927
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

New advance in the application of compound-specific isotope analysis (CSIA) in identifying sources, transformation mechanisms and metabolism of brominated organic compounds

, ORCID Icon & ORCID Icon
Pages 3973-3996 | Published online: 22 Oct 2021

References

  • Abe, Y., Aravena, R., Zopfi, J., Shouakar-Stash, O., Cox, E., Roberts, J. D., & Hunkeler, D. (2009). Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environmental Science & Technology, 43(1), 101–107. https://doi.org/10.1021/es801759k
  • Ahad, J. M. E., Pakdel, H., Labarre, T., Cooke, C. A., Gammon, P. R., & Savard, M. M. (2021). Isotopic analyses fingerprint sources of polycyclic aromatic compound-bearing dust in Athabasca oil sands region snowpack. Environmental Science & Technology, 55(9), 5887–5897. https://doi.org/10.1021/acs.est.0c08339
  • Alaee, M., Arias, P., Sjodin, A., & Bergman, A. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29(6), 683–689. https://doi.org/10.1016/S0160-4120(03)00121-1
  • Balaban, N., Bernstein, A., Gelman, F., & Ronen, Z. (2016). Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: Laboratory and field study. Chemosphere, 156, 367–373. https://doi.org/10.1016/j.chemosphere.2016.04.127
  • Barrie, A., Bricout, J., & Koziet, J. (1984). Gas chromatography-stable isotope ratio analysis at natural abundance levels. Biological Mass Spectrometry, 11(11), 583–588. https://doi.org/10.1002/bms.1200111106
  • Beneteau, K. M., Aravena, R., & Frape, S. K. (1999). Isotopic characterization of chlorinated solvents-laboratory and field results. Organic Geochemistry, 30(8), 739–753. https://doi.org/10.1016/S0146-6380(99)00057-1
  • Bernstein, A., Ronen, Z., Levin, E., Halicz, L., & Gelman, F. (2013). Kinetic bromine isotope effect: Example from the microbial debromination of brominated phenols. Analytical and Bioanalytical Chemistry, 405(9), 2923–2929. https://doi.org/10.1007/s00216-012-6446-0
  • Burgoyne, T. W., & Hayes, J. M. (1998). Quantitative production of H-2 by pyrolysis of gas chromatographic effluents. Analytical Chemistry, 70(24), 5136–5141. https://doi.org/10.1021/ac980248v
  • Carrizo, D., Unger, M., Holmstrand, H., Andersson, P., Gustafsson, O., Sylva, S. P., & Reddy, C. M. (2011). Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environmental Chemistry, 8(2), 127–132. https://doi.org/10.1071/EN10090
  • Chen, L., Shouakar-Stash, O., Ma, T., Wang, C., & Liu, L. (2017). Significance of stable carbon and bromine isotopes in the source identification of PBDEs. Chemosphere, 186, 160–166. https://doi.org/10.1016/j.chemosphere.2017.07.109
  • Currier, H. A., Fremlin, K. M., Elliott, J. E., Drouillard, K. G., & Williams, T. D. (2020). Bioaccumulation and biomagnification of PBDEs in a terrestrial food chain at an urban landfill. Chemosphere, 238, 124577. https://doi.org/10.1016/j.chemosphere.2019.124577
  • de Wit, C. A., Alaee, M., & Muir, D. C. G. (2006). Levels and trends of brominated flame retardants in the Arctic. Chemosphere, 64(2), 209–233. https://doi.org/10.1016/j.chemosphere.2005.12.029
  • Dietz, R., Riget, F. F., Sonne, C., Born, E. W., Bechshoft, T., McKinney, M. A., Drimmie, R. J., Muir, D. C. G., & Letcher, R. J. (2013). Three decades (1983-2010) of contaminant trends in east greenland polar bears (Ursus maritimus). Part 2: Brominated flame retardants. Environment International, 59, 494–500. https://doi.org/10.1016/j.envint.2012.09.008
  • Drenzek, N. J., Tarr, C. H., Eglinton, T. I., Heraty, L. J., Sturchio, N. C., Shiner, V. J., & Reddy, C. M. (2002). Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds. Organic Geochemistry, 33(4), 437–444. https://doi.org/10.1016/S0146-6380(02)00004-9
