2,075
Views
4
CrossRef citations to date
0
Altmetric
Invited Reviews

Particulate matter (PM) oxidative potential: Measurement methods and links to PM physicochemical characteristics and health effects

ORCID Icon & ORCID Icon
Pages 177-197 | Published online: 15 Mar 2022

References

  • Abrams, J. Y., Weber, R. J., Klein, M., Sarnat, S. E., Chang, H. H., Strickland, M. J., Verma, V., Fang, T., Bates, J. T., Mulholland, J. A., Russell, A. G., & Tolbert, P. E. (2017). Associations between ambient fine particulate oxidativse potential and cardiorespiratory emergency department visits. Environmental Health Perspectives, 125(10), 107008. https://doi.org/10.1289/EHP1545
  • Adetona, O., Zhang, J. J., Hall, D. B., Wang, J.-S., Vena, J. E., & Naeher, L. P. (2013). Occupational exposure to woodsmoke and oxidative stress in wildland firefighters. The Science of the Total Environment, 449, 269–275. https://doi.org/10.1016/j.scitotenv.2013.01.075
  • Agranovski, I., Moustafa, S., & Braddock, R. (2005). Performance of activated carbon loaded fibrous filters on simultaneous removal of particulate and gaseous pollutants. Environmental Technology, 26(7), 757–766. https://doi.org/10.1080/09593332608618516
  • Allen, R. W., & Barn, P. (2020). Individual- and household-level interventions to reduce air pollution exposures and health risks: A review of the recent literature. Current Environmental Health Reports, 7(4), 424–417. https://doi.org/10.1007/s40572-020-00296-z
  • Andrade, C., Molina, C., Sánchez, L. F., Manzano, C. A., Toro A, R., & Leiva G, M. A. (2021). Exploring the oxidative potential and respiratory deposition of size-segregated particulate matter at an urban site. Journal of South American Earth Sciences, 105, 102957. https://doi.org/10.1016/j.jsames.2020.102957
  • Antiñolo, M., Willis, M. D., Zhou, S., & Abbatt, J. P. (2015). Connecting the oxidation of soot to its redox cycling abilities. Nature Communications, 6(1), 1–7. https://doi.org/10.1038/ncomms7812
  • Atkinson, R. W., Samoli, E., Analitis, A., Fuller, G. W., Green, D. C., Anderson, H. R., Purdie, E., Dunster, C., Aitlhadj, L., Kelly, F. J., & Mudway, I. S. (2016). Short-term associations between particle oxidative potential and daily mortality and hospital admissions in London. International Journal of Hygiene and Environmental Health, 219(6), 566–572. https://doi.org/10.1016/j.ijheh.2016.06.004
  • Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., & Russell, A. G. (2019). Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects. Environmental Science & Technology, 53(8), 4003–4019. https://doi.org/10.1021/acs.est.8b03430
  • Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., & Russell, A. G. (2015). Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environmental Science & Technology, 49(22), 13605–13612. https://doi.org/10.1021/acs.est.5b02967
  • Batterman, S., Du, L., Mentz, G., Mukherjee, B., Parker, E., Godwin, C., Chin, J.-Y., O'Toole, A., Robins, T., Rowe, Z., & Lewis, T. (2012). Particulate matter concentrations in residences: An intervention study evaluating stand-alone filters and air conditioners . Indoor Air, 22(3), 235–252. https://doi.org/10.1111/j.1600-0668.2011.00761.x
  • Bhatnagar, A. (2004). Cardiovascular pathophysiology of environmental pollutants. American Journal of Physiology. Heart and Circulatory Physiology, 286(2), H479–H485. https://doi.org/10.1152/ajpheart.00817.2003
  • Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution. The Lancet. Planetary Health, 2(7), e301–e312. https://doi.org/10.1016/S2542-5196(18)30140-2
  • Brehmer, C., Norris, C., Barkjohn, K. K., Bergin, M. H., Zhang, J., Cui, X., Teng, Y., Zhang, Y., Black, M., Li, Z., Shafer, M., & Schauer, J. J. (2020). The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environmental Research, 181, 108919. https://doi.org/10.1016/j.envres.2019.108919
  • Brehmer, C., Norris, C., Barkjohn, K. K., Bergin, M. H., Zhang, J., Cui, X., Zhang, Y., Black, M., Li, Z., Shafer, M., & Schauer, J. J. (2019). The impact of household air cleaners on the chemical composition and children's exposure to PM2.5 metal sources in suburban Shanghai. Environmental Pollution (Barking, Essex: 1987), 253, 190–198. https://doi.org/10.1016/j.envpol.2019.07.003
  • Brown, D. M., Stone, V., Findlay, P., Macnee, W., & Donaldson, K. (2000). Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine, 57(10), 685–691. https://doi.org/10.1136/oem.57.10.685
