3,476
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites

, , & ORCID Icon
Pages 258-289 | Published online: 22 Mar 2022

References

  • Amiripour, F., Ghasemi, S., & Azizi, S. N. (2021). Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chemistry, 347, 129034. https://doi.org/10.1016/j.foodchem.2021.129034
  • Amirzehni, M., Hassanzadeh, J., & Vahid, B. (2020). Surface imprinted CoZn-bimetalic MOFs as selective colorimetric probe: Application for detection of dimethoate. Sensors and Actuators B: Chemical, 325, 128768. https://doi.org/10.1016/j.snb.2020.128768
  • An, J., Li, L., Ding, Y., Hu, W., Duan, D., Lu, H., Ye, D., Zhu, X., & Chen, H. (2019). A novel molecularly imprinted electrochemical sensor based on Prussian blue analogue generated by iron metal organic frameworks for highly sensitive detection of melamine. Electrochimica Acta, 326, 134946. https://doi.org/10.1016/j.electacta.2019.134946
  • Ansari, S. (2017a). Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. TrAC: Trends in Analytical Chemistry, 90, 89–106. https://doi.org/10.1016/j.trac.2017.03.001
  • Ansari, S. (2017b). Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. TrAC: Trends in Analytical Chemistry, 93, 134–151. https://doi.org/10.1016/j.trac.2017.05.015
  • Arabi, M., Ostovan, A., Bagheri, A. R., Guo, X., Wang, L., Li, J., Wang, X., Li, B., & Chen, L. (2020). Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC: Trends in Analytical Chemistry, 128, 115923. https://doi.org/10.1016/j.trac.2020.115923
  • Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., & Sun, Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors & Bioelectronics, 91, 606–615. https://doi.org/10.1016/j.bios.2017.01.018
  • Azizi, A., & Bottaro, C. S. (2020). A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. Journal of Chromatography A, 1614, 460603. https://doi.org/10.1016/j.chroma.2019.460603
  • Azzouz, A., Goud, K. Y., Raza, N., Ballesteros, E., Lee, S.-E., Hong, J., Deep, A., & Kim, K.-H. (2019). Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC: Trends in Analytical Chemistry, 110, 15–34. https://doi.org/10.1016/j.trac.2018.08.002
  • Barciela-Alonso, M. C., Otero-Lavandeira, N., & Bermejo-Barrera, P. (2017). Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS. Microchemical Journal, 132, 233–237. https://doi.org/10.1016/j.microc.2017.02.007
  • Bhogal, S., Kaur, K., Malik, A. K., Sonne, C., Lee, S. S., & Kim, K.-H. (2020). Core-shell structured molecularly imprinted materials for sensing applications. TrAC: Trends in Analytical Chemistry, 133, 116043. https://doi.org/10.1016/j.trac.2020.116043
  • Bhogal, S., Kaur, K., Mohiuddin, I., Kumar, S., Lee, J., Brown, R. J., Kim, K.-H., & Malik, A. K. (2021). Hollow porous molecularly imprinted polymers as emerging adsorbents. Environmental Pollution, 288, 117775. https://doi.org/10.1016/j.envpol.2021.117775
  • Bi, X., & Liu, Z. (2014). Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Analytical Chemistry, 86(1), 959–966. https://doi.org/10.1021/ac403736y
  • Bie, Z., Chen, Y., Ye, J., Wang, S., & Liu, Z. (2015). Boronate-affinity glycan-oriented surface imprinting: A new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angewandte Chemie (International ed. in English), 54(35), 10211–10215. https://doi.org/10.1002/anie.201503066
  • Brouwer, M., Huss, A., van der Mark, M., Nijssen, P. C., Mulleners, W. M., Sas, A. M., Van Laar, T., de Snoo, G. R., Kromhout, H., & Vermeulen, R. C. (2017). Environmental exposure to pesticides and the risk of Parkinson's disease in the Netherlands. Environment International, 107, 100–110. https://doi.org/10.1016/j.envint.2017.07.001
  • Cao, Y., Feng, T., Xu, J., & Xue, C. (2019). Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosensors & Bioelectronics, 141, 111447. https://doi.org/10.1016/j.bios.2019.111447
  • Cao, Y., Hu, X., Zhao, T., Mao, Y., Fang, G., & Wang, S. (2021). A core-shell molecularly imprinted optical sensor based on the upconversion nanoparticles decorated with Zinc-based metal-organic framework for selective and rapid detection of octopamine. Sensors and Actuators B: Chemical, 326, 128838. https://doi.org/10.1016/j.snb.2020.128838
  • Chen, B., Zhang, Y., Lin, L., Chen, H., & Zhao, M. (2020). Au nanoparticles@ metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. Journal of Electroanalytical Chemistry, 863, 114052. https://doi.org/10.1016/j.jelechem.2020.114052
  • Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: Perspectives and applications. Chemical Society Reviews, 45(8), 2137–2211. https://doi.org/10.1039/c6cs00061d
  • Chen, N., Liu, H., Zhang, Y., Zhou, Z., Fan, W., Yu, G., Shen, Z., & Wu, A. (2018). A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sensors and Actuators B: Chemical, 255, 3093–3101. https://doi.org/10.1016/j.snb.2017.09.134
  • Chen, S., Fu, J., Li, Z., Zeng, Y., Li, Y., Su, X., Jiang, X., Yang, H., Huang, L., Zou, L., He, L., Liu, S., Ao, X., & Yang, Y. (2019). Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples. Journal of Chromatography A, 1602, 124–134. https://doi.org/10.1016/j.chroma.2019.06.032
  • Chen, Y., Huang, A., Zhang, Y., & Bie, Z. (2019). Recent advances of boronate affinity materials in sample preparation. Analytica Chimica Acta, 1076, 1–17. https://doi.org/10.1016/j.aca.2019.04.050
  • Cui, B., Liu, P., Liu, X., Liu, S., & Zhang, Z. (2020). Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. Journal of Materials Research and Technology, 9(6), 12568–12584. https://doi.org/10.1016/j.jmrt.2020.08.052
  • Dashtian, K., Hajati, S., & Ghaedi, M. (2020). L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosensors & Bioelectronics, 165, 112346. https://doi.org/10.1016/j.bios.2020.112346
  • Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S.-W., & Jeon, B.-H. (2019). Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 380, 330–352. https://doi.org/10.1016/j.ccr.2018.10.003
  • Ding, B., Solomon, M. B., Leong, C. F., & D'Alessandro, D. M. (2021). Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coordination Chemistry Reviews, 439, 213891. https://doi.org/10.1016/j.ccr.2021.213891
  • Do, M. H., Florea, A., Farre, C., Bonhomme, A., Bessueille, F., Vocanson, F., Tran-Thi, N.-T., & Jaffrezic-Renault, N. (2015). Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. International Journal of Environmental Analytical Chemistry, 95(15), 1489–1501. https://doi.org/10.1080/03067319.2015.1114109
  • Dong, R., Li, J., Xiong, H., Lu, W., Peng, H., & Chen, L. (2014). Thermosensitive molecularly imprinted polymers on porous carriers: Preparation, characterization and properties as novel adsorbents for bisphenol A. Talanta, 130, 182–191. https://doi.org/10.1016/j.talanta.2014.06.055
  • Duan, D., Si, X., Ding, Y., Li, L., Ma, G., Zhang, L., & Jian, B. (2019). A novel molecularly imprinted electrochemical sensor based on double sensitization by MOF/CNTs and Prussian blue for detection of 17β-estradiol. Bioelectrochemistry (Amsterdam, Netherlands), 129, 211–217. https://doi.org/10.1016/j.bioelechem.2019.04.014
  • Duan, D., Yang, H., Ding, Y., Ye, D., Li, L., & Ma, G. (2018). Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@ Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin. Electrochimica Acta, 261, 160–166. https://doi.org/10.1016/j.electacta.2017.12.146
  • Du, Q., Wu, P., Hu, F., Li, G., Shi, J., & He, H. (2019). Novel molecularly imprinted polymers on metal–organic frameworks as sensors for the highly selective detection of zearalenone in wheat. New Journal of Chemistry, 43(18), 7044–7050. https://doi.org/10.1039/C9NJ00589G
  • Du, Q., Wu, P., Sun, Y., Zhang, J., & He, H. (2020). Selective photodegradation of tetracycline by molecularly imprinted ZnO@ NH2-UiO-66 composites. Chemical Engineering Journal, 390, 124614. https://doi.org/10.1016/j.cej.2020.124614
  • El Jaouhari, A., Yan, L., Zhu, J., Zhao, D., Khan, M. Z. H., & Liu, X. (2020). Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Analytica Chimica Acta, 1106, 103–114. https://doi.org/10.1016/j.aca.2020.01.039
  • Emir Diltemiz, S., Keçili, R., Ersöz, A., & Say, R. (2017). Molecular imprinting technology in quartz crystal microbalance (QCM) sensors. Sensors, 17(3), 454. https://doi.org/10.3390/s17030454
  • Eskandari, H., Amirzehni, M., Asadollahzadeh, H., Hassanzadeh, J., & Eslami, P. A. (2018). MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors and Actuators B: Chemical, 275, 145–154. https://doi.org/10.1016/j.snb.2018.08.050
  • Eskandari, H., Amirzehni, M., Hassanzadeh, J., & Vahid, B. (2020). Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: Application for chlorpyrifos. Microchimica Acta, 187(12), 1–10. https://doi.org/10.1007/s00604-020-04654-4