  • Durand, A. P., Brown, R. G., Worrall, D., & Wilkinson, F. (1998). Study of the aqueous photochemistry of 4-fluorophenol, 4-bromophenol and 4-iodophenol by steady state and nanosecond laser flash photolysis. Journal of the Chemical Society, Perkin Transactions, 2(2), 365–370. https://doi.org/10.1039/a705287a
  • Elsner, M., & Imfeld, G. (2016). Compound-specific isotope analysis (CSIA) of micropollutants in the environment - current developments and future challenges. Current Opinion in Biotechnology, 41, 60–72. https://doi.org/10.1016/j.copbio.2016.04.014
  • Elsner, M., Jochmann, M. A., Hofstetter, T. B., Hunkeler, D., Bernstein, A., Schmidt, T. C., & Schimmelmann, A. (2012). Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 403(9), 2471–2491. https://doi.org/10.1007/s00216-011-5683-y
  • Elsner, M., Zwank, L., Hunkeler, D., & Schwarzenbach, R. P. (2005). A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environmental Science & Technology, 39(18), 6896–6916. https://doi.org/10.1021/es0504587
  • Falta, R. W., Bulsara, N., Henderson, J. K., & Mayer, R. A. (2005). Leaded-gasoline additives still contaminate groundwater. Environmental Science & Technology, 39(18), 378A–384A. https://doi.org/10.1021/es053352k
  • Fielman, K. T., Woodin, S. A., Walla, M. D., & Lincoln, D. E. (1999). Widespread occurrence of natural halogenated organics among temperate marine infauna. Marine Ecology Progress Series, 181, 1–12. https://doi.org/10.3354/meps181001
  • Fischer, A., Manefield, M., & Bombach, P. (2016). Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Current Opinion in Biotechnology, 41, 99–107. https://doi.org/10.1016/j.copbio.2016.04.026
  • Gelman, F., & Dybala-Defratyka, A. (2020). Bromine isotope effects: Predictions and measurements. Chemosphere, 246, 125746–125746. https://doi.org/10.1016/j.chemosphere.2019.125746
  • Gelman, F., & Halicz, L. (2010). High precision determination of bromine isotope ratio by GC-MC-ICPMS. International Journal of Mass Spectrometry, 289(2–3), 167–169. https://doi.org/10.1016/j.ijms.2009.10.004
  • Gribble, G. W. (1999). The diversity of naturally occurring organobromine compounds. Chemical Society Reviews, 28(5), 335–346. https://doi.org/10.1039/a900201d
  • Henderson, J. K., Freedman, D. L., Falta, R. W., Kuder, T., & Wilson, J. T. (2008). Anaerobic biodegradation of ethylene dibromide and 1,2-dichloroethane in the presence of fuel hydrocarbons. Environmental Science & Technology, 42(3), 864–870. https://doi.org/10.1021/es0712773
  • Hilkert, A. W., Douthitt, C. B., Schluter, H. J., & Brand, W. A. (1999). Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 1226–1230. https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13≤1226::AID-RCM575≥3.0.CO;2-9
  • Hitzfeld, K. L., Gehre, M., & Richnow, H.-H. (2011). A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Communications in Mass Spectrometry : RCM, 25(20), 3114–3122. https://doi.org/10.1002/rcm.5203
  • Hitzfeld, K. L., Gehre, M., & Richnow, H.-H. (2017). Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis. Isotopes in Environmental and Health Studies, 53(2), 116–133. https://doi.org/10.1080/10256016.2016.1215983
  • Holmstrand, H., Unger, M., Carrizo, D., Andersson, P., & Gustafsson, O. (2010). Compound-specific bromine isotope analysis of brominated diphenyl ethers using gas chromatography multiple collector/inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 24(14), 2135–2142. https://doi.org/10.1002/rcm.4629