  • Calas, A., Uzu, G., Martins, J. M., Voisin, D., Spadini, L., Lacroix, T., & Jaffrezo, J.-L. (2017). The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-11979-3
  • Campbell, S. J., Utinger, B., Lienhard, D. M., Paulson, S. E., Shen, J., Griffiths, P. T., Stell, A. C., & Kalberer, M. (2019). Development of a physiologically relevant online chemical assay to quantify aerosol oxidative potential. Analytical Chemistry, 91(20), 13088–13095. https://doi.org/10.1021/acs.analchem.9b03282
  • Charrier, J. G., Richards-Henderson, N. K., Bein, K. J., McFall, A. S., Wexler, A. S., & Anastasio, C. (2015). Oxidant production from source-oriented particulate matter–Part 1: Oxidative potential using the dithiothreitol (DTT) assay. Atmospheric Chemistry and Physics, 15(5), 2327–2340. https://doi.org/10.5194/acp-15-2327-2015
  • Chen, P., Chang, H., Chang, J., & Lin, P. (2012). Aryl hydrocarbon receptor in association with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene, 31(20), 2555–2565. https://doi.org/10.1038/onc.2011.438
  • Chlebowski, A. C., Garcia, G. R., La Du, J. K., Bisson, W. H., Truong, L., Massey Simonich, S. L., & Tanguay, R. L. (2017). Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicological Sciences: An Official Journal of the Society of Toxicology, 157(1), 246–259. https://doi.org/10.1093/toxsci/kfx035
  • Cho, C.-C., Hsieh, W.-Y., Tsai, C.-H., Chen, C.-Y., Chang, H.-F., & Lin, C.-S. (2018). In vitro and in vivo experimental studies of PM2. 5 on disease progression. International Journal of Environmental Research and Public Health, 15(7), 1380. https://doi.org/10.3390/ijerph15071380
  • Chowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., & Pardo, M. (2019). Connecting the oxidative potential of secondary organic aerosols with reactive oxygen species in exposed lung cells. Environmental Science & Technology, 53(23), 13949–13958. https://doi.org/10.1021/acs.est.9b04449
  • Cooper, D. M., & Loxham, M. (2019). Particulate matter and the airway epithelium: The special case of the underground? European Respiratory Review, 28(153), 190066. https://doi.org/10.1183/16000617.0066-2019
  • Crobeddu, B., Aragao-Santiago, L., Bui, L.-C., Boland, S., & Squiban, A. B. (2017). Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environmental Pollution (Barking, Essex: 1987), 230, 125–133. https://doi.org/10.1016/j.envpol.2017.06.051
  • Cui, X., Li, Z., Teng, Y., Barkjohn, K. K., Norris, C. L., Fang, L., Daniel, G. N., He, L., Lin, L., Wang, Q., Day, D. B., Zhou, X., Hong, J., Gong, J., Li, F., Mo, J., Zhang, Y., Schauer, J. J., Black, M. S., Bergin, M. H., & Zhang, J. (2020). Association between bedroom particulate matter filtration and changes in airway pathophysiology in children with asthma. JAMA Pediatrics, 174(6), 533–542. https://doi.org/10.1001/jamapediatrics.2020.0140
  • Cui, X., Li, F., Xiang, J., Fang, L., Chung, M. K., Day, D. B., Mo, J., Weschler, C. J., Gong, J., He, L., Zhu, D., Lu, C., Han, H., Zhang, Y., & Zhang, J. J. (2018). Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: A double-blind randomized crossover study. Environment International, 114, 27–36. https://doi.org/10.1016/j.envint.2018.02.010
  • Daher, N., Ruprecht, A., Invernizzi, G., De Marco, C., Miller-Schulze, J., Heo, J. B., Shafer, M. M., Shelton, B. R., Schauer, J. J., & Sioutas, C. (2012). Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmospheric Environment, 49, 130–141. https://doi.org/10.1016/j.atmosenv.2011.12.011
  • Daher, N., Saliba, N. A., Shihadeh, A. L., Jaafar, M., Baalbaki, R., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2014). Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area. Science of the Total Environment, 470-471, 417–426. https://doi.org/10.1016/j.scitotenv.2013.09.104
  • Dastoorpoor, M., Riahi, A., Yazdaninejhad, H., Borsi, S. H., Khanjani, N., Khodadadi, N., Mohammadi, M. J., & Aghababaeian, H. (2021). Exposure to particulate matter and carbon monoxide and cause-specific Cardiovascular-Respiratory disease mortality in Ahvaz. Toxin Reviews, 40(4), 1362–1311. https://doi.org/10.1080/15569543.2020.1716256
  • Delfino, R. J., Quintana, P. J., Floro, J., Gastañaga, V. M., Samimi, B. S., Kleinman, M. T., Liu, L. S., Bufalino, C., Wu, C.-F., & McLaren, C. E. (2004). Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environmental Health Perspectives, 112(8), 932–941. https://doi.org/10.1289/ehp.6815
  • Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D., Kleinman, M. T., Sioutas, C., & Cooper, D. (2008). Personal and ambient air pollution exposures and lung function decrements in children with asthma. Environmental Health Perspectives, 116(4), 550–558. https://doi.org/10.1289/ehp.10911
  • Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D. L., Schauer, J. J., & Shafer, M. M. (2013). Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Science & Environmental Epidemiology, 23(5), 466–473. https://doi.org/10.1038/jes.2013.25
  • Elder, A., & Oberdörster, G. (2006). Translocation and effects of ultrafine particles outside of the lung. Clinics in Occupational and Environmental Medicine, 5, 785–796. https://doi.org/10.1016/j.coem.2006.07.003
  • Fang, T., Lakey, P. S., Weber, R. J., & Shiraiwa, M. (2019). Oxidative potential of particulate matter and generation of reactive oxygen species in epithelial lining fluid. Environmental Science & Technology, 53(21), 12784–12792. https://doi.org/10.1021/acs.est.9b03823
  • Fang, T., Verma, V., Bates, J., Abrams, J., Klein, M., Strickland, M., Sarnat, S., Chang, H., Mulholland, J., Tolbert, P., Russell, A. G., & Weber, R. J. (2016). Oxidative potential of ambient water-soluble PM 2.5 measured by dithiothreitol (DTT) and ascorbic acid (AA) assays in the southeastern United States: Contrasts in sources and health associations. Atmospheric Chemistry and Physics, 16(6), 3865–3879. https://doi.org/10.5194/acp-16-3865-2016
  • Fang, T., Zeng, L., Gao, D., Verma, V., Stefaniak, A. B., & Weber, R. J. (2017). Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: Contrast between soluble and insoluble particles. Environmental Science & Technology, 51(12), 6802–6811. https://doi.org/10.1021/acs.est.7b01536
  • Farrow, A., Taylor, H., & Golding, J. (1997). Time spent in the home by different family members. Environmental Technology, 18(6), 605–613. https://doi.org/10.1080/09593331808616578
  • Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67–74. https://doi.org/10.1016/j.ecoenv.2016.01.030
  • Forman, H. J., & Finch, C. E. (2018). A critical review of assays for hazardous components of air pollution. Free Radical Biology & Medicine, 117, 202–217. https://doi.org/10.1016/j.freeradbiomed.2018.01.030
  • Fujitani, Y., Furuyama, A., Tanabe, K., & Hirano, S. (2017). Comparison of oxidative abilities of PM2. 5 collected at traffic and residential sites in Japan. Contribution of transition metals and primary and secondary aerosols. Aerosol and Air Quality Research, 17(2), 574–587. https://doi.org/10.4209/aaqr.2016.07.0291
  • Fuller, S., Wragg, F., Nutter, J., & Kalberer, M. (2014). Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols. Atmospheric Environment, 92, 97–103. https://doi.org/10.1016/j.atmosenv.2014.04.006
  • Goldsmith, C.-A., Frevert, C., Imrich, A., Sioutas, C., & Kobzik, L. (1997). Alveolar macrophage interaction with air pollution particulates. Environmental Health Perspectives, 105, 1191–1195. https://doi.org/10.2307/3433531
  • Guo, H., Jin, L., & Huang, S. (2020). Effect of PM characterization on PM oxidative potential by acellular assays: A review. Reviews on Environmental Health, 35(4), 461–470. https://doi.org/10.1515/reveh-2020-0003
  • Guo, H-b., Li, M., Lyu, Y., Cheng, T-t., Xv, JJ., & Li, X. (2019). Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals. Environmental Pollution (Barking, Essex: 1987), 246, 704–709. https://doi.org/10.1016/j.envpol.2018.12.094
  • Gutiérrez-Vázquez, C., & Quintana, F. J. (2018). Regulation of the immune response by the aryl hydrocarbon receptor. Immunity, 48(1), 19–33. https://doi.org/10.1016/j.immuni.2017.12.012
  • Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Science of the Total Environment, 249(1-3), 85–101. https://doi.org/10.1016/S0048-9697(99)00513-6
  • Hayes, R. B., Lim, C., Zhang, Y., Cromar, K., Shao, Y., Reynolds, H. R., Silverman, D. T., Jones, R. R., Park, Y., Jerrett, M., Ahn, J., & Thurston, G. D. (2020). PM2.5 air pollution and cause-specific cardiovascular disease mortality. International Journal of Epidemiology, 49(1), 25–35. https://doi.org/10.1093/ije/dyz114
  • He, L., Cui, X., Li, Z., Teng, Y., Barkjohn, K. K., Norris, C., Fang, L., Lin, L., Wang, Q., Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J. J., Black, M., Bergin, M. H., & Zhang, J. J. (2020a). Malondialdehyde in nasal fluid: A biomarker for monitoring asthma control in relation to air pollution exposure. Environmental Science & Technology, 54(18), 11405–11413. https://doi.org/10.1021/acs.est.0c02558