  • Fan, W., Zhang, X., Kang, Z., Liu, X., & Sun, D. (2021). Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 443, 213968. https://doi.org/10.1016/j.ccr.2021.213968
  • Farooq, S., Nie, J., Cheng, Y., Yan, Z., Li, J., Bacha, S. A. S., Mushtaq, A., & Zhang, H. (2018). Molecularly imprinted polymers' application in pesticide residue detection. The Analyst, 143(17), 3971–3989. https://doi.org/10.1039/c8an00907d
  • Fu, K., Zhang, R., He, J., Bai, H., & Zhang, G. (2019). Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosensors & Bioelectronics, 143, 111636. https://doi.org/10.1016/j.bios.2019.111636
  • Ge, L., Liu, Q., Hao, N., & Kun, W. (2019). Recent developments of photoelectrochemical biosensors for food analysis. Journal of Materials Chemistry. B, 7(46), 7283–7300. https://doi.org/10.1039/c9tb01644a
  • Gokulan, K., Cerniglia, C. E., Thomas, C., Pineiro, S. A., & Khare, S. (2017). Effects of residual levels of tetracycline on the barrier functions of human intestinal epithelial cells. Food and Chemical Toxicology, 109(Pt 1), 253–263. https://doi.org/10.1016/j.fct.2017.09.004
  • Gui, R., Guo, H., & Jin, H. (2019). Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Advances, 1(9), 3325–3363. https://doi.org/10.1039/C9NA00455F
  • Guo, T., Deng, Q., Fang, G., Gu, D., Yang, Y., & Wang, S. (2016). Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosensors & Bioelectronics, 79, 341–346. https://doi.org/10.1016/j.bios.2015.12.040
  • Guo, Y., Wang, L., Xu, L., Peng, C., & Song, Y. (2020). A ascorbic acid-imprinted poly (o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid. Journal of Materials Science, 55(22), 9425–9435. https://doi.org/10.1007/s10853-020-04687-3
  • Guo, Z., Florea, A., Cristea, C., Bessueille, F., Vocanson, F., Goutaland, F., Zhang, A., Săndulescu, R., Lagarde, F., & Jaffrezic-Renault, N. (2015). 1, 3, 5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework. Sensors and Actuators B: Chemical, 207, 960–966. https://doi.org/10.1016/j.snb.2014.06.137
  • Guo, Z., Florea, A., Jiang, M., Mei, Y., Zhang, W., Zhang, A., Săndulescu, R., & Jaffrezic-Renault, N. (2016). Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings, 6(4), 42. https://doi.org/10.3390/coatings6040042
  • Haixi, T., Li, H., Lin, M., & Kegang, L. (2021). Preparation of a pinoresinol diglucoside imprinted polymer using metal organic frame as the matrix for extracting target compound from Eucommia ulmoides. Separation Science and Technology, 56(18), 3136–3150. https://doi.org/10.1080/01496395.2020.1869258
  • Han, S., Ding, Y., Teng, F., Yao, A., & Leng, Q. (2021). Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal–organic framework composites. RSC Advances, 11(30), 18468–18475. https://doi.org/10.1039/D1RA02731J
  • Han, Z., Liu, Y., Zhong, M., Shi, G., Li, Q., Zeng, D., Zhang, Y., Fei, Y., & Xie, Y. (2018). Influencing factors of domestic waste characteristics in rural areas of developing countries. Waste Management (New York, N.Y.), 72, 45–54. https://doi.org/10.1016/j.wasman.2017.11.039
  • Hatamluyi, B., Hashemzadeh, A., & Darroudi, M. (2020a). A novel molecularly imprinted polymer decorated by CQDs@ HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sensors and Actuators B: Chemical, 307, 127614. https://doi.org/10.1016/j.snb.2019.127614
  • Hatamluyi, B., Rezayi, M., Beheshti, H. R., & Boroushaki, M. T. (2020b). Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@ Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical, 318, 128219. https://doi.org/10.1016/j.snb.2020.128219
  • Hou, Y., Liu, J., Hong, M., Li, X., Ma, Y., Yue, Q., & Li, C.-Z. (2017). A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique. Biosensors & Bioelectronics, 92, 259–265. https://doi.org/10.1016/j.bios.2017.02.024
  • Hu, X., Cao, Y., Tian, Y., Qi, Y., Fang, G., & Wang, S. (2020). A molecularly imprinted fluorescence nanosensor based on upconversion metal–organic frameworks for alpha-cypermethrin specific recognition. Microchimica Acta, 187(11), 1–10. https://doi.org/10.1007/s00604-020-04610-2
  • Hu, X., Guo, Y., Wang, T., Liu, C., Yang, Y., & Fang, G. (2021). A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. Journal of Hazardous Materials, 421, 126748.