  • Horst, A., Bonifacie, M., Bardoux, G., & Richnow, H. H. (2019). Isotopic characterization (2H, 13C, 37Cl, 81Br) of Abiotic Degradation of Methyl Bromide and Methyl Chloride in Water and Implications for Future Studies. Environmental Science & Technology, 53(15), 8813–8822. https://doi.org/10.1021/acs.est.9b02165
  • Horst, A., Holmstrand, H., Andersson, P., Andersson, A., Carrizo, D., Thornton, B. F., & Gustafsson, O. (2011). Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 25(17), 2425–2432. https://doi.org/10.1002/rcm.5144
  • Horst, A., Thornton, B. F., Holmstrand, H., Andersson, P., Crill, P. M., & Gustafsson, O. (2013). Stable bromine isotopic composition of atmospheric CH3Br. Tellus B: Chemical and Physical Meteorology, 65(1), 21040. https://doi.org/10.3402/tellusb.v65i0.21040
  • Huang, C., Zeng, Y., Luo, X., Ren, Z., Tang, B., Lu, Q., Gao, S., Wang, S., & Mai, B. (2019). In situ microbial degradation of PBDEs in sediments from an e-waste site as revealed by positive matrix factorization and compound-specific stable carbon isotope analysis. Environmental Science & Technology, 53(4), 1928–1936. https://doi.org/10.1021/acs.est.8b06110
  • Hunkeler, D., & Aravena, R. (2000). Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus. Applied and Environmental Microbiology, 66(11), 4870–4876. https://doi.org/10.1128/AEM.66.11.4870-4876.2000
  • Hunkeler, D., & Elsner, M. (2009). Principles and mechanisms of isotope fractionation. In C. M. Aelion (Ed.), Environmental isotopes in biodegradation and bioremediation. CRC.
  • Jendrzejewski, N., Eggenkamp, H. G. M., & Coleman, M. L. (2001). Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: Scope of application to environmental problems. Applied Geochemistry, 16(9–10), 1021–1031. https://doi.org/10.1016/S0883-2927(00)00083-4
  • Jones, K. C., & de Voogt, P. (1999). Persistent organic pollutants (POPs): State of the science. Environmental Pollution, 100(1–3), 209–221. https://doi.org/10.1016/S0269-7491(99)00098-6
  • Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Scholer, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403(6767), 298–301. https://doi.org/10.1038/35002055
  • Kozell, A., Yecheskel, Y., Balaban, N., Dror, I., Halicz, L., Ronen, Z., & Gelman, F. (2015). Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA). Environmental Science & Technology, 49(7), 4433–4440. https://doi.org/10.1021/es504887d
  • Kuder, T., Wilson, J. T., Kaiser, P., Kolhatkar, R., Philp, P., & Allen, J. (2005). Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: Microcosm and field evidence. Environmental Science & Technology, 39(1), 213–220. https://doi.org/10.1021/es040420e
  • Kuder, T., Wilson, J. T., Philp, P., & He, Y. T. (2012). Carbon isotope fractionation in reactions of 1,2-dibromoethane with FeS and hydrogen sulfide. Environmental Science & Technology, 46(14), 7495–7502. https://doi.org/10.1021/es300850x
  • Kuntze, K., Kozell, A., Richnow, H. H., Halicz, L., Nijenhuis, I., & Gelman, F. (2016). Dual carbon-bromine stable isotope analysis allows distinguishing transformation pathways of ethylene dibromide. Environmental Science & Technology, 50(18), 9855–9863. https://doi.org/10.1021/acs.est.6b01692
  • Leat, E. H. K., Bourgeon, S., Hanssen, S. A., Petersen, A., Strom, H., Bjorn, T. H., Gabrielsen, G. W., Bustnes, J. O., Furness, R. W., Haarr, A., & Borga, K. (2019). The effect of long-range transport, trophic position and diet specialization on legacy contaminant occurrence in great skuas, Stercorarius skua, breeding across the Northeast Atlantic. Environmental Pollution (Barking, Essex: 1987), 244, 55–65. https://doi.org/10.1016/j.envpol.2018.10.005
