1,185
Views
3
CrossRef citations to date
0
Altmetric
Reviews

A critical review of uranium in the soil-plant system: Distribution, bioavailability, toxicity, and bioremediation strategies

, , , , , & show all
Pages 340-365 | Published online: 23 Mar 2022

References

  • Agarwal, M., Pathak, A., Rathore, R. S., Prakash, O., Singh, R., Jaswal, R., Seaman, J., & Chauhan, A. (2018). Proteogenomic analysis of Burkholderia species strains 25 and 46 isolated from uraniferous soils reveals multiple mechanisms to cope with uranium stress. Cells, 7(12), 269. https://doi.org/10.3390/cells7120269
  • Aranjuelo, I., Doustaly, F., Cela, J., Porcel, R., Muller, M., Aroca, R., Munne-Bosch, S., & Bourguignon, J. (2014). Glutathione and transpiration as key factors conditioning oxidative stress in Arabidopsis thaliana exposed to uranium. Planta, 239(4), 817–830. https://doi.org/10.1007/s00425-013-2014-x
  • Asselin, S., & Ingram, J. C. (2014). Uranium leaching from contaminated soil utilizing rhamnolipid, EDTA, and citric acid. Applied and Environmental Soil Science, 2014, 1–6. https://doi.org/10.1155/2014/462514
  • Bajoga, A. D., Al-Dabbous, A. N., Abdullahi, A. S., Alazemi, N. A., Bachama, Y. D., & Alaswad, S. O. (2019). Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait. Nuclear Engineering and Technology, 51(6), 1638–1649. https://doi.org/10.1016/j.net.2019.04.021
  • Baker, M. R., Coutelot, F. M., & Seaman, J. C. (2019). Phosphate amendments for chemical immobilization of uranium in contaminated soil. Environment International, 129, 565–572. https://doi.org/10.1016/j.envint.2019.03.017
  • Banala, U. K., Das, N. P. I., & Toleti, S. R. (2021). Microbial interactions with uranium: Towards an effective bioremediation approach. Environmental Technology & Innovation, 21, 101254. https://doi.org/10.1016/j.eti.2020.101254
  • Bargar, J. R., Williams, K. H., Campbell, K. M., Long, P. E., Stubbs, J. E., Suvorova, E. I., Lezama-Pacheco, J. S., Alessi, D. S., Stylo, M., Webb, S. M., Davis, J. A., Giammar, D. E., Blue, L. Y., & Bernier-Latmani, R. (2013). Uranium redox transition pathways in acetate-amended sediments. Proceedings of the National Academy of Sciences, 110(12), 4506–4511. https://doi.org/10.1073/pnas.1219198110
  • Berthet, S., Villiers, F., Alban, C., Serre, N., Martin-Laffon, J., Figuet, S., Boisson, A.-M., Bligny, R., Kuntz, M., Finazzi, G., Ravanel, S., & Bourguignon, J. (2018). Arabidopsis thaliana plants challenged with uranium reveal new insights into iron and phosphate homeostasis. The New Phytologist, 217(2), 657–670. https://doi.org/10.1111/nph.14865
  • Blake, J. M., De Vore, C. L., Avasarala, S., Ali, A. M., Roldan, C., Bowers, F., Spilde, M. N., Artyushkova, K., Kirk, M. F., Peterson, E., Rodriguez-Freire, L., & Cerrato, J. M. (2017). Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM. Environmental Science. Processes & Impacts, 19(4), 605–621. https://doi.org/10.1039/c6em00612d
  • Bone, S. E., Cliff, J., Weaver, K., Takacs, C. J., Roycroft, S., Fendorf, S., & Bargar, J. R. (2020). Complexation by organic matter controls uranium mobility in anoxic sediments. Environmental Science & Technology, 54(3), 1493–1502. https://doi.org/10.1021/acs.est.9b04741
  • Bowler, C., Montagu, M. V., & Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 83–116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  • Buck, M. T., Straker, C. J., Mavri-Damelin, D., & Weiersbye, I. M. (2019). Diversity of arbuscular mycorrhizal (AM) fungi colonising roots of indigenous Vachellia and Senegalia trees on gold and uranium mine tailings in South Africa. South African Journal of Botany, 121, 34–44. https://doi.org/10.1016/j.sajb.2018.10.014
  • Chandwadkar, P., Misra, H. S., & Acharya, C. (2018). Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions. Metallomics: Integrated Biometal Science, 10(8), 1078–1088. https://doi.org/10.1039/c8mt00061a
  • Chen, L., Liu, J., Zhang, W., Zhou, J., Luo, D., & Li, Z. (2021). Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. Journal of Hazardous Materials, 413, 125319. https://doi.org/10.1016/j.jhazmat.2021.125319
  • Chen, B., Roos, P., Borggaard, O., Zhu, Y., & Jakobsen, I. (2005). Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. The New Phytologist, 165(2), 591–598. https://doi.org/10.1111/j.1469-8137.2004.01244.x
  • Chen, X., Wu, G., Ma, Q., Lai, J., Luo, X., & Ji, X. (2020a). Cytotoxic and genotoxic evaluation and the toxicological mechanism of uranium in Vicia faba root. Environmental and Experimental Botany, 179, 104227. https://doi.org/10.1016/j.envexpbot.2020.104227
  • Chen, L., Yang, J., & Wang, D. (2020b). Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. Journal of Cleaner Production, 263, 121491. https://doi.org/10.1016/j.jclepro.2020.121491
  • Cinelli, G., Tondeur, F., Dehandschutter, B., Bossew, P., Tollefsen, T., & De Cort, M. (2017). Mapping uranium concentration in soil: Belgian experience towards a European map. Journal of Environmental Radioactivity, 166(Pt 2), 220–234. https://doi.org/10.1016/j.jenvrad.2016.04.026