  • Hu, Y., He, Y., Peng, Z., & Li, Y. (2020). A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Biosensors & Bioelectronics, 167, 112490. https://doi.org/10.1016/j.bios.2020.112490
  • Jiang, M., Braiek, M., Florea, A., Chrouda, A., Farre, C., Bonhomme, A., Bessueille, F., Vocanson, F., Zhang, A., & Jaffrezic-Renault, N. (2015). Aflatoxin B1 detection using a highly-sensitive molecularly-imprinted electrochemical sensor based on an electropolymerized metal organic framework. Toxins, 7(9), 3540–3553. https://doi.org/10.3390/toxins7093540
  • Jung, H. S., Kwon, P. S., Lee, J. W., Kim, J. I., Hong, C. S., Kim, J. W., Yan, S., Lee, J. Y., Lee, J. H., Joo, T., & Kim, J. S. (2009). Coumarin-derived Cu(2+)-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. Journal of the American Chemical Society, 131(5), 2008–2012. https://doi.org/10.1021/ja808611d
  • Karimi-Maleh, H., Yola, M. L., Atar, N., Orooji, Y., Karimi, F., Kumar, P. S., Rouhi, J., & Baghayeri, M. (2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell CO3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science, 592, 174–185. https://doi.org/10.1016/j.jcis.2021.02.066
  • Lahcen, A. A., & Amine, A. (2019). Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 31(2), 188–201. https://doi.org/10.1002/elan.201800623
  • Lamaoui, A., García-Guzmán, J. J., Amine, A., Palacios-Santander, J. M., & Cubillana-Aguilera, L. (2021). Synthesis techniques of molecularly imprinted polymer composites. Molecularly Imprinted Polymer Composites (pp. 49–91). Elsevier.
  • Liang, Y., Yu, L., Yang, R., Li, X., Qu, L., & Li, J. (2017). High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2, 4-dichlorophenol in water. Sensors and Actuators B: Chemical, 240, 1330–1335. https://doi.org/10.1016/j.snb.2016.08.137
  • Lian, W., Liang, J., Shen, L., Jin, Y., & Liu, H. (2018). Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes. Biosensors & Bioelectronics, 100, 326–332. https://doi.org/10.1016/j.bios.2017.09.023
  • Li, H.-Y., Zhao, S.-N., Zang, S.-Q., & Li, J. (2020). Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 49(17), 6364–6401. https://doi.org/10.1039/c9cs00778d
  • Li, J., Ma, M., Zhang, C., Lu, R., Zhang, L., & Zhang, W. (2020). Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Analytical and Bioanalytical Chemistry, 412(26), 7227–7236. https://doi.org/10.1007/s00216-020-02855-7
  • Li, M., Sun, P., Wu, Q., Liu, D., & Zhou, L. (2018). Core–shell magnetic metal–organic framework molecularly imprinted nanospheres for specific adsorption of tetrabromobisphenol A from water. Environmental Science: Nano, 5(11), 2651–2662. https://doi.org/10.1039/C8EN00806J
  • Li, S., Hu, X., Chen, Q., Zhang, X., Chai, H., & Huang, Y. (2019). Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosensors & Bioelectronics, 137, 133–139. https://doi.org/10.1016/j.bios.2019.05.010
  • Lin, Z.-J., Lü, J., Hong, M., & Cao, R. (2014). Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chemical Society Reviews, 43(16), 5867–5895. https://doi.org/10.1039/c3cs60483g
  • Liu, D., Li, W., Zhu, C., Li, Y., Shen, X., Li, L., Yan, X., & You, T. (2020). Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC: Trends in Analytical Chemistry, 133, 115966. https://doi.org/10.1016/j.trac.2020.115966
  • Liu, H., Mu, L., Chen, X., Wang, J., Wang, S., & Sun, B. (2017). Core-shell metal-organic frameworks/molecularly imprinted nanoparticles as absorbents for the detection of pyrraline in milk and milk powder. Journal of Agricultural and Food Chemistry, 65(4), 986–992. https://doi.org/10.1021/acs.jafc.6b05429
  • Liu, J., Fu, B., & Zhang, Z. (2020). Ionic current rectification triggered photoelectrochemical chiral sensing platform for recognition of amino acid enantiomers on self-standing nanochannel arrays. Analytical Chemistry, 92(13), 8670–8674. https://doi.org/10.1021/acs.analchem.0c02341
  • Liu, S., Yang, Z., Liu, Z., & Kong, L. (2006). Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe. Analytical Biochemistry, 353(1), 108–116. https://doi.org/10.1016/j.ab.2006.03.012
  • Luo, D., Zhou, T., Tao, Y., Feng, Y., Shen, X., & Mei, S. (2016). Exposure to organochlorine pesticides and non-Hodgkin lymphoma: A meta-analysis of observational studies. Scientific Reports, 6(1), 25768. https://doi.org/10.1038/srep25768
  • Luo, L., Yang, J., Liang, K., Chen, C., Chen, X., & Cai, C. (2019). Fast and sensitive detection of Japanese encephalitis virus based on a magnetic molecular imprinted polymer-resonance light scattering sensor. Talanta, 202, 21–26. https://doi.org/10.1016/j.talanta.2019.04.064