  • He, L., Cui, X., Xia, Q., Li, F., Mo, J., Gong, J., Zhang, Y., & Zhang, J. J. (2020b). Effects of personal air pollutant exposure on oxidative stress: Potential confounding by natural variation in melatonin levels. International Journal of Hygiene and Environmental Health, 223(1), 116–123. https://doi.org/10.1016/j.ijheh.2019.09.012
  • Hellack, B., Yang, A., Cassee, F. R., Janssen, N. A., Schins, R. P., & Kuhlbusch, T. A. (2014). Intrinsic hydroxyl radical generation measurements directly from sampled filters as a metric for the oxidative potential of ambient particulate matter. Journal of Aerosol Science, 72, 47–55. https://doi.org/10.1016/j.jaerosci.2014.02.003
  • He, L., Norris, C., Cui, X., Li, Z., Barkjohn, K. K., Brehmer, C., Teng, Y., Fang, L., Lin, L., Wang, Q., Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J. J., Black, M., Bergin, M. H., & Zhang, J. J. (2021). Personal exposure to PM2.5 oxidative potential in association with pulmonary pathophysiologic outcomes in children with asthma. Environmental Science & Technology, 55(5), 3101–3111. https://doi.org/10.1021/acs.est.0c06114
  • Hong, Z., Guo, Z., Zhang, R., Xu, J., Dong, W., Zhuang, G., & Deng, C. (2016). Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. The Tohoku Journal of Experimental Medicine, 239(2), 117–125. https://doi.org/10.1620/tjem.239.117
  • Hu, X., He, L., Zhang, J., Qiu, X., Zhang, Y., Mo, J., Day, D. B., Xiang, J., & Gong, J. (2020). Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. Environmental Pollution (Barking, Essex: 1987), 263 (Pt A), 114503. https://doi.org/10.1016/j.envpol.2020.114503
  • Hu, S., Polidori, A., Arhami, M., Shafer, M., Schauer, J., Cho, A., & Sioutas, C. (2008). Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor. Atmospheric Chemistry and Physics, 8(21), 6439–6451. https://doi.org/10.5194/acp-8-6439-2008
  • Imrich, A., Ning, Y., & Kobzik, L. (1999). Intracellular oxidant production and cytokine responses in lung macrophages: Evaluation of fluorescent probes. Journal of Leukocyte Biology, 65(4), 499–507. https://doi.org/10.1002/jlb.65.4.499
  • Janssen, N. A., Strak, M., Yang, A., Hellack, B., Kelly, F. J., Kuhlbusch, T. A., Harrison, R. M., Brunekreef, B., Cassee, F. R., Steenhof, M., & Hoek, G. (2015). Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occupational and Environmental Medicine, 72(1), 49–56. https://doi.org/10.1136/oemed-2014-102303
  • Jia, Y.-Y., Wang, Q., & Liu, T. (2017). Toxicity research of PM2.5 compositions in vitro. International Journal of Environmental Research and Public Health, 14(3), 232. https://doi.org/10.3390/ijerph14030232
  • Jiang, H., Jang, M., Sabo-Attwood, T., & Robinson, S. E. (2016). Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight. Atmospheric Environment, 131, 382–389. https://doi.org/10.1016/j.atmosenv.2016.02.016
  • Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., Mann, G. E., Moore, K., Roberts, L. J., II,., & Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radical Biology & Medicine, 52(1), 1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030
  • Ke, Y., Huang, L., Xia, J., Xu, X., Liu, H., & Li, Y. R. (2016). Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicology Letters., 255, 36–42. https://doi.org/10.1016/j.toxlet.2016.05.017
  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039
  • Klein, F., Farren, N. J., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J. G., Tuthill, R. N., Hamilton, J. F., Baltensperger, U., Prevot, A. S. H., & Haddad, I. E. (2016). Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Scientific Reports, 6, 36623. https://doi.org/10.1038/srep36623
  • Kuehn, B. M. (2014). WHO: More than 7 million air pollution deaths each year. Jama, 311(15), 1486–1486. https://doi.org/10.1001/jama.2014.4031
  • Landreman, A. P., Shafer, M. M., Hemming, J. C., Hannigan, M. P., & Schauer, J. J. (2008). A macrophage-based method for the assessment of the reactive oxygen species (ROS) activity of atmospheric particulate matter (PM) and application to routine (daily-24 h) aerosol monitoring studies. Aerosol Science and Technology, 42(11), 946–957. https://doi.org/10.1080/02786820802363819
  • Lee, S., Lee, W., Kim, D., Kim, E., Myung, W., Kim, S.-Y., & Kim, H. (2019). Short-term PM2. 5 exposure and emergency hospital admissions for mental disease. Environmental Research, 171, 313–320. https://doi.org/10.1016/j.envres.2019.01.036