  • Cologgi, D. L., Sanela, L. P., Speers, A. M., Kelly, S. D., & Gemma, R. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15248–15252. https://doi.org/10.1073/pnas.1108616108
  • Coyte, R. M., & Vengosh, A. (2020). Factors controlling the risks of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium, and uranium in groundwater from the Eastern United States. Environmental Science & Technology, 54(7), 4367–4375. https://doi.org/10.1021/acs.est.9b06471
  • Cumberland, S. A., Douglas, G., Grice, K., & Moreau, J. W. (2016). Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews, 159, 160–185. https://doi.org/10.1016/j.earscirev.2016.05.010
  • Dangelmayr, M. A., Figueroa, L. A., Williams, K. H., & Long, P. E. (2019). Characterizing organic carbon dynamics during biostimulation of a uranium contaminated field site. Biogeochemistry, 143(1), 117–132. https://doi.org/10.1007/s10533-019-00553-w
  • Davies, H. S., Cox, F., Robinson, C. H., & Pittman, J. K. (2015). Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Frontiers in Plant Science, 6, 580. https://doi.org/10.3389/fpls.2015.00580
  • De Boulois, H. D., Joner, E. J., Leyval, C., Jakobsen, I., Chen, B. D., Roos, P., Thiry, Y., Rufyikiri, G., Delvaux, B., & Declerck, S. (2008). Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. Journal of Environmental Radioactivity, 99(5), 775–784. https://doi.org/10.1016/j.jenvrad.2007.10.009
  • Dewey, C., Sokaras, D., Kroll, T., Bargar, J. R., & Fendorf, S. (2020). Calcium-uranyl-carbonato species kinetically limit U(VI) Reduction by Fe(II) and Lead to U(V)-Bearing Ferrihydrite. Environmental Science & Technology, 54(10), 6021–6030. https://doi.org/10.1021/acs.est.9b05870
  • Doustaly, F., Combes, F., Fievet, J. B., Berthet, S., Hugouvieux, V., Bastien, O., Aranjuelo, I., Leonhardt, N., Rivasseau, C., Carriere, M., Vavasseur, A., Renou, J. P., Vandenbrouck, Y., & Bourguignon, J. (2014). Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots. Metallomics: Integrated Biometal Science, 6(4), 809–821. https://doi.org/10.1039/c4mt00005f
  • Dragović, S., Janković-Mandić, L., Dragović, R., Đorđević, M., Đokić, M., & Kovačević, J. (2014). Lithogenic radionuclides in surface soils of Serbia: Spatial distribution and relation to geological formations. Journal of Geochemical Exploration, 142, 4–10. https://doi.org/10.1016/j.gexplo.2013.07.015
  • Du, L., Wang, P., Li, X., & Tan, Z. (2019). Effect of attapulgite colloids on uranium migration in quartz column. Applied Geochemistry, 100, 363–370. https://doi.org/10.1016/j.apgeochem.2018.11.009
  • Edayilam, N., Ferguson, B., Montgomery, D., Al Mamun, A., Martinez, N., Powell, B. A., & Tharayil, N. (2020). Dissolution and vertical transport of uranium from stable mineral forms by plants as influenced by the co-occurrence of uranium with phosphorus. Environmental Science & Technology, 54(11), 6602–6609. https://doi.org/10.1021/acs.est.9b06559
  • Edayilam, N., Montgomery, D., Ferguson, B., Maroli, A. S., Martinez, N., Powell, B. A., & Tharayil, N. (2018). Phosphorus stress-induced changes in plant root exudation could potentially facilitate uranium mobilization from stable mineral forms. Environmental Science & Technology, 52(14), 7652–7662. https://doi.org/10.1021/acs.est.7b05836
  • El Hayek, E., Torres, C., Rodriguez-Freire, L., Blake, J. M., De Vore, C. L., Brearley, A. J., Spilde, M. N., Cabaniss, S., Ali, A. S., & Cerrato, J. M. (2018). Effect of calcium on the bioavailability of dissolved uranium (VI) in plant roots under circumneutral pH. Environmental Science & Technology, 52(22), 13089–13098. https://doi.org/10.1021/acs.est.8b02724
  • Fomina, M., Hong, J., & Gadd, G. M. (2020). Effect of depleted uranium on a soil microcosm fungal community and influence of a plant-ectomycorrhizal association. Fungal Biology, 124(5), 289–296. https://doi.org/10.1016/j.funbio.2019.08.001
  • Fu, H., Ding, D., Sui, Y., Zhang, H., Hu, N., Li, F., Dai, Z., Li, G., Ye, Y., & Wang, Y. (2019). Transport of uranium(VI) in red soil in South China: influence of initial pH and carbonate concentration. Environmental Science and Pollution Research International, 26(36), 37125–37136. https://doi.org/10.1007/s11356-019-06644-3
  • Fuller, A. J., Leary, P., Gray, N. D., Davies, H. S., Mosselmans, J. F. W., Cox, F., Robinson, C. H., Pittman, J. K., McCann, C. M., Muir, M., Graham, M. C., Utsunomiya, S., Bower, W. R., Morris, K., Shaw, S., Bots, P., Livens, F. R., & Law, G. T. W. (2020). Organic complexation of U(VI) in reducing soils at a natural analogue site: implications for uranium transport. Chemosphere, 254, 126859. https://doi.org/10.1016/j.chemosphere.2020.126859
  • Galhardi, J. A., de Mello, J. W. V., & Wilkinson, K. J. (2020). Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. Chemosphere, 261, 127679. https://doi.org/10.1016/j.chemosphere.2020.127679