  • Lewandowicz, A., Rudziński, J., Tronstad, L., Widersten, M., Ryberg, P., Matsson, O., & Paneth, P. (2001). Chlorine kinetic isotope effects on the haloalkane dehalogenase reaction. Journal of the American Chemical Society, 123(19), 4550–4555. https://doi.org/10.1021/ja003503d
  • Lima, A. L. C., Farrington, J. W., & Reddy, C. M. (2005). Combustion-derived polycyclic aromatic hydrocarbons in the environment - A review. Environmental Forensics, 6(2), 109–131. https://doi.org/10.1080/15275920590952739
  • Lin, M., Ma, S., Yu, Y., Li, G., Mai, B., & An, T. (2020). Simultaneous determination of multiple classes of phenolic compounds in human urine: Insight into metabolic biomarkers of occupational exposure to e-waste. Environmental Science & Technology Letters, 7(5), 323–329. https://doi.org/10.1021/acs.estlett.0c00187
  • Lipczynska-Kochany, E. (1992). Direct photolysis of 4-bromophenol and 3-bromophenol as studied by a flash/HPLC technique. Chemosphere, 24(7), 911–918. https://doi.org/10.1016/0045-6535(92)90009-G
  • Lippold, A., Bourgeon, S., Aars, J., Andersen, M., Polder, A., Lyche, J. L., Bytingsvik, J., Jenssen, B. M., Derocher, A. E., Welker, J. M., & Routti, H. (2019). Temporal trends of persistent organic pollutants in barents sea polar bears (Ursus maritimus) in Relation to Changes in Feeding Habits and Body Condition. Environmental Science & Technology, 53(2), 984–995. https://doi.org/10.1021/acs.est.8b05416
  • Lollar, B. S., Slater, G. F., Sleep, B., Witt, M., Klecka, G. M., Harkness, M., & Spivack, J. (2001). Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base. Environmental Science & Technology, 35(2), 261–269. https://doi.org/10.1021/es001227x
  • Lopes, A. A., Pereira, V. B., Amora-Nogueira, L., Marotta, H., Moreira, L. S., Cordeiro, R. C., Vanini, G., & Azevedo, D. A. (2021). Hydrocarbon sedimentary organic matter composition from different water-type floodplain lakes in the Brazilian Amazon. Organic Geochemistry, 159, 104287. https://doi.org/10.1016/j.orggeochem.2021.104287
  • Loseth, M. E., Briels, N., Eulaers, I., Nygard, T., Malarvannan, G., Poma, G., Covaci, A., Herzke, D., Bustnes, J. O., Lepoint, G., Jenssen, B. M., & Jaspers, V. L. B. (2019). Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings - The role of age and diet. Environmental Pollution (Barking, Essex: 1987), 246, 527–534. https://doi.org/10.1016/j.envpol.2018.12.028
  • Luo, X. J., Zeng, Y. H., Chen, H. S., Wu, J. P., Chen, S. J., & Mai, B. X. (2013). Application of compound-specific stable carbon isotope analysis for the biotransformation and trophic dynamics of PBDEs in a feeding study with fish. Environmental Pollution (Barking, Essex: 1987), 176, 36–41. https://doi.org/10.1016/j.envpol.2013.01.025
  • Manna, R. N., Grzybkowska, A., Gelman, F., & Dybala-Defratyka, A. (2018). Carbon-bromine bond cleavage - A perspective from bromine and carbon kinetic isotope effects on model debromination reactions. Chemosphere, 193, 17–23. https://doi.org/10.1016/j.chemosphere.2017.10.153
  • Marlier, J. F. (2001). Multiple isotope effects on the acyl group transfer reactions of amides and esters. Accounts of Chemical Research, 34(4), 283–290. https://doi.org/10.1021/ar000054d
  • McKinney, C. R., McCrea, J. M., Epstein, S., Allen, H. A., & Urey, H. C. (1950). Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. The Review of Scientific Instruments, 21(8), 724–730. https://doi.org/10.1063/1.1745698
  • Meckenstock, R. U., Morasch, B., Griebler, C., & Richnow, H. H. (2004). Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. Journal of Contaminant Hydrology, 75(3–4), 215–255. https://doi.org/10.1016/j.jconhyd.2004.06.003
  • Melander, L., & Saunders, W. H. J. (1980). Reaction rates of isotopic molecules. John Wiley & Sons; Wiley Interscience Publication.