  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371
  • Libalova, H., Milcova, A., Cervena, T., Vrbova, K., Rossnerova, A., Novakova, Z., Topinka, J., & Rossner, P. (2018). Kinetics of ROS generation induced by polycyclic aromatic hydrocarbons and organic extracts from ambient air particulate matter in model human lung cell lines. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 827, 50–58. https://doi.org/10.1016/j.mrgentox.2018.01.006
  • Liu, Q., Baumgartner, J., Zhang, Y., Liu, Y., Sun, Y., & Zhang, M. (2014). Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environmental Science & Technology, 48(21), 12920–12929. https://doi.org/10.1021/es5029876
  • Lu, Y., Su, S., Jin, W., Wang, B., Li, N., Shen, H., Li, W., Huang, Y., Chen, H., Zhang, Y., Chen, Y., Lin, N., Wang, X., & Tao, S. (2014). Characteristics and cellular effects of ambient particulate matter from Beijing. Environmental Pollution (Barking, Essex: 1987), 191, 63–69. https://doi.org/10.1016/j.envpol.2014.04.008
  • Lyu, Y., Guo, H., Cheng, T., & Li, X. (2018). Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals. Environmental Science & Technology, 52(11), 6592–6600. https://doi.org/10.1021/acs.est.7b06686
  • Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., Yu, J., & Hu, D. (2018). Sources and oxidative potential of water-soluble humic-like substances (HULIS WS) in fine particulate matter (PM 2.5) in Beijing. Atmospheric Chemistry and Physics, 18(8), 5607–5617. https://doi.org/10.5194/acp-18-5607-2018
  • Maikawa, C. L., Weichenthal, S., Wheeler, A. J., Dobbin, N. A., Smargiassi, A., Evans, G., Liu, L., Goldberg, M. S., & Pollitt, K. J. G. (2016). Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma. Environmental Health Perspectives, 124(10), 1616–1622. https://doi.org/10.1289/EHP175
  • Massimi, L., Ristorini, M., Simonetti, G., Frezzini, M. A., Astolfi, M. L., & Canepari, S. (2020). Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. Environmental Pollution (Barking, Essex: 1987), 266(Pt 3), 115271. https://doi.org/10.1016/j.envpol.2020.115271
  • McGuinn, L. A., Schneider, A., McGarrah, R. W., Ward-Caviness, C., Neas, L. M., Di, Q., Schwartz, J., Hauser, E. R., Kraus, W. E., Cascio, W. E., Diaz-Sanchez, D., & Devlin, R. B. (2019). Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk. Environment International, 122, 193–200. https://doi.org/10.1016/j.envint.2018.11.001
  • Momtazan, M., Geravandi, S., Rastegarimehr, B., Valipour, A., Ranjbarzadeh, A., Yari, A. R., Dobaradaran, S., Bostan, H., Farhadi, M., Darabi, F., Khaniabadi, Y. O., & Mohammadi, M. J. (2019). An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Reviews, 38(4), 290–297. https://doi.org/10.1080/15569543.2018.1463266
  • Ng, C. F. S., Hashizume, M., Obase, Y., Doi, M., Tamura, K., Tomari, S., Kawano, T., Fukushima, C., Matsuse, H., Chung, Y., Kim, Y., Kunimitsu, K., Kohno, S., & Mukae, H. (2019). Associations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan. Environmental Pollution (Barking, Essex: 1987), 252(Pt A), 599–606. https://doi.org/10.1016/j.envpol.2019.05.117
  • Øvrevik, J. (2019). Oxidative potential versus biological effects: A review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. International Journal of Molecular Sciences, 20(19), 4772. https://doi.org/10.3390/ijms20194772
  • Pant, P., Baker, S. J., Shukla, A., Maikawa, C., Pollitt, K. J. G., & Harrison, R. M. (2015). The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Science of the Total Environment, 530-531, 445–452. https://doi.org/10.1016/j.scitotenv.2015.05.084
  • Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J. S., Lim, H., Shin, H., Chung, K. H., Choi, Y.-H., Park, S. G., Bae, M.-S., Lee, J., Song, H., & Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-35398-0
  • Perrone, M. G., Zhou, J., Malandrino, M., Sangiorgi, G., Rizzi, C., Ferrero, L., Dommen, J., & Bolzacchini, E. (2016). PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmospheric Environment, 128, 104–113. https://doi.org/10.1016/j.atmosenv.2015.12.040
  • Pietrogrande, M. C., Russo, M., & Zagatti, E. (2019). Review of PM oxidative potential measured with acellular assays in urban and rural sites across Italy. Atmosphere, 10, 626. https://doi.org/10.3390/atmos10100626