  • Gallois, N., Alpha-Bazin, B., Ortet, P., Barakat, M., Piette, L., Long, J., Berthomieu, C., Armengaud, J., & Chapon, V. (2018). Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. Journal of Proteomics, 177, 148–157. https://doi.org/10.1016/j.jprot.2017.11.021
  • Gao, N., Huang, Z., Liu, H., Hou, J., & Liu, X. (2019). Advances on the toxicity of uranium to different organisms. Chemosphere, 237, 124548. https://doi.org/10.1016/j.chemosphere.2019.124548
  • Guagliardi, I., Zuzolo, D., Albanese, S., Lima, A., Cerino, P., Pizzolante, A., Thiombane, M., De Vivo, B., & Cicchella, D. (2020). Uranium, thorium and potassium insights on Campania region (Italy) soils: Sources patterns based on compositional data analysis and fractal mode. Journal of Geochemical Exploration, 212, 106508. https://doi.org/10.1016/j.gexplo.2020.106508
  • Guillen, J., & Baeza, A. (2014). Radioactivity in mushrooms: A health hazard? Food Chemistry, 154, 14–25. https://doi.org/10.1016/j.foodchem.2013.12.083
  • Günther, A., Raff, J., Merroun, M. L., Rossberg, A., Kothe, E., & Bernhard, G. (2014). Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 27(4), 775–785. https://doi.org/10.1007/s10534-014-9772-1
  • Gupta, D. K., Vukovic, A., Semenishchev, V. S., Inouhe, M., & Walther, C. (2020). Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. Environmental Science and Pollution Research International, 27(3), 3513–3522. https://doi.org/10.1007/s11356-019-07068-9
  • Hegazy, A. K., Faisal, M., Alatar, A. A., Kabiel, H. F., & Emam, M. H. (2015). Induced mutagenesis and genotoxicity by accumulated radionuclides in some edible plants cultivated in black sand soil detected by RAPD and SDS-PAGE. Fresenius Environmental Bulletin, 24, 343–354. https://www.researchgate.net/publication/279323747
  • Hinck, J. E., Cleveland, D., & Sample, B. E. (2021). Terrestrial ecological risk analysis via dietary exposure at uranium mine sites in the Grand Canyon watershed (Arizona, USA). Chemosphere, 265, 129049. https://doi.org/10.1016/j.chemosphere.2020.129049
  • Horemans, N., Van Hees, M., Van Hoeck, A., Saenen, E., De Meutter, T., Nauts, R., Blust, R., & Vandenhove, H. (2015). Uranium and cadmium provoke different oxidative stress responses in Lemna minor L. Plant Biology, 17, 91–100. https://doi.org/10.1111/plb.12222
  • Horemans, N., Vanhoudt, N., Janssens, M., Van Chaze, B., Wannijn, J., Van Hees, M., & Vandenhove, H. (2011). On the nature and timing of oxygen radical production following exposure of Arabidopsis thaliana leaves to uranium, cadmium or a combination of both stressors. Radioprotection, 46(6), S491–S496. https://doi.org/10.1051/radiopro/20116761s
  • Hou, J., Wang, C., Zhou, Y., Li, S., Hayat, T., Alsaedi, A., & Wang, X. (2018). Effects of uranium stress on physiological and biochemical characteristics in seedlings of six common edible vegetables. Journal of Radioanalytical and Nuclear Chemistry, 316(3), 1001–1010. https://doi.org/10.1007/s10967-018-5792-6
  • Hu, N., Lang, T., Ding, D., Hu, J., Li, C., Zhang, H., & Li, G. (2019). Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. Journal of Environmental Radioactivity, 199–200, 58–65. https://doi.org/10.1016/j.jenvrad.2018.12.023
  • Huang, W., Nie, X., Dong, F., Ding, C., Huang, R., Qin, Y., Liu, M., & Sun, S. (2017). Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 312(3), 531–541. https://doi.org/10.1007/s10967-017-5261-7
  • Izquierdo, M., Young, S. D., Bailey, E. H., Crout, N. M. J., Lofts, S., Chenery, S. R., & Shaw, G. (2020). Kinetics of uranium(VI) lability and solubility in aerobic soils. Chemosphere, 258, 127246. https://doi.org/10.1016/j.chemosphere.2020.127246
  • Jiang, L., Liu, X., Yin, H., Liang, Y., Liu, H., Miao, B., Peng, Q., Meng, D., Wang, S., Yang, J., & Guo, Z. (2020). The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini review. Ecotoxicology and Environmental Safety, 191, 110009. https://doi.org/10.1016/j.ecoenv.2019.110009
  • Jing, L., Zhang, X., Ali, I., Chen, X., Wang, L., Chen, H., Han, M., Shang, R., & Wu, Y. (2020). Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass. Environment International, 144, 106051. https://doi.org/10.1016/j.envint.2020.106051
  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175. https://doi.org/10.3390/ijms13033145
  • Jung, H. B., Xu, H. F., & Roden, E. E. (2019). Long-term sorption and desorption of uranium in saprolite subsoil with nanoporous goethite. Applied Geochemistry, 102, 129–138. https://doi.org/10.1016/j.apgeochem.2019.01.017
  • Kalsi, A., Mary Celin, S., Bhanot, P., Sahai, S., & Sharma, J. G. (2020). Microbial remediation approaches for explosive contaminated soil: Critical assessment of available technologies, recent innovations and future prospects. Environmental Technology & Innovation, 18, 100721. https://doi.org/10.1016/j.eti.2020.100721
  • Kazy, S., Sar, P., & D'Souza, S. (2008). Studies on uranium removal by the extracellular polysaccharide of a pseudomonas aeruginosa strain. Bioremediation Journal, 12(2), 47–57. https://doi.org/10.1080/10889860802052870