  • Luo, L., Zhang, F., Chen, C., & Cai, C. (2020). Molecular imprinting resonance light scattering nanoprobes based on pH-responsive metal-organic framework for determination of hepatitis A virus. Microchimica Acta, 187(2), 1–8. https://doi.org/10.1007/s00604-020-4122-1
  • Lynge, M. E., van der Westen, R., Postma, A., & Städler, B. (2011). Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale, 3(12), 4916–4928. https://doi.org/10.1039/c1nr10969c
  • Ma, C., Cao, Y., Gou, X., & Zhu, J.-J. (2020). Recent progress in electrochemiluminescence sensing and imaging. Analytical Chemistry, 92(1), 431–454. https://doi.org/10.1021/acs.analchem.9b04947
  • Ma, N., Feng, C., Qu, P., Wang, G., Liu, J., Liu, J. X., & Wang, J. P. (2020). Determination of tetracyclines in chicken by dispersive solid phase microextraction based on metal-organic frameworks/molecularly imprinted nano-polymer and ultra performance liquid chromatography. Food Analytical Methods, 13(5), 1211–1219. https://doi.org/10.1007/s12161-020-01744-0
  • Mahnashi, M. H., Mahmoud, A. M., Alhazzani, K., Alanazi, A., Alaseem, A. M., Algahtani, M. M., & El-Wekil, M. M. (2021a). Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@ cu MOF as a signal enhancer and reporter nanohybrid. Microchimica Acta, 188(4), 1–12. https://doi.org/10.1007/s00604-021-04781-6
  • Mahnashi, M. H., Mahmoud, A. M., Alhazzani, K., Alanazi, A., Algahtani, M. M., Alaseem, A. M., Alqahtani, Y. S., & El-Wekil, M. M. (2021b). Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchemical Journal, 168, 106439. https://doi.org/10.1016/j.microc.2021.106439
  • Malekzadeh, M., Mohadesi, A., Karimi, M. A., & Ranjbar, M. (2020). Development of a new electrochemical sensor based on Zr-MOF/MIP for sensitive diclofenac determination. Analytical and Bioanalytical Electrochemistry, 12, 402–414.
  • Malik, M. I., Shaikh, H., Mustafa, G., & Bhanger, M. I. (2019). Recent applications of molecularly imprinted polymers in analytical chemistry. Separation & Purification Reviews, 48(3), 179–219. https://doi.org/10.1080/15422119.2018.1457541
  • Mandani, S., Rezaei, B., Ensafi, A. A., & Rezaei, P. (2021). Ultrasensitive electrochemical molecularly imprinted sensor based on AuE/Ag-MOF@ MC for determination of hemoglobin using response surface methodology. Analytical and Bioanalytical Chemistry, 413(19), 4895–4906. https://doi.org/10.1007/s00216-021-03453-x
  • Ma, Y., Yin, Y., Ni, L., Miao, H., Wang, Y., Pan, C., Tian, X., Pan, J., You, T., Li, B., & Pan, G. (2021). Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioactive Materials, 6(5), 1308–1317. https://doi.org/10.1016/j.bioactmat.2020.10.008
  • Mazumder, M. A. J., Sheardown, H., & Al-Ahmed, A. (2019). Functional polymers. Springer.
  • Mo, G., Qin, D., Jiang, X., Zheng, X., Mo, W., & Deng, B. (2020). A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection. Sensors and Actuators B: Chemical, 310, 127852. https://doi.org/10.1016/j.snb.2020.127852
  • Mujahid, A., Mustafa, G., & Dickert, F. L. (2018). Label-free bioanalyte detection from nanometer to micrometer dimensions—molecular imprinting and QCMs. Biosensors, 8(2), 52. https://doi.org/10.3390/bios8020052
  • Niu, M., Pham-Huy, C., & He, H. (2016). Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchimica Acta, 183(10), 2677–2695. https://doi.org/10.1007/s00604-016-1930-4
  • Pan, J., Li, L., Hang, H., Wu, R., Dai, X., Shi, W., & Yan, Y. (2013). Fabrication and evaluation of magnetic/hollow double-shelled imprinted sorbents formed by Pickering emulsion polymerization. Langmuir: The ACS Journal of Surfaces and Colloids, 29(25), 8170–8178. https://doi.org/10.1021/la4015288
  • Parlak, O., Keene, S. T., Marais, A., Curto, V. F., & Salleo, A. (2018). Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 4(7), eaar2904. https://doi.org/10.1126/sciadv.aar2904
  • Pérez-Rodríguez, M., Pellerano, R. G., Pezza, L., & Pezza, H. R. (2018). An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta, 182, 1–21. https://doi.org/10.1016/j.talanta.2018.01.058
  • Pichon, V., Delaunay, N., & Combès, A. (2020). Sample preparation using molecularly imprinted polymers. Analytical Chemistry, 92(1), 16–33. https://doi.org/10.1021/acs.analchem.9b04816