  • Meyer, A. H., & Elsner, M. (2013). 13C/12C and 15N/14N isotope analysis to characterize degradation of atrazine: Evidence from parent and daughter compound values. Environmental Science & Technology, 47(13), 6884–6891. https://doi.org/10.1021/es305242q
  • Munschy, C., Heas-Moisan, K., Tixier, C., Olivier, N., Gastineau, O., Le Bayon, N., & Buchet, V. (2011). Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 1. Bioaccumulation and elimination kinetics of individual congeners and their debrominated metabolites. Environmental Pollution (Barking, Essex: 1987), 159(1), 229–237. https://doi.org/10.1016/j.envpol.2010.09.001
  • Nier, A. O. (1947). A mass spectrometer for isotope and gas analysis. The Review of Scientific Instruments, 18(6), 398–411. https://doi.org/10.1063/1.1740961
  • Nijenhuis, I., & Richnow, H. H. (2016). Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Current Opinion in Biotechnology, 41, 108–113. https://doi.org/10.1016/j.copbio.2016.06.002
  • Palau, J., Cretnik, S., Shouakar-Stash, O., Höche, M., Elsner, M., & Hunkeler, D. (2014a). C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ¹³C/δ³37Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation. Environmental Science & Technology, 48(16), 9430–9437. https://doi.org/10.1021/es5031917
  • Palau, J., Shouakar-Stash, O., & Hunkeler, D. (2014b). Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane. Environmental Science & Technology, 48(24), 14400–14408. https://doi.org/10.1021/es504252z
  • Paneth, P., & O'Leary, M. H. (1991). Nitrogen and deuterium-isotope effects on quaternization of N,N-dimethyl-para-toluidine. Journal of the American Chemical Society, 113(5), 1691–1693. https://doi.org/10.1021/ja00005a037
  • Paul, D., Skrzypek, G., & Forizs, I. (2007). Normalization of measured stable isotopic compositions to isotope reference scales-a review. Rapid Communications in Mass Spectrometry: RCM, 21(18), 3006–3014. https://doi.org/10.1002/rcm.3185
  • Pelizzetti, E., & Calza, P. (2002). Chemistry of Marine Water and Sediment. (Springer.
  • Pignatello, J. J., & Cohen, S. Z. (1990). Environmental chemistry of ethylene dibromide in soil and ground water. Reviews of Environmental Contamination and Toxicology, 112, 1–47. https://doi.org/10.1007/978-1-4612-3342-8_1
  • Pinhey, J. T., & Rigby, R. D. G. (1969). Photo-reduction of chloro- and bromo-aromatic compounds. Tetrahedron Letters, 10(16), 1267–1270. https://doi.org/10.1016/S0040-4039(01)87859-X
  • Poma, G., Volta, P., Roscioli, C., Bettinetti, R., & Guzzella, L. (2014). Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy). The Science of the Total Environment, 481, 401–408. https://doi.org/10.1016/j.scitotenv.2014.02.063
  • Preston, T. (1992). The measurement of stable isotope natural abundance variations. Plant, Cell and Environment, 15(9), 1091–1097. https://doi.org/10.1111/j.1365-3040.1992.tb01659.x
  • Preston, T., & Owens, N. J. P. (1983). Interfacing an automatic elemental analyser with an isotope ratio mass sepectrometer: The potential for fully automated total nitrogen and nitrogen-15 analysis. The Analyst, 108(1289), 971–977. https://doi.org/10.1039/an9830800971
  • Preston, T., & Owens, N. J. P. (1985). Preliminary 13C measurements using a gas chromatograph interfaced to an isotope ratio mass spectrometer. Biological Mass Spectrometry, 12(9), 510–513. https://doi.org/10.1002/bms.1200120913
  • Preston, T., & Slater, C. (1994). Mass spectrometric analysis of stable-isotope-labelled amino acid tracers. The Proceedings of the Nutrition Society, 53(2), 363–372. https://doi.org/10.1079/pns19940042
  • Ratti, M., Canonica, S., McNeill, K., Erickson, P. R., Bolotin, J., & Hofstetter, T. B. (2015). Isotope fractionation associated with the direct photolysis of 4-chloroaniline. Environmental Science & Technology, 49(7), 4263–4273. https://doi.org/10.1021/es505784a