  • Khare, D., Kumar, R., & Acharya, C. (2020). Genomic and functional insights into the adaptation and survival of Chryseobacterium sp. strain PMSZPI in uranium enriched environment. Ecotoxicology and Environmental Safety, 191, 110217. https://doi.org/10.1016/j.ecoenv.2020.110217
  • Khemiri, A., Carriere, M., Bremond, N., Ben Mlouka, M. A., Coquet, L., Llorens, I., Chapon, V., Jouenne, T., Cosette, P., & Berthomieu, C. (2014). Escherichia coli response to uranyl exposure at low pH and associated protein regulations. PLoS One, 9(2), e89863. https://doi.org/10.1371/journal.pone.0089863
  • Kolhe, N., Zinjarde, S., & Acharya, C. (2018). Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnology Advances, 36(7), 1828–1846. https://doi.org/10.1016/j.biotechadv.2018.07.002
  • Kolhe, N., Zinjarde, S., & Acharya, C. (2020). Impact of uranium exposure on marine yeast, Yarrowia lipolytica: Insights into the yeast strategies to withstand uranium stress. Journal of Hazardous Materials, 381, 121226. https://doi.org/10.1016/j.jhazmat.2019.121226
  • Kubrova, J., Zigova, A., Randa, Z., Rohovec, J., Gryndler, M., Krausova, I., Dunn, C. E., Kotrba, P., & Borovicka, J. (2014). On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. Journal of Hazardous Materials, 280, 79–88. https://doi.org/10.1016/j.jhazmat.2014.07.050
  • Lai, J., Liu, Z., Li, C., & Luo, X. (2021). Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. Journal of Hazardous Materials, 409, 124997. https://doi.org/10.1016/j.jhazmat.2020.124997
  • Lai, J., Liu, Z., & Luo, X. (2020). A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium. Journal of Hazardous Materials, 386, 121437. https://doi.org/10.1016/j.jhazmat.2019.121437
  • Latta, D. E., Kemner, K. M., Bhoopesh Mishra, B., & Boyanov, M. I. (2016). Effects of calcium and phosphate on uranium (IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate. Geochimica et Cosmochimica Acta, 174, 122–142. https://doi.org/10.1016/j.gca.2015.11.010
  • Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., Yang, Y., Zhang, D., Tang, J., & Liu, N. (2016). Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. Journal of Environmental Sciences (China), 41, 162–171. https://doi.org/10.1016/j.jes.2015.06.007
  • Li, R., Dong, F., Yang, G., Zhang, W., Zong, M., Nie, X., Zhou, L., Babar, A., Liu, J., Ram, B., Fan, C., & Zeng, Y. (2019). Characterization of arsenic and uranium pollution surrounding a uranium mine in Southwestern China and phytoremediation potential. Polish Journal of Environmental Studies, 29(1), 173–185. https://doi.org/10.15244/pjoes/103446
  • Li, F., Li, X., & Cui, P. (2018). Detoxification of U(VI) by Paecilomyces catenlannulatus investigated by batch, XANES and EXAFS techniques. Journal of Environmental Radioactivity, 189, 24–30. https://doi.org/10.1016/j.jenvrad.2018.03.005
  • Liu, S., Ali, S., Yang, R., Tao, J., & Ren, B. (2019). A newly discovered Cd-hyperaccumulator Lantana camara L. Journal of Hazardous Materials, 371, 233–242. https://doi.org/10.1016/j.jhazmat.2019.03.016
  • Li, C., Wang, M., Luo, X., Liang, L., Han, X., & Lin, X. (2019). Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring. Journal of Environmental Radioactivity, 198, 43–49. https://doi.org/10.1016/j.jenvrad.2018.12.018
  • Lopez-Fernandez, M., Romero-González, M., Günther, A., Solari, P. L., & Merroun, M. L. (2018). Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites. Chemosphere, 199, 351–360. https://doi.org/10.1016/j.chemosphere.2018.02.055
  • Losch, H., Raiwa, M., Jordan, N., Steppert, M., Steudtner, R., Stumpf, T., & Huittinen, N. (2020). Temperature-dependent luminescence spectroscopic and mass spectrometric investigations of U(VI) complexation with aqueous silicates in the acidic pH-range. Environment International, 136, 105425. https://doi.org/10.1016/j.envint.2019.105425
  • Low, P. S., & Merida, J. R. (1996). The oxidative burst in plant defense: Function and signal transduction. Physiologia Plantarum, 96(3), 533–542. https://doi.org/10.1111/j.1399-3054.1996.tb00469.x
  • Lütke, L., Moll, H., & Bernhard, G. (2012). Insights into the uranium(VI) speciation with Pseudomonas fluorescens on a molecular level. Dalton Transactions (Cambridge, England: 2003), 41(43), 13370–13378. https://doi.org/10.1039/c2dt31080e
  • Malakar, A., Kaiser, M., Snow, D. D., Walia, H., Panda, B., & Ray, C. (2020). Ferrihydrite reduction increases arsenic and uranium bioavailability in unsaturated soil. Environmental Science & Technology, 54(21), 13839–13848. https://doi.org/10.1021/acs.est.0c02670
  • Malaviya, P., & Singh, A. (2012). Phytoremediation strategies for remediation of uranium-contaminated environments: A review. Critical Reviews in Environmental Science and Technology, 42(24), 2575–2647. https://doi.org/10.1080/10643389.2011.592761
  • Marshall, T. A., Morris, K., Law, G. T. W., Livens, F. R., Mosselmans, J. F. W., Bots, P., & Shaw, S. (2014). Incorporation of uranium into hematite during crystallization from ferrihydrite. Environmental Science & Technology, 48(7), 3724–3731. https://doi.org/10.1021/es500212a