  • Prasad, B. B., Prasad, A., & Tiwari, M. P. (2013). Multiwalled carbon nanotubes-ceramic electrode modified with substrate-selective imprinted polymer for ultra-trace detection of bovine serum albumin. Biosensors & Bioelectronics, 39(1), 236–243. https://doi.org/10.1016/j.bios.2012.07.080
  • Qian, K., Deng, Q., Fang, G., Wang, J., Pan, M., Wang, S., & Pu, Y. (2016). Metal-organic frameworks supported surface-imprinted nanoparticles for the sensitive detection of metolcarb. Biosensors & Bioelectronics, 79, 359–363. https://doi.org/10.1016/j.bios.2015.12.071
  • Qian, K., Fang, G., & Wang, S. (2011). A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix. Chemical Communications (Cambridge, England), 47(36), 10118–10120. https://doi.org/10.1039/c1cc12935j
  • Rattanarat, P., Dungchai, W., Cate, D., Volckens, J., Chailapakul, O., & Henry, C. S. (2014). Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Analytical Chemistry, 86(7), 3555–3562. https://doi.org/10.1021/ac5000224
  • Rawool, C. R., & Srivastava, A. K. (2019). A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid. Sensors and Actuators B: Chemical, 288, 493–506. https://doi.org/10.1016/j.snb.2019.03.032
  • Ressalan, S., & Iyer, C. (2005). Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (II), nickel (II) and zinc (II) complexes: A novel fluorescence sensor. Journal of Luminescence, 111(3), 121–129. https://doi.org/10.1016/j.jlumin.2004.02.011
  • Rico-Yuste, A., & Carrasco, S. (2019). Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers, 11(7), 1173. https://doi.org/10.3390/polym11071173
  • Ryu, U., Jee, S., Rao, P. C., Shin, J., Ko, C., Yoon, M., Park, K. S., & Choi, K. M. (2021). Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coordination Chemistry Reviews, 426, 213544. https://doi.org/10.1016/j.ccr.2020.213544
  • Ryu, J. H., Messersmith, P. B., & Lee, H. (2018). Polydopamine surface chemistry: A decade of discovery. ACS Applied Materials & Interfaces, 10(9), 7523–7540. https://doi.org/10.1021/acsami.7b19865
  • Selvam, S. P., Kadam, A. N., Maiyelvaganan, K. R., Prakash, M., & Cho, S. (2021). Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin. Biosensors & Bioelectronics, 187, 113302. https://doi.org/10.1016/j.bios.2021.113302
  • Sharma, P. S., Pietrzyk-Le, A., D'Souza, F., & Kutner, W. (2012). Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Analytical and Bioanalytical Chemistry, 402(10), 3177–3204. https://doi.org/10.1007/s00216-011-5696-6
  • Shi, Y., Wang, Y., Zhu, J., Liu, W., Khan, M., Zaved, H., & Liu, X. (2020). Molecularly imprinting polymers (MIP) based on nitrogen doped carbon dots and MIL-101 (Fe) for doxorubicin hydrochloride delivery. Nanomaterials, 10(9), 1655. https://doi.org/10.3390/nano10091655
  • Sulaiman, I. C., Chieng, B., Osman, M., Ong, K., Rashid, J., Yunus, W. W., Noor, S., Kasim, N., Halim, N., & Mohamad, A. (2020). A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchimica Acta, 187(2), 1–22. https://doi.org/10.1007/s00604-019-3893-8
  • Sullivan, M. V., Dennison, S. R., Archontis, G., Reddy, S. M., & Hayes, J. M. (2019). Toward rational design of selective molecularly imprinted polymers (MIPs) for proteins: Computational and experimental studies of acrylamide based polymers for myoglobin. The Journal of Physical Chemistry B, 123(26), 5432–5443. https://doi.org/10.1021/acs.jpcb.9b03091
  • Sun, H., Li, Y., Yang, J., Sun, X., Huang, C., Zhang, X., & Chen, J. (2016). Preparation of dummy‐imprinted polymers by Pickering emulsion polymerization for the selective determination of seven bisphenols from sediment samples. Journal of Separation Science, 39(11), 2188–2195. https://doi.org/10.1002/jssc.201501305
  • Suresh, K., & Matzger, A. J. (2019). Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable Metal-Organic Framework (MOF). Angewandte Chemie (International ed. in English), 58(47), 16790–16794. https://doi.org/10.1002/anie.201907652
  • Tang, P., Wang, Y., & He, F. (2020). Electrochemical sensor based on super-magnetic metal–organic framework@ molecularly imprinted polymer for Sarcosine detection in urine. Journal of Saudi Chemical Society, 24(8), 620–630. https://doi.org/10.1016/j.jscs.2020.06.004
  • Tarannum, N., Hendrickson, O. D., Khatoon, S., Zherdev, A. V., & Dzantiev, B. B. (2020). Molecularly imprinted polymers as receptors for assays of antibiotics. Critical Reviews in Analytical Chemistry, 50(4), 291–310. https://doi.org/10.1080/10408347.2019.1626697
  • Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., & Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129–136. https://doi.org/10.1016/j.fct.2013.05.057