  • Roberts, S. C., Noyes, P. D., Gallagher, E. P., & Stapleton, H. M. (2011). Species-specific differences and structure-activity relationships in the debromination of PBDE congeners in three fish species. Environmental Science & Technology, 45(5), 1999–2005. https://doi.org/10.1021/es103934x
  • Sessions, A. L. (2006). Isotope-ratio detection for gas chromatography. Journal of Separation Science, 29(12), 1946–1961. https://doi.org/10.1002/jssc.200600002
  • Sohn, S. Y., Kuntze, K., Nijenhuis, I., & Häggblom, M. M. (2018). Evaluation of carbon isotope fractionation during anaerobic reductive dehalogenation of chlorinated and brominated benzenes. Chemosphere, 193, 785–792. https://doi.org/10.1016/j.chemosphere.2017.11.089
  • Stapleton, H. M., Letcher, R. J., & Baker, J. E. (2004). Debromination of polybrominated diphenyl ether congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (Cyprinus carpio). Environmental Science & Technology, 38(4), 1054–1061. https://doi.org/10.1021/es0348804
  • Sun, F., Mellage, A., Gharasoo, M., Melsbach, A., Cao, X., Zimmermann, R., Griebler, C., Thullner, M., Cirpka, O. A., & Elsner, M. (2021). Mass-transfer-limited biodegradation at low concentrations-evidence from reactive transport modeling of isotope profiles in a bench-scale aquifer. Environmental Science & Technology, 55(11), 7386–7397. https://doi.org/10.1021/acs.est.0c08566
  • Sylva, S. P., Ball, L., Nelson, R. K., & Reddy, C. M. (2007). Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 21(20), 3301–3305. https://doi.org/10.1002/rcm.3211
  • Szatkowski, L., Dybala-Defratyka, A., Batarseh, C., Blum, J., Halicz, L., & Gelman, F. (2013). Bromine kinetic isotope effects: Insight into Grignard reagent formation. New Journal of Chemistry, 37(8), 2241–2244. https://doi.org/10.1039/c3nj00197k
  • Tang, X., Yang, Y., Huang, W., McBride, M. B., Guo, J., Tao, R., & Dai, Y. (2017). Transformation of chlorpyrifos in integrated recirculating constructed wetlands (IRCWs) as revealed by compound-specific stable isotope (CSIA) and microbial community structure analysis. Bioresource Technology, 233, 264–270. https://doi.org/10.1016/j.biortech.2017.02.077
  • Teuten, E. L., King, G. M., & Reddy, C. M. (2006). Natural C-14 in Saccoglossus bromophenolosus compared to C-14 in surrounding sediments. Marine Ecology Progress Series, 324, 167–172. https://doi.org/10.3354/meps324167
  • Thanh, W., Yu, J., Wang, P., & Zhang, Q. (2016). Levels and distribution of polybrominated diphenyl ethers in the aquatic and terrestrial environment around a wastewater treatment plant. Environmental Science and Pollution Research International, 23(16), 16440–16447. https://doi.org/10.1007/s11356-016-6828-5
  • Theiler, R., Cook, J. C., Hager, L. P., & Siuda, J. F. (1978). Halohydrocarbon synthesis by bromoperoxidase. Science (New York, NY), 202(4372), 1094–1096. https://doi.org/10.1126/science.202.4372.1094
  • Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., Francisco del Valle, H., Wilcke, W., & Glaser, B. (2014). Oxygen isotope ratios (O-18/O-16) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study. Geochimica Et Cosmochimica Acta, 126, 624–634. https://doi.org/10.1016/j.gca.2013.11.002
  • Vanstone, N., Elsner, M., Lacrampe-Couloume, G., Mabury, S., & Lollar, B. S. (2008). Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation. Environmental Science & Technology, 42(1), 126–132. https://doi.org/10.1021/es0711819
  • Vetter, W., Gaul, S., & Armbruster, W. (2008). Stable carbon isotope ratios of POPS - A tracer that can lead to the origins of pollution. Environment International, 34(3), 357–362. https://doi.org/10.1016/j.envint.2007.03.010
  • Wang, X., Hu, X., Zhang, H., Chang, F., & Luo, Y. (2015). Photolysis kinetics, mechanisms, and pathways of tetrabromobisphenol A in water under simulated solar light irradiation. Environmental Science & Technology, 49(11), 6683–6690. https://doi.org/10.1021/acs.est.5b00382