  • Mehta, V. S., Maillot, F., Wang, Z., Catalano, J. G., & Giammar, D. E. (2016). Effect of reaction pathway on the extent and mechanism of Uranium(VI) immobilization with calcium and phosphate. Environmental Science & Technology, 50(6), 3128–3136. https://doi.org/10.1021/acs.est.5b06212
  • Meng, F., Jin, D., Guo, K., Larson, S., Ballard, J., Chen, L., Arslan, Z., Yuan, G., White, J., Zhou, L., Ma, Y., Waggoner, C., & Han, F. (2018). Influences of U sources and forms on its bioaccumulation in Indian mustard and sunflower. Water, Air, & Soil Pollution, 229(11), 369. https://doi.org/10.1007/s11270-018-4023-7
  • Meyer, M. C., Paschke, M. W., McLendon, T., & Price, D. (1998). Decreases in soil microbial function and functional diversity in response to depleted uranium. Journal of Environmental Quality, 27(6), 1306–1311. https://doi.org/10.2134/jeq1998.00472425002700060006x
  • Mikutta, C., Langner, P., Bargar, J. R., & Kretzschmar, R. (2016). Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland. Environmental Science & Technology, 50(19), 10465–10475. https://doi.org/10.1021/acs.est.6b03688
  • Montalván-Olivares, D. M., Santana, C. S., Velasco, F. G., Luzardo, F. H. M., Andrade, S. F. R., Ticianelli, R. B., Armelin, M. J. A., & Genezini, F. A. (2021). Multi-element contamination in soils from major mining areas in Northeastern of Brazil. Environmental Geochemistry and Health, 43(11), 4553–4576. https://doi.org/10.1007/s10653-021-00934-x
  • Natasha, Shahid, M., Khalid, S., Bibi, I., Bundschuh, J., Niazi, N. K., & Dumat, C. (2020). A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment, 711, 134740. https://doi.org/10.1016/j.scitotenv.2019.134749
  • Négrel, P., De Vivo, B., Reimann, C., Ladenberger, A., Cicchella, D., Albanese, S., Birke, M., De Vos, W., Dinelli, E., Lima, A., O'Connor, P. J., Salpeteur, I., & Tarvainen, T, GEMAS Project Team. (2018). U-Th signatures of agricultural soil at the European continental scale (GEMAS): Distribution, weathering patterns and processes controlling their concentrations. The Science of the Total Environment, 622-623, 1277–1293. https://doi.org/10.1016/j.scitotenv.2017.12.005
  • Nie, X., Dong, F., Liu, M., He, H., Sun, S., Bian, L., Yang, G., Zhang, W., Qin, Y., Huang, R., Li, Z., Ren, W., & Wang, L. (2017). Microbially mediated stable uranium phosphate nano-biominerals. Journal of Nanoscience and Nanotechnology, 17(9), 6771–6780. https://doi.org/10.1166/jnn.2017.14463
  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249
  • OECD-NEA & IAEA. (2020). Uranium (2020) resources, production and demand (“Red Book”). World Nuclear Association, the Nuclear Fuel Report 2015, 2017 & 2019.
  • Ogar, A., Grandin, A., Sjöberg, V., Turnau, K., & Karlsson, S. (2014). Stabilization of uranium (VI) at low pH by fungal metabolites: Applications in environmental biotechnology. APCBEE Procedia, 10, 142–148. https://doi.org/10.1016/j.apcbee.2014.10.032
  • Pan, Z. Z., Bartova, B., LaGrange, T., Butorin, S. M., Hyatt, N. C., Stennett, M. C., Kvashnina, K. O., & Bernier-Latmani, R. (2020). Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nature Communications, 11(1), 4001. https://doi.org/10.1038/s41467-020-17795-0
  • Panda, B. B., Panda, K. K., Patra, J., & Sahu, G. K. (2001). Evaluation of phytotoxicity and genotoxicity of uranyl nitrate in Allium assay system. Indian Journal of Experimental Biology, 39, 57–62. http://nopr.niscair.res.in/handle/123456789/23631
  • Pandey, V. C., & Bajpai, O. (2019). Chapter 1 – Phytoremediation: From theory toward practice. Phytomanagement of Polluted Sites (pp. 1–49). https://doi.org/10.1016/B978-0-12-813912-7.00001-6
  • Pan, C., Hu, N., Ding, D., Hu, J., Li, G., & Wang, Y. (2016). An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 385–394. https://doi.org/10.1007/s10967-015-4161-y
  • Pena, J., Straub, M., Flury, V., Loup, E., Corcho, J., Steinmann, P., Bochud, F., & Froidevaux, P. (2020). Origin and stability of uranium accumulation-layers in an Alpine histosol. Science of the Total Environment, 727, 138368. https://doi.org/10.1016/j.scitotenv.2020.138368
  • Pereira, R., Marques, C. R., Ferreira, M. J. S., Neves, M. F. J. V., Caetano, A. L., Antunes, S. C., Mendo, S., & Goncalves, F. (2009). Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Applied Soil Ecology, 42(3), 209–220. https://doi.org/10.1016/j.apsoil.2009.04.002
  • Perez-Conesa, S., Martinez, J. M., & Marcos, E. S. (2017). Hydration and diffusion mechanism of uranyl in montmorillonite clay: molecular dynamics using an ab initio potential. The Journal of Physical Chemistry C, 121(49), 27437–27444. https://doi.org/10.1021/acs.jpcc.7b08479
  • Pinel-Cabello, M., Jroundi, F., Lopez-Fernandez, M., Geffers, R., Jarek, M., Jauregui, R., Link, A., Vilchez-Vargas, R., & Merroun, M. L. (2021). Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study. Journal of Hazardous Materials, 403, 123858. https://doi.org/10.1016/j.jhazmat.2020.123858
