineering Data, 64(12), 5814–5823. https://doi.org/10.1021/acs.jced.9b00770
  • Yang, Z.-R., Wang, M.-M., Wang, X.-S., & Yin, X.-B. (2017). Boric-acid-functional lanthanide metal-organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Analytical Chemistry, 89(3), 1930–1936. https://doi.org/10.1021/acs.analchem.6b04421
  • Yang, Q., Wang, J., Chen, X., Yang, W., Pei, H., Hu, N., Li, Z., Suo, Y., Li, T., & Wang, J. (2018). The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. Journal of Materials Chemistry A, 6(5), 2184–2192. https://doi.org/10.1039/C7TA08399H
  • Yang, X., Wen, Z., Wu, Z., & Luo, X. (2018). Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorganic Chemistry Frontiers, 5(3), 687–693. https://doi.org/10.1039/C7QI00752C
  • Yang, Y., Koh, K. Y., Li, R., Zhang, H., Yan, Y., & Chen, J. P. (2020). An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater. Journal of Hazardous Materials, 392, 121952. https://doi.org/10.1016/j.jhazmat.2019.121952
  • Yang, Y., Koh, K. Y., Huang, H., Zhang, H., Yan, Y., & Chen, J. P. (2021). Great enhancement in phosphate uptake onto lanthanum carbonate grafted microfibrous composite under a low-voltage electrostatic field. Chemosphere, 264, 128378. https://doi.org/10.1016/j.chemosphere.2020.128378
  • Yaws, C., & Richmond, P. (2009). Surface tension-organic compounds. In Thermophysical properties of chemicals and hydro-carbons (pp. 686−781). Elsevier.
  • Yu, W., Luo, M., Yang, Y., Wu, H., Huang, W., Zeng, K., & Feng, L. (2019). Metal-organic framework (MOF) showing both ultrahigh As(V) and As (III) removal from aqueous solution. Journal of Solid State Chemistry, 269, 264–270.
  • Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., & Zhou, H. C. (2018). Stable metal-organic frameworks: Design, synthesis, and applications. Advanced Materials, 30(37), 1704303. https://doi.org/10.1002/adma.201704303
  • Zhang, B., Qiu, W., Wang, P., Liu, Y., Zou, J., Wang, L., & Ma, J. (2019). Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal–organic frameworks. Chemical Engineering Journal and the Biochemical Engineering Journal, 385, 1235072.
  • Zhang, F., Yao, H., Zhao, Y., Li, X., Zhang, G., & Yang, Y. (2017). Mixed matrix membranes incorporated with Ln-MOF for selective and sensitive detection of nitrofuran antibiotics based on inner filter effect. Talanta, 174, 660–666. https://doi.org/10.1016/j.talanta.2017.07.007
  • Zhang, L., Wang, J., Ren, X., Zhang, W., Zhang, T., Liu, X., Du, T., Li, T., & Wang, J. (2018). Internally extended growth of core–shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(ii. Journal of Materials Chemistry A, 6(42), 21029–21038. https://doi.org/10.1039/C8TA07349J
  • Zhang, Q., Wu, Z., Lv, Y., Li, Y., Zhao, Y., Zhang, R., Xiao, Y., Shi, X., Zhang, D., Hua, R., Yao, J., Guo, J., Huang, R., Cui, Y., Kang, Z., Goswami, S., Robison, L., Song, K., Li, X., … Lu, G. (2019). Oxygen-assisted cathodic deposition of zeolitic imidazolate frameworks with controlled thickness. Angewandte Chemie (International ed. in English), 58(4), 1123–1128. https://doi.org/10.1002/anie.201808465
  • Zhang, X., Wang, J., Dong, X., & Lv, Y. (2020). Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 242, 125144. https://doi.org/10.1016/j.chemosphere.2019.125144
  • Zhang, Y., Wei, Y., Wang, B., Cui, X., Muhammad, Y., Huang, Z., Zhao, Z., Zhao, Z., & Li, X. (2018). Highly advanced degradation of thiamethoxam by synergistic chemisorption-catalysis strategy using MIL(Fe)/Fe-SPC composites with ultrasonic irradiation. ACS Appl Mater Interfaces, 10(41), 35260–35272. https://doi.org/10.1021/acsami.8b12908
  • Zhang, Y., Zheng, H., Zhang, P., Zheng, X., & Zuo, Q. (2021). A facile method to achieve dopamine polymerization in MOFs pore structure for efficient and selective removal of trace lead (II) ions from drinking water. Journal of Hazardous Materials, 408, 124917. https://doi.org/10.1016/j.jhazmat.2020.124917
  • Zhao, F., Liu, Y., Hammouda, S. B., Doshi, B., Guijarro, N., Min, X., Tang, C. J., Sillanpää, M., Sivula, K., & Wang, S. (2020). MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr (VI) and oxidation of bisphenol A in aqueous media. Applied Catalysis B: Environmental, 272, 119033. https://doi.org/10.1016/j.apcatb.2020.119033
  • Zhao, J., Xu, L., Su, Y., Yu, H., Liu, H., Qian, S., Zheng, W., & Zhao, Y. (2021). Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. Journal of Environmental Sciences, 101, 177–188. https://doi.org/10.1016/j.jes.2020.08.021
  • Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S. K., & Janiak, C. (2015). High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalton Transactions (Cambridge, England: 2003), 44(38), 16791–16801. https://doi.org/10.1039/C5DT02625C
  • Zhao, X., Zheng, M., Gao, X., Zhang, J., Wang, E., & Gao, Z. (2021). The application of MOFs-based materials for antibacterials adsorption. Coordination Chemistry Reviews, 440, 213970. https://doi.org/10.1016/j.ccr.2021.213970
  • Zheng, H., Wang, D., Sun, X., Jiang, S., Liu, Y., Zhang, D., & Zhang, L. (2021). Surface modified by green synthetic of Cu-MOF-74 to improve the anti-biofouling properties of PVDF membranes. Chemical Engineering Journal and the Biochemical Engineering Journal, 411, 128524. https://doi.org/10.1016/j.cej.2021.128524
  • Zhou, Y., Sun, T., Chan, M., Zhang, J., Han, Z., Wang, X., Toh, Y., Chen, J. P., & Yu, H. (2005). Scalable encapsulation of hepatocytes by electrostatic spraying. Journal of Biotechnology, 117(1), 99–109. https://doi.org/10.1016/j.jbiotec.2004.11.004
  • Zhu, Q. L., & Xu, Q. (2014). Metal-organic framework composites. Chemical Society Reviews, 43(16), 5468–5512. https://doi.org/10.1039/c3cs60472a
  • Zhu, Z., Jiang, S., Liu, Y., Gao, X., Hu, S., Zhang, X., Huang, C., Wan, Q., Wang, J., & Pei, X. (2020). Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Research, 13(2), 511–526. https://doi.org/10.1007/s12274-020-2642-y
  • Zong, L., Yang, Y., Yang, H., & Wu, X. (2020). Shapeable aerogels of metal-organic-frameworks supported by aramid nanofibrils for efficient adsorption and interception. ACS Applied Materials & Interfaces, 12(6), 7295–7301. https://doi.org/10.1021/acsami.9b22466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.