  • Tong, P., Meng, Y., Liang, J., & Li, J. (2021). Molecularly imprinted electrochemical luminescence sensor based on core–shell magnetic particles with ZIF-8 imprinted material. Sensors and Actuators B: Chemical, 330, 129405. https://doi.org/10.1016/j.snb.2020.129405
  • Turiel, E., & Martín-Esteban, A. (2019). Molecularly imprinted polymers-based microextraction techniques. TrAC: Trends in Analytical Chemistry, 118, 574–586. https://doi.org/10.1016/j.trac.2019.06.016
  • Vellingiri, K., Deep, A., Kim, K.-H., Boukhvalov, D. W., Kumar, P., & Yao, Q. (2017). The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks. Sensors and Actuators B: Chemical, 241, 938–948. https://doi.org/10.1016/j.snb.2016.11.017
  • Wang, L., Liang, K., Feng, W., Chen, C., Gong, H., & Cai, C. (2021). Molecularly imprinted polymers based on magnetically fluorescent metal–organic frameworks for the selective detection of hepatitis A virus. Microchemical Journal, 164, 106047. https://doi.org/10.1016/j.microc.2021.106047
  • Wang, Y., Cheng, J., Liu, X., Ding, F., Zou, P., Wang, X., Zhao, Q., & Rao, H. (2018a). C3N4 nanosheets/metal–organic framework wrapped with molecularly imprinted polymer sensor: Fabrication, characterization, and electrochemical detection of furosemide. ACS Sustainable Chemistry & Engineering, 6(12), 16847–16858. https://doi.org/10.1021/acssuschemeng.8b04179
  • Wang, Y., Hai, X., Shuang, E., Chen, M., Yang, T., & Wang, J. (2018b). Boronic acid functionalized g-C3N4 nanosheets for ultrasensitive and selective sensing of glycoprotein in the physiological environment. Nanoscale, 10(10), 4913–4920. https://doi.org/10.1039/c7nr09342j
  • Wei, X., Wu, T., Yuan, Y., Ma, X., & Li, J. (2017). Highly sensitive analysis of organometallic compounds based on molecularly imprinted electrochemical sensors. Analytical Methods, 9(11), 1771–1778. https://doi.org/10.1039/C6AY03320B
  • Wei, Z.-H., Zhang, R.-R., Mu, L.-N., Huang, Y.-P., & Liu, Z.-S. (2019). Fabrication of core-shell sol-gel hybrid molecularly imprinted polymer based on metal–organic framework. European Polymer Journal, 121, 109301. https://doi.org/10.1016/j.eurpolymj.2019.109301
  • Whelan, É., Steuber, F. W., Gunnlaugsson, T., & Schmitt, W. (2021). Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coordination Chemistry Reviews, 437, 213757. https://doi.org/10.1016/j.ccr.2020.213757
  • Wu, P., Du, Q., Sun, Y., Li, Z., & He, H. (2019). MIP-coated Eu (BTC) for the fluorometric determination of lincomycin in eggs. Analytical Methods, 11(35), 4501–4510. https://doi.org/10.1039/C9AY01448A
  • Wu, X., Chen, X., Zhong, G., Chen, C., & Cai, C. (2020). A novel Wulff-type boronate acid-functionalized magnetic metal-organic framework imprinted polymer for specific recognition of glycoproteins under physiological pH. Journal of Separation Science, 43(19), 3785–3792. https://doi.org/10.1002/jssc.202000437
  • Xu, J., Miao, H., Zou, L., Tse Sum Bui, B., Haupt, K., & Pan, G. (2021). Evolution of molecularly imprinted enzyme inhibitors: From simple activity inhibition to pathological cell regulation. Angewandte Chemie, 133(46), 24731–24738. https://doi.org/10.1002/ange.202106657
  • Xu, L., Li, J., Zhang, J., Sun, J., Gan, T., & Liu, Y. (2020). A disposable molecularly imprinted electrochemical sensor for the ultra-trace detection of the organophosphorus insecticide phosalone employing monodisperse Pt-doped UiO-66 for signal amplification. The Analyst, 145(9), 3245–3256. https://doi.org/10.1039/d0an00278j
  • Xu, L., Pan, M., Fang, G., & Wang, S. (2019). Carbon dots embedded metal-organic framework@ molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sensors and Actuators B: Chemical, 286, 321–327. https://doi.org/10.1016/j.snb.2019.01.156
  • Xu, S., Lu, H., Zheng, X., & Chen, L. (2013). Stimuli-responsive molecularly imprinted polymers: Versatile functional materials. Journal of Materials Chemistry C, 1(29), 4406–4422. https://doi.org/10.1039/c3tc30496e
  • Yaghi, O. M., Li, G., & Li, H. (1995). Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378(6558), 703–706. https://doi.org/10.1038/378703a0
  • Yahyapour, M., Ranjbar, M., & Mohadesi, A. (2021). Determination of ciprofloxacin drug with molecularly imprinted polymer/co-metal organic framework nanofiber on modified glassy carbon electrode (GCE). Journal of Materials Science: Materials in Electronics, 32, 3180–3190.