  • Povedano-Priego, C., Jroundi, F., Lopez-Fernandez, M., Sanchez-Castro, I., Martin-Sanchez, I., Huertas, F. J., & Merroun, M. L. (2019). Shifts in bentonite bacterial community and mineralogy in response to uranium and glycerol-2-phosphate exposure. The Science of the Total Environment, 692, 219–232. https://doi.org/10.1016/j.scitotenv.2019.07.228
  • Purkis, J. M., Warwick, P. E., Graham, J., Hemming, S. D., & Cundy, A. B. (2021). Towards the application of electrokinetic remediation for nuclear site decommissioning. Journal of Hazardous Materials, 413, 125274. https://doi.org/10.1016/j.jhazmat.2021.125274
  • Regenspurg, S., Margot-Roquier, C., Harfouche, M., Froidevaux, P., Steinmann, P., Junier, P., & Bernier-Latmani, R. (2010). Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochimica et Cosmochimica Acta, 74(7), 2082–2098. https://doi.org/10.1016/j.gca.2010.01.007
  • Reinoso-Maset, E., Perdrial, N., Steefel, C. I., Um, W., Chorover, J., & O'Day, P. A. (2020). Dissolved carbonate and pH control the dissolution of uranyl phosphate minerals in flow-through porous media. Environmental Science & Technology, 54(10), 6031–6042. https://doi.org/10.1021/acs.est.9b06448
  • Ren, Y. M., Bao, H. L., Wu, Q., Wang, H. S., Gai, T., Shao, L., Wang, S. F., Tang, H., Li, Y. R., & Wang, X. K. (2020). The physical chemistry of uranium (VI) immobilization on manganese oxides. Journal of Hazardous Materials, 391, 122207. https://doi.org/10.1016/j.jhazmat.2020.122207
  • Ren, C., Kong, C., Wang, S., & Xie, Z. (2019). Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 217, 773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085
  • Rufyikiri, G., Thiry, Y., & Declerck, S. (2003). Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytologist, 158(2), 391–399. https://doi.org/10.1046/j.1469-8137.2003.00747.x
  • Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2013). Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. Environmental Toxicology and Chemistry, 32(9), 2125–2133. https://doi.org/10.1002/etc.2290
  • Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2014). The pH strongly influences the uranium-induced effects on the photosynthetic apparatus of Arabidopsis thaliana plants. Plant Physiology and Biochemistry: PPB, 82, 254–261. https://doi.org/10.1016/j.plaphy.2014.06.012
  • Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2015a). Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. Journal of Environmental Radioactivity, 150, 36–43. https://doi.org/10.1016/j.jenvrad.2015.07.021
  • Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2015b). Induction of oxidative stress and antioxidative mechanisms in Arabidopsis thaliana after uranium exposure at pH 7.5. International Journal of Molecular Sciences, 16(6), 12405–12423. https://doi.org/10.3390/ijms160612405
  • Salome, K. R., Beazley, M. J., Webb, S. M., Sobecky, P. A., & Taillefert, M. (2017). Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils. Geochimica et Cosmochimica Acta, 197, 27–42. https://doi.org/10.1016/j.gca.2016.10.008
  • Samuel-Nakamura, C., Robbins, W. A., & Hodge, F. S. (2017). Uranium and associated heavy metals in ovis aries in a mining impacted area in Northwestern New Mexico. International Journal of Environmental Research and Public Health, 14(8), 848. https://doi.org/10.3390/ijerph14080848
  • Santos-Frances, F., Pacheco, E. G., Martinez-Grana, A., Rojo, P. A., Zarza, C. A., & Sanchez, A. G. (2018). Concentration of uranium in the soils of the west of Spain. Environmental Pollution, 236, 1–11. https://doi.org/10.1016/j.envpol.2018.01.038
  • Sarthou, M., Revel, B., Villiers, F., Alban, C., Bonnot, T., Gigarel, O., Boisson, A.-M., Ravanel, S., & Bourguignon, J. (2020). Development of a metalloproteomic approach to analyse the response of Arabidopsis cells to uranium stress. Metallomics: Integrated Biometal Science, 12(8), 1302–1313. https://doi.org/10.1039/d0mt00092b
  • Selvakumar, R., Ramadoss, G., Menon, M. P., Rajendran, K., Thavamani, P., Naidu, R., & Megharaj, M. (2018). Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of Environmental Radioactivity, 192, 592–603. https://doi.org/10.1016/j.jenvrad.2018.02.018
  • Serre, N. B. C., Alban, C., Bourguignon, J., & Ravanel, S. (2019). Uncovering the physiological and cellular effects of uranium on the root system of Arabidopsis thaliana. Environmental and Experimental Botany, 157, 121–130. https://doi.org/10.1016/j.envexpbot.2018.10.004
  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 217037, 2012, 1–26. https://doi.org/10.1155/2012/217037
  • Shi, Y., He, J., Yang, X., Zhou, W., Wang, J., Li, X., & Liu, C. (2019). Sorption of U(VI) onto natural soils and different mineral compositions: The batch method and spectroscopy analysis. Journal of Environmental Radioactivity, 203, 163–171. https://doi.org/10.1016/j.jenvrad.2019.03.011
  • Skalny, A. V., Aschner, M., Bobrovnitsky, I. P., Chen, P., Tsatsakis, A., Paoliello, M. M. B., Buha Djordevic, A., & Tinkov, A. A. (2021). Environmental and health hazards of military metal pollution. Environmental Research, 201, 111568. https://doi.org/10.1016/j.envres.2021.111568