  • Podechard, N., Lecureur, V., Le Ferrec, E., Guenon, I., Sparfel, L., Gilot, D., Gordon, J. R., Lagente, V., & Fardel, O. (2008). Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters, 177(2), 130–137. https://doi.org/10.1016/j.toxlet.2008.01.006
  • Polidori, A., Turpin, B., Meng, Q. Y., Lee, J. H., Weisel, C., Morandi, M., Colome, S., Stock, T., Winer, A., Zhang, J., Kwon, J., Alimokhtari, S., Shendell, D., Jones, J., Farrar, C., & Maberti, S. (2006). Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. Journal of Exposure Science & Environmental Epidemiology, 16(4), 321–331. https://doi.org/10.1038/sj.jes.7500476
  • Puthussery, J. V., Singh, A., Rai, P., Bhattu, D., Kumar, V., Vats, P., Furger, M., Rastogi, N., Slowik, J. G., Ganguly, D., Prevot, A. S. H., Tripathi, S. N., & Verma, V. (2020). Real-time measurements of PM2.5 oxidative potential using a dithiothreitol assay in Delhi, India. Environmental Science & Technology Letters, 7(7), 504–510. https://doi.org/10.1021/acs.estlett.0c00342
  • Rich, D. Q., Liu, K., Zhang, J., Thurston, S. W., Stevens, T. P., Pan, Y., Kane, C., Weinberger, B., Ohman-Strickland, P., Woodruff, T. J., Duan, X., Assibey-Mensah, V., & Zhang, J. (2015). Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: Results from a natural experiment. Environmental Health Perspectives, 123(9), 880–887. https://doi.org/10.1289/ehp.1408795
  • Roberts, S., Arseneault, L., Barratt, B., Beevers, S., Danese, A., Odgers, C. L., Moffitt, T. E., Reuben, A., Kelly, F. J., & Fisher, H. L. (2019). Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Research, 272, 8–17. https://doi.org/10.1016/j.psychres.2018.12.050
  • Robinson, D. L. (2017). Composition and oxidative potential of PM2.5 pollution and health. Journal of Thoracic Disease, 9(3), 444–447. https://doi.org/10.21037/jtd.2017.03.92
  • Rogula-Kozłowska, W. (2016). Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Quality, Atmosphere, & Health, 9, 533–550. https://doi.org/10.1007/s11869-015-0359-y
  • Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition. Atmospheric Environment, 79, 566–575. https://doi.org/10.1016/j.atmosenv.2013.07.058
  • Sarnat, S. E., Chang, H. H., & Weber, R. J. (2016). Ambient PM2.5 and health: Does PM2.5 oxidative potential play a role? American Journal of Respiratory and Critical Care Medicine, 194(5), 530–531. https://doi.org/10.1164/rccm.201603-0589ED
  • Schlesinger, R., Kunzli, N., Hidy, G., Gotschi, T., & Jerrett, M. (2006). The health relevance of ambient particulate matter characteristics: Coherence of toxicological and epidemiological inferences. Inhalation Toxicology, 18(2), 95–125. https://doi.org/10.1080/08958370500306016
  • See, S., & Balasubramanian, R. (2006). Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environmental Research, 102(2), 197–204. https://doi.org/10.1016/j.envres.2005.12.013
  • Shafer, M. M., Perkins, D. A., Antkiewicz, D. S., Stone, E. A., Quraishi, T. A., & Schauer, J. J. (2010). Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: An important role for transition metals. Journal of Environmental Monitoring: JEM, 12(3), 704–715. https://doi.org/10.1039/b915008k
  • Shen, H., Barakat, A., & Anastasio, C. (2011). Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution. Atmospheric Chemistry and Physics, 11(2), 753–765. https://doi.org/10.5194/acp-11-753-2011
  • Shi, T., Schins, R. P., Knaapen, A. M., Kuhlbusch, T., Pitz, M., Heinrich, J., & Borm, P. J. (2003). Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. Journal of Environmental Monitoring: JEM, 5(4), 550–556. https://doi.org/10.1039/b303928p
  • Shirmohammadi, F., Wang, D., Hasheminassab, S., Verma, V., Schauer, J. J., Shafer, M. M., & Sioutas, C. (2017). Oxidative potential of on-road fine particulate matter (PM2. 5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies. Atmospheric Environment, 148, 102–114. https://doi.org/10.1016/j.atmosenv.2016.10.042
  • Simonetti, G., Conte, E., Perrino, C., & Canepari, S. (2018). Oxidative potential of size-segregated PM in an urban and an industrial area of Italy. Atmospheric Environment, 187, 292–300. https://doi.org/10.1016/j.atmosenv.2018.05.051
  • Sinharay, R., Gong, J., Barratt, B., Ohman-Strickland, P., Ernst, S., Kelly, F. J., Zhang, J. J., Collins, P., Cullinan, P., & Chung, K. F. (2018). Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: A randomised, crossover study. The Lancet, 391(10118), 339–349. https://doi.org/10.1016/S0140-6736(17)32643-0