  • Yang, H., Guo, T.-Y., & Zhou, D. (2011). Surface hydrophilic modification with well-defined glycopolymer for protein imprinting matrix. International Journal of Biological Macromolecules, 48(3), 432–438. https://doi.org/10.1016/j.ijbiomac.2011.01.002
  • Yang, J., Feng, W., Liang, K., Chen, C., & Cai, C. (2020). A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta, 212, 120744. https://doi.org/10.1016/j.talanta.2020.120744
  • Yang, Q., Li, J., Wang, X., Peng, H., Xiong, H., & Chen, L. (2018). Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosensors & Bioelectronics, 112, 54–71. https://doi.org/10.1016/j.bios.2018.04.028
  • Yang, X., Gao, Y., Ji, Z., Zhu, L.-B., Yang, C., Zhao, Y., Shu, Y., Jin, D., Xu, Q., & Zhao, W.-W. (2019). Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: Synthesis and application for photoelectrochemical sensing of salicylic acid. Analytical Chemistry, 91(15), 9356–9360. https://doi.org/10.1021/acs.analchem.9b01739
  • Yang, Y., Yan, W., Wang, X., Yu, L., Zhang, J., Bai, B., Guo, C., & Fan, S. (2021). Development of a molecularly imprinted photoelectrochemical sensing platform based on NH2-MIL-125(Ti)-TiO2 composite for the sensitive and selective determination of oxtetracycline. Biosensors & Bioelectronics, 177, 113000. https://doi.org/10.1016/j.bios.2021.113000
  • Yao, C.-X., Zhao, N., Liu, J.-M., Fang, G.-Z., & Wang, S. (2020). Ultra-stable UiO-66 involved molecularly imprinted polymers for specific and sensitive determination of tyramine based on quartz crystal microbalance technology. Polymers, 12(2), 281. https://doi.org/10.3390/polym12020281
  • Ye, C., Chen, X., Xu, J., Xi, H., Wu, T., Deng, D., Zhang, J., & Huang, G. (2020). Highly sensitive detection to gallic acid by polypyrrole-based MIES supported by MOFs-Co2+@ Fe3O4. Journal of Electroanalytical Chemistry, 859, 113839. https://doi.org/10.1016/j.jelechem.2020.113839
  • Ye, C., Chen, X., Zhang, D., Xu, J., Xi, H., Wu, T., Deng, D., Xiong, C., Zhang, J., & Huang, G. (2021). Study on the properties and reaction mechanism of polypyrrole@ norfloxacin molecularly imprinted electrochemical sensor based on three-dimensional CoFe-MOFs/AuNPs. Electrochimica Acta, 379, 138174. https://doi.org/10.1016/j.electacta.2021.138174
  • Zeng, L., Cui, H., Chao, J., Huang, K., Wang, X., Zhou, Y., & Jing, T. (2020). Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchimica Acta, 187(2), 1–9. https://doi.org/10.1007/s00604-020-4119-9
  • Zhang, J., Liu, J., Zhang, Y., Yu, F., Wang, F., Peng, Z., & Li, Y. (2017). Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Mikrochimica Acta, 185(1), 78. https://doi.org/10.1007/s00604-017-2551-2
  • Zhang, J., Wang, D., Li, Y., Wang, J., Bai, D., Zhou, C., He, J., Shi, S., & Li, H. (2021). Construction of octahedral SERS blotting imprinted sensor for selective detection of 2, 6-dichlorophenol. Optical Materials, 112, 110764. https://doi.org/10.1016/j.optmat.2020.110764
  • Zhang, W., Duan, D., Liu, S., Zhang, Y., Leng, L., Li, X., Chen, N., & Zhang, Y. (2018). Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosensors & Bioelectronics, 118, 129–136. https://doi.org/10.1016/j.bios.2018.07.047
  • Zhang, Z., Liu, Y., Huang, P., Wu, F.-Y., & Ma, L. (2021). Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal-organic framework for highly selective fluorescence detection of metronidazole. Talanta, 232, 122411. https://doi.org/10.1016/j.talanta.2021.122411
  • Zhong, C., Yang, B., Jiang, X., & Li, J. (2018). Current progress of nanomaterials in molecularly imprinted electrochemical sensing. Critical Reviews in Analytical Chemistry, 48(1), 15–32. https://doi.org/10.1080/10408347.2017.1360762
  • Zhou, Q., & Tang, D. (2020). Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC: Trends in Analytical Chemistry, 124, 115814. https://doi.org/10.1016/j.trac.2020.115814

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.