  • Soudek, P., Petrová, Š., Buzek, M., Lhotský, O., & Vaněk, T. (2014). Uranium uptake in Nicotiana sp. under hydroponic conditions. Journal of Geochemical Exploration, 142, 130–137. https://doi.org/10.1016/j.gexplo.2013.10.001
  • Stetten, L., Blanchart, P., Mangeret, A., Lefebvre, P., Le Pape, P., Brest, J., Merrot, P., Julien, A., Proux, O., Webb, S. M., Bargar, J. R., Cazala, C., & Morin, G. (2018). Redox fluctuations and organic complexation govern uranium redistribution from U(IV)-phosphate minerals in a mining-polluted wetland soil, Brittany, France. Environmental Science & Technology, 52(22), 13099–13109. https://doi.org/10.1021/acs.est.8b03031
  • Stetten, L., Lefebvre, P., Le Pape, P., Mangeret, A., Blanchart, P., Merrot, P., Brest, J., Julien, A., Bargar, J. R., Cazala, C., & Morin, G. (2020). Experimental redox transformations of uranium phosphate minerals and mononuclear species in a contaminated wetland. Journal of Hazardous Materials, 384, 121362. https://doi.org/10.1016/j.jhazmat.2019.121362
  • Stojanovic, M. D., Mihajlovic, M. L., Milojkovic, J. V., Lopicic, Z. R., Adamovic, M., & Stankovic, S. (2012). Efficient phytoremediation of uranium mine tailings by tobacco. Environmental Chemistry Letters, 10, 377–381. https://doi.org/10.1007/s10311-012-0362-6
  • Stylo, M., Neubert, N., Wang, Y., Monga, N., Romaniello, S. J., Weyer, S., & Bernier-Latmani, R. (2015). Uranium isotopes fingerprint biotic reduction. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5619–5624. https://doi.org/10.1073/pnas.1421841112
  • Sutcliffe, B., Chariton, A. A., Harford, A. J., Hose, G. C., Greenfield, P., Elbourne, L. D. H., Oytam, Y., Stephenson, S., Midgley, D. J., & Paulsen, I. T. (2017). Effects of uranium concentration on microbial community structure and functional potential. Environmental Microbiology, 19(8), 3323–3341. https://doi.org/10.1111/1462-2920.13839
  • Suzuki, Y., & Banfield, J. F. (2004). Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiology Journal, 21(2), 113–121. https://doi.org/10.1080/01490450490266361
  • Tan, W., Guo, F., Deng, Q., Li, J., & Wang, L. (2020). The effects of Leifsonia sp. on bioavailability and immobilization mechanism of uranium in soil. Journal of Soils and Sediments, 20(3), 1599–1608. https://doi.org/10.1007/s11368-019-02494-1
  • Tewari, R., Horemans, N., Nauts, R., Wannijn, J., Van Hees, M., & Vandenhove, H. (2015). Uranium exposure induces nitric oxide and hydrogen peroxide generation in Arabidopsis thaliana. Environmental and Experimental Botany, 120, 55–64. https://doi.org/10.1016/j.envexpbot.2015.08.004
  • Theodorakopoulos, N., Chapon, V., Coppin, F., Floriani, M., Vercouter, T., Sergeant, C., Camilleri, V., Berthomieu, C., & Février, L. (2015). Use of combined microscopic and spectroscopic techniques to reveal interactions between uranium and Microbacterium sp. A9, a strain isolated from the Chernobyl exclusion zone. Journal of Hazardous Materials, 285, 285–293. https://doi.org/10.1016/j.jhazmat.2014.12.018
  • Uyuşur, B., Li, C., Baveye, P., & Darnault, C. (2015). pH-dependent reactive transport of uranium (VI) in unsaturated sand. Journal of Soils and Sediments, 15(3), 634–647. https://doi.org/10.1007/s11368-014-1018-x
  • Vandenhove, H., Cuypers, A., Van Hees, M., Koppen, G., & Wannijn, J. (2006). Oxidative stress reactions induced in beans (Phaseolus vulgaris) following exposure to uranium. Plant Physiology and Biochemistry, 44(11–12), 795–805. https://doi.org/10.1016/j.plaphy.2006.10.013
  • Vanhoudt, N., Cuypers, A., Horemans, N., Remans, T., Opdenakker, K., Smeets, K., Bello, D. M., Havaux, M., Wannijn, J., Van Hees, M., Vangronsveld, J., & Vandenhove, H. (2011b). Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: Responses in the leaves and general conclusions. Journal of Environmental Radioactivity, 102(6), 638–645. https://doi.org/10.1016/j.jenvrad.2011.03.013
  • Vanhoudt, N., Vandenhove, H., Horemans, N., Bello, D. M., Van Hees, M., Wannijn, J., Carleer, R., Vangronsveld, J., & Cuypers, A. (2011a). Uranium induced effects on development and mineral nutrition of Arabidopsis thaliana. Journal of Plant Nutrition, 34(13), 1940–1956. https://doi.org/10.1080/01904167.2011.610482
  • Vanhoudt, N., Vandenhove, H., Horemans, N., Remans, T., Opdenakker, K., Smeets, K., Bello, D. M., Wannijn, J., Van Hees, M., Vangronsveld, J., & Cuypers, A. (2011c). Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: Responses in the roots. Journal of Environmental Radioactivity, 102(6), 630–637. https://doi.org/10.1016/j.jenvrad.2011.03.015
  • Vanhoudt, N., Vandenhove, H., Smeets, K., Remans, T., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2008). Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. Plant Physiology and Biochemistry: PPB, 46(11), 987–996. https://doi.org/10.1016/j.plaphy.2008.06.003