  • Willey, J. F., & Taylor, J. W. (1978). Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide samples. Analytical Chemistry, 50(13), 1930–1933. https://doi.org/10.1021/ac50035a050
  • Willey, J. F., & Taylor, J. W. (1980). Temperature dependence of bromine kinetic isotope effects for reactions of n-butyl and tert-butyl bromides. Journal of the American Chemical Society, 102(7), 2387–2391. https://doi.org/10.1021/ja00527a042
  • Woods, A., Kuntze, K., Gelman, F., Halicz, L., & Nijenhuis, I. (2018). Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes. Chemosphere, 190, 211–217. https://doi.org/10.1016/j.chemosphere.2017.09.128
  • Xiong, J., Li, G., & An, T. (2015). Development of methodology for the determination of carbon isotope ratios using gas chromatography/combustion/isotope ratio mass spectrometry and applications in the biodegradation of phenolic brominated flame retardants and their degradation products. Rapid Communications in Mass Spectrometry: RCM, 29(1), 54–60. https://doi.org/10.1002/rcm.7072
  • Xiong, J., Li, G., An, T., Zhang, C., & Wei, C. (2016). Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. Environmental Pollution, 219, 596–603. https://doi.org/10.1016/j.envpol.2016.06.021
  • Xiong, J., Li, G., Peng, P. A., Gelman, F., Ronen, Z., & An, T. (2020). Mechanism investigation and stable isotope change during photochemical degradation of tetrabromobisphenol A (TBBPA) in water under LED white light irradiation. Chemosphere, 258, 127378. https://doi.org/10.1016/j.chemosphere.2020.127378
  • Yanik, P. J., O'Donnell, T. H., Macko, S. A., Qian, Y., & Kennicutt, M. C. (2003). Source apportionment of polychlorinated biphenyls using compound specific isotope analysis. Organic Geochemistry, 34(2), 239–251. https://doi.org/10.1016/S0146-6380(02)00163-8
  • Yu, Y., Lou, S., Wang, X., Lu, S., Ma, S., Li, G., Feng, Y., Zhang, X., & An, T. (2019). Relationships between the bioavailability of polybrominated diphenyl ethers in soils measured with female C57BL/6 mice and the bioaccessibility determined using five in vitro methods. Environ Int, 123, 337–344. https://doi.org/10.1016/j.envint.2018.12.022
  • Żaczek, S., Gelman, F., & Dybala-Defratyka, A. (2017). A benchmark study of kinetic isotope effects and barrier heights for the finkelstein reaction. The Journal of Physical Chemistry. A, 121(12), 2311–2321. https://doi.org/10.1021/acs.jpca.7b00230
  • Zakon, Y., Halicz, L., & Gelman, F. (2013). Bromine and carbon isotope effects during photolysis of brominated phenols. Environmental Science & Technology, 47(24), 14147–14153. https://doi.org/10.1021/es403545r
  • Zakon, Y., Halicz, L., & Gelman, F. (2021). Delta C-13 compound-specific isotope analysis in organic compounds by GC/MC-ICPMS. Journal of Analytical Atomic Spectrometry, 36(9), 1884–1888. https://doi.org/10.1039/D1JA00096A
  • Zeng, Y. H., Luo, X. J., Yu, L. H., Chen, H. S., Wu, J. P., Chen, S. J., & Mai, B. X. (2013). Using compound-specific stable carbon isotope analysis to trace metabolism and trophic transfer of PCBs and PBDEs in fish from an e-waste site, South China. Environmental Science & Technology, 47(9), 4062–4068. https://doi.org/10.1021/es304558y
  • Zhang, X. L., Luo, X. J., Liu, H. Y., Yu, L. H., Chen, S. J., & Mai, B. X. (2011). Bioaccumulation of several brominated flame retardants and dechlorane plus in waterbirds from an e-waste recycling region in South China: Associated with trophic level and diet sources. Environmental Science & Technology, 45(2), 400–405. https://doi.org/10.1021/es102251s
  • Zwank, L., Berg, M., Elsner, M., Schmidt, T. C., Schwarzenbach, R. P., & Haderlein, S. B. (2005). New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: Application to groundwater contamination by MTBE. Environmental Science & Technology, 39(4), 1018–1029. https://doi.org/10.1021/es049650j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.