  • Smargiassi, A., Goldberg, M. S., Wheeler, A. J., Plante, C., Valois, M.-F., Mallach, G., Kauri, L. M., Shutt, R., Bartlett, S., Raphoz, M., & Liu, L. (2014). Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environmental Research, 132, 38–45. https://doi.org/10.1016/j.envres.2014.03.030
  • Soukup, J. M., Ghio, A. J., & Becker, S. (2000). Soluble components of Utah Valley particulate pollution alter alveolar macrophage function in vivo and in vitro. Inhalation Toxicology, 12(5), 401–414. https://doi.org/10.1080/089583700196112
  • Steenhof, M., Gosens, I., Strak, M., Godri, K. J., Hoek, G., Cassee, F. R., Mudway, I. S., Kelly, F. J., Harrison, R. M., Lebret, E., Brunekreef, B., Janssen, N. A., & Pieters, R. H. (2011). In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential-the RAPTES project. Particle and Fibre Toxicology, 8(1), 15. https://doi.org/10.1186/1743-8977-8-26
  • Stowell, J. D., Geng, G., Saikawa, E., Chang, H. H., Fu, J., Yang, C.-E., Zhu, Q., Liu, Y., & Strickland, M. J. (2019). Associations of wildfire smoke PM2.5 exposure with cardiorespiratory events in Colorado 2011–2014. Environment International, 133(Pt A), 105151. https://doi.org/10.1016/j.envint.2019.105151
  • Tacu, I., Kokalari, I., Abollino, O., Albrecht, C., Malandrino, M., Ferretti, A. M., Schins, R. P., & Fenoglio, I. (2021). Mechanistic insights into the role of iron, copper, and carbonaceous component on the oxidative potential of ultrafine particulate matter. Chemical Research in Toxicology, 34(3), 767–779. https://doi.org/10.1021/acs.chemrestox.0c00399
  • Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Shen, F., Lucas, K., Brune, W. H., Pöschl, U., & Shiraiwa, M. (2018). Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid. Environmental Science & Technology, 52(20), 11642–11651. https://doi.org/10.1021/acs.est.8b03695
  • Toriba, A., Homma, C., Kita, M., Uozaki, W., Boongla, Y., Orakij, W., Tang, N., Kameda, T., & Hayakawa, K. (2016). Simultaneous determination of polycyclic aromatic hydrocarbon quinones by gas chromatography-tandem mass spectrometry, following a one-pot reductive trimethylsilyl derivatization. Journal of Chromatography. A, 1459, 89–100. https://doi.org/10.1016/j.chroma.2016.06.034
  • Totlandsdal, A. I., Låg, M., Lilleaas, E., Cassee, F., & Schwarze, P. (2015). Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environmental Toxicology, 30(2), 188–196. https://doi.org/10.1002/tox.21884
  • Trenga, C. A., Sullivan, J. H., Schildcrout, J. S., Shepherd, K. P., Shapiro, G. G., Liu, L.-J. S., Kaufman, J. D., & Koenig, J. Q. (2006). Effect of particulate air pollution on lung function in adult and pediatric subjects in a Seattle panel study. Chest, 129(6), 1614–1622. https://doi.org/10.1378/chest.129.6.1614
  • Tuet, W. Y., Fok, S., Verma, V., Rodriguez, M. S. T., Grosberg, A., Champion, J. A., & Ng, N. L. (2016). Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: Comparison to oxidative potential and chemical composition. Atmospheric Environment, 144, 335–344. https://doi.org/10.1016/j.atmosenv.2016.09.005
  • Unosson, J., Kabéle, M., Boman, C., Nyström, R., Sadiktsis, I., Westerholm, R., Mudway, I. S., Purdie, E., Raftis, J., Miller, M. R., Mills, N. L., Newby, D. E., Blomberg, A., Sandström, T., & Bosson, J. A. (2021). Acute cardiovascular effects of controlled exposure to dilute Petrodiesel and biodiesel exhaust in healthy volunteers: A crossover study. Particle and Fibre Toxicology, 18(1), 14. https://doi.org/10.1186/s12989-021-00412-3
  • Venkatachari, P., & Hopke, P. K. (2008). Development and evaluation of a particle-bound reactive oxygen species generator. Journal of Aerosol Science, 39(2), 168–174. https://doi.org/10.1016/j.jaerosci.2007.11.003
  • Verma, V., Fang, T., Guo, H., King, L., Bates, J., Peltier, R., Edgerton, E., Russell, A., & Weber, R. (2014). Reactive oxygen species associated with water-soluble PM 2.5 in the southeastern United States: Spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 14(23), 12915–12930. https://doi.org/10.5194/acp-14-12915-2014
  • Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., & Weber, R. J. (2015). Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environmental Science & Technology, 49(7), 4646–4656. https://doi.org/10.1021/es505577w
  • Verma, V., Polidori, A., Schauer, J. J., Shafer, M. M., Cassee, F. R., & Sioutas, C. (2009). Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires. Environmental Science & Technology, 43(3), 954–960. https://doi.org/10.1021/es8021667
  • Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W., & Weber, R. J. (2012). Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environmental Science & Technology, 46(20), 11384–11392. https://doi.org/10.1021/es302484r
  • Wang, Y., Kim, H., & Paulson, S. E. (2011). Hydrogen peroxide generation from α-and β-pinene and toluene secondary organic aerosols. Atmospheric Environment, 45(18), 3149–3156. https://doi.org/10.1016/j.atmosenv.2011.02.060
  • Wang, L., Luo, D., Liu, X., Zhu, J., Wang, F., Li, B., & Li, L. (2021). Effects of PM2. 5 exposure on reproductive system and its mechanisms. Chemosphere, 264, 128436. https://doi.org/10.1016/j.chemosphere.2020.128436
  • Weichenthal, S. A., Lavigne, E., Evans, G. J., Godri Pollitt, K. J., & Burnett, R. T. (2016b). Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. American Journal of Respiratory and Critical Care Medicine, 194(5), 577–586. https://doi.org/10.1164/rccm.201512-2434OC
  • Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K., & Burnett, R. T. (2016a). Ambient PM 2.5 and risk of emergency room visits for myocardial infarction: Impact of regional PM 2.5 oxidative potential: A case-crossover study. Environmental Health, 15(1), 1–9. https://doi.org/10.1186/s12940-016-0129-9
  • Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., & Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology, 184(3), 172–179. https://doi.org/10.1006/taap.2002.9501
  • Wragg, F. P., Fuller, S. J., Freshwater, R., Green, D. C., Kelly, F. J., & Kalberer, M. (2016). An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies. Atmospheric Measurement Techniques, 9(10), 4891–4900. https://doi.org/10.5194/amt-9-4891-2016
  • Xia, X., Chan, K. H., Lam, K. B. H., Qiu, H., Li, Z., Yim, S. H. L., & Ho, K.-F. (2021). Effectiveness of indoor air purification intervention in improving cardiovascular health: A systematic review and meta-analysis of randomized controlled trials. The Science of the Total Environment, 789, 147882. https://doi.org/10.1016/j.scitotenv.2021.147882
  • Xing, Y.-F., Xu, Y.-H., Shi, M.-H., & Lian, Y.-X. (2016). The impact of PM2. 5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
  • Xiong, Q., Yu, H., Wang, R., Wei, J., & Verma, V. (2017). Rethinking dithiothreitol-based particulate matter oxidative potential: Measuring dithiothreitol consumption versus reactive oxygen species generation. Environmental Science & Technology, 51(11), 6507–6514. https://doi.org/10.1021/acs.est.7b01272
  • Yadav, S., & Phuleria, H. C. (2020). oxidative potential of particulate matter: A prospective measure to assess PM toxicity. Measurement, analysis and remediation of environmental pollutants. Springer. https://doi.org/10.1007/978-981-15-0540-9_16
  • Yang, A., Janssen, N. A., Brunekreef, B., Cassee, F. R., Hoek, G., & Gehring, U. (2016). Children's respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study. Occupational and Environmental Medicine, 73(3), 154–160. https://doi.org/10.1136/oemed-2015-103175
  • Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B., Kuhlbusch, T. A., Cassee, F. R., & Janssen, N. A. (2014). Measurement of the oxidative potential of PM2. 5 and its constituents: The effect of extraction solvent and filter type. Atmospheric Environment, 83, 35–42. https://doi.org/10.1016/j.atmosenv.2013.10.049
  • Yue, Y., Chen, H., Setyan, A., Elser, M., Dietrich, M., Li, J., Zhang, T., Zhang, X., Zheng, Y., Wang, J., & Yao, M. (2018). Size-resolved endotoxin and oxidative potential of ambient particles in Beijing and Zürich. Environmental Science & Technology, 52(12), 6816–6824. https://doi.org/10.1021/acs.est.8b01167
  • Zhang, J., Cheng, H., Wang, D., Zhu, Y., Yang, C., Shen, Y., Yu, J., Li, Y., Xu, S., Zhang, S., Song, X., Zhou, Y., Chen, J., Jiang, J., Fan, L., Wang, C., & Hao, K. (2021). Chronic exposure to pm2.5 nitrate, sulfate, and ammonium causes respiratory system impairments in mice. Environmental Science & Technology, 55(5), 3081–3090. https://doi.org/10.1021/acs.est.0c05814
  • Zhang, X., Staimer, N., Tjoa, T., Gillen, D. L., Schauer, J. J., Shafer, M. M., Hasheminassab, S., Pakbin, P., Longhurst, J., Sioutas, C., & Delfino, R. J. (2016). Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential. Environmental Health, 15(1), 1–16. https://doi.org/10.1186/s12940-016-0157-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.