  • Velasco, C. A., Artyushkova, K., Ali, A. M. S., Osburn, C. L., Gonzalez-Estrella, J., Lezama-Pacheco, J. S., Cabaniss, S. E., & Cerrato, J. M. (2019). Organic functional group chemistry in mineralized deposits containing U(IV) and U(VI) from the Jackpile Mine in New Mexico. Environmental Science & Technology, 53(10), 5758–5767. https://doi.org/10.1021/acs.est.9b00407
  • Verbeeck, M., Salaets, P., & Smolders, E. (2020). Trace element concentrations in mineral phosphate fertilizers used in Europe: A balanced survey. The Science of the Total Environment, 712, 136419. https://doi.org/10.1016/j.scitotenv.2019.136419
  • Vuković, A., Schulz, W., Čamagajevac, I. Š., Gaur, A., Walther, C., & Gupta, D. (2020). Mycoremediation affects antioxidative status in winter rye plants grown at Chernobyl exclusion zone site in Ukraine. Environmental Science and Pollution Research International, 27(20), 25818–25827. https://doi.org/10.1007/s11356-020-09137-w
  • Walton-Day, K., Bern, C. R., Naftz, D. L., Gross, T. A., & O'Shea, P. M. (2019). Surface materials data from Breccia-Pipe Uranium Mine and Reference Sites, Arizona, USA. U.S. Geological Survey Data Release, https://doi.org/10.5066/P9KTLXL8
  • Wang, Z. M., Lee, S. W., Catalano, J. G., Lezama-Pacheco, J. S., Bargar, J. R., Tebo, B. M., & Giammar, D. E. (2013). Adsorption of Uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environmental Science & Technology, 47(2), 850–858. https://doi.org/10.1021/es304454g
  • Wang, Z., Qin, H., & Wang, J. (2019). Accumulation of uranium and heavy metals in the soil-plant system in Xiazhuang uranium ore field, Guangdong Province, China. Environmental Geochemistry and Health, 41(6), 2413–2423. https://doi.org/10.1007/s10653-019-00286-7
  • Wang, Z. M., Tebo, B. M., & Giammar, D. E. (2014). Effects of Mn(II) on UO2 dissolution under anoxic and oxic conditions. Environmental Science & Technology, 48(10), 5546–5554. https://doi.org/10.1021/es5002067
  • Wang, J., Yin, M., Liu, J., Shen, C. C., Yu, T. L., Li, H. C., Zhong, Q., Sheng, G., Lin, K., Jiang, X., Dong, H., Liu, S., & Xiao, T. (2021). Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments. Journal of Hazardous Materials, 414, 125466. https://doi.org/10.1016/j.jhazmat.2021.125466
  • Wetle, R., Bensko-Tarsitano, B., Johnson, K., Sweat, K. G., & Cahill, T. (2020). Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. Journal of Environmental Radioactivity, 220-221, 106293. https://doi.org/10.1016/j.jenvrad.2020.106293
  • Wollenberg, A., Kretzschmar, J., Drobot, B., Hubner, R., Freitag, L., Lehmann, F., Gunther, A., Stumpf, T., & Raff, J. (2021). Uranium(VI) bioassociation by different fungi – A comparative study into molecular processes. Journal of Hazardous Materials, 411, 125068. https://doi.org/10.1016/j.jhazmat.2021.125068
  • Xiao, S., Zhang, Q., Chen, X., Dong, F., Chen, H., Liu, M., & Ali, I. (2019). Speciation distribution of heavy metals in uranium mining impacted soils and impact on bacterial community revealed by high-throughput sequencing. Frontiers in Microbiology, 10, 1867. https://doi.org/10.3389/fmicb.2019.01867
  • Xoubi, N. (2015). Evaluation of uranium concentration in soil samples of Central Jordan. Minerals, 5(2), 133–141. https://doi.org/10.3390/min5020133
  • Yin, M., Tsang, D., Sun, J., Wang, J., Shang, J., Fang, F., Wu, Y., Liu, J., Song, G., Xiao, T., & Chen, D. (2020). Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere, 250, 126315. https://doi.org/10.1016/j.chemosphere.2020.126315
  • Yin, M., Zhou, Y., Tsang, D., Beiyuan, J., Song, L., She, J., Wang, J., Zhu, L., Fang, F., Wang, L., Liu, J., Liu, Y., Song, G., Chen, D., & Xiao, T. (2021). Emergent thallium exposure from uranium mill tailings. Journal of Hazardous Materials, 407, 124402. https://doi.org/10.1016/j.jhazmat.2020.124402
  • Zhang, L. M., Chen, Y., Xia, Q. Y., Kemner, K. M., Shen, Y. H., O'Loughlin, E. J., Pan, Z. Z., Wang, Q. H., Huang, Y., Dong, H. L., & Boyanov, M. I. (2021). Combined effects of Fe(III)-bearing clay minerals and organic ligands on U(VI) bioreduction and U(IV) speciation. Environmental Science & Technology, 55(9), 5929–5938. https://doi.org/10.1021/acs.est.0c08645
  • Zhang, Y., Lai, J., Ji, X., & Luo, X. (2020b). Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uranium-exposure in Vicia faba. Journal of Hazardous Materials, 398, 122997. https://doi.org/10.1016/j.jhazmat.2020.122997
  • Zhang, C., Liu, X. D., Tinnacher, R. M., & Tournassat, C. (2018). Mechanistic understanding of uranyl Ion complexation on montmorillonite edges: A combined first-principles molecular dynamics-surface complexation modeling approach. Environmental Science & Technology, 52(15), 8501–8509. https://doi.org/10.1021/acs.est.8b02504
  • Zhang, B., Wang, X., Zhou, J., Han, Z., Liu, W., Liu, Q., Wang, W., Li, R., Zhang, B., & Dou, B. (2020a). Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian basin, north-east China. Journal of Geochemical Exploration, 216, 106573. https://doi.org/10.1016/j.gexplo.2020.106573

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.