1,682
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The distribution, behavior, and release of macro- and micro-size plastic wastes in solid waste disposal sites

ORCID Icon, , , , , , , , & show all
Pages 366-389 | Published online: 23 Mar 2022

References

  • Adamcová, D., & Vaverková, M. D. (2016). New polymer behavior under the landfill conditions. Waste and Biomass Valorization, 7(6), 1459–1467. https://doi.org/10.1007/s12649-016-9542-0
  • Allan, F. M., Qatanani, N., Barghouthi, I., & Takatka, K. M. (2004). Dusty gas model of flow through naturally occurring porous media. Applied Mathematics and Computation, 148(3), 809–821. https://doi.org/10.1016/S0096-3003(02)00939-6
  • Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082
  • Babu, G. L. S., & Chouksey, S. K. (2011). Stress-strain response of plastic waste mixed soil. Waste Management (New York, N.Y.), 31(3), 481–488. https://doi.org/10.1016/j.wasman.2010.09.018
  • Bareither, C. A., Benson, C. H., & Edil, T. B. (2012). Effects of waste composition and decomposition on the shear strength of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1161–1174. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000702
  • Bareither, C. A., Breitmeyer, R. J., Benson, C. H., Barlaz, M. A., & Edil, T. B. (2012). Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance. Journal of Geotechnical and Geoenvironmental Engineering, 138(6), 658–670. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000636
  • Barlaz, M. A., & Palmisano, A. C. (2020). Microbiology of solid waste. CRC Press.
  • Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
  • Beaven, R. P., Stringfellow, A. M., Nicholls, R. J., Haigh, I. D., Kebede, A. S., & Watts, J. (2020). Future challenges of coastal landfills exacerbated by sea level rise. Waste Management (New York, N.Y.), 105, 92–101. https://doi.org/10.1016/j.wasman.2020.01.027
  • Benson, C. H., Edil, T. B., & Wang, X. (2012). Evaluation of a final cover slide at a landfill with recirculating leachate. Geotextiles and Geomembranes, 35, 100–106. https://doi.org/10.1016/j.geotexmem.2012.07.006
  • Berge, N. D., Reinhart, D. R., & Townsend, T. G. (2005). The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology, 35(4), 365–399. https://doi.org/10.1080/10643380590945003
  • Bhandari, A. R., & Powrie, W. (2013). Behavior of an MBT waste in monotonic triaxial shear tests. Waste Management (New York, N.Y.), 33(4), 881–891. https://doi.org/10.1016/j.wasman.2012.11.009
  • Blight, G. (2008). Slope failures in municipal solid waste dumps and landfills: A review. Waste Management & Research, 26(5), 448–463. https://doi.org/10.1177/0734242X07087975
  • Borrelle, S., Ringma, J., Law, K. L., Monnahan, C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G., Hilleary, M., Eriksen, M., Possingham, H., De Frond, H., Gerber, L., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science (New York, N.Y.), 369(6510), 1515–1518. https://doi.org/10.1126/science.aba3656
  • Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science (New York, N.Y.), 368(6496), 1257–1260. https://doi.org/10.1126/science.aaz5819
  • Brand, J. H., & Spencer, K. L. (2020). Will flooding or erosion of historic landfills result in a significant release of soluble contaminants to the coastal zone? Science of the Total Environment, 724, 138150. https://doi.org/10.1016/j.scitotenv.2020.138150
  • Brand, J. H., Spencer, K. L., O’Shea, F. T., & Lindsay, J. E. (2018). Potential pollution risks of historic landfills on low‐lying coasts and estuaries. Wiley Interdisciplinary Reviews: Water, 5, e1264. https://doi.org/10.1002/wat2.1264
  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003
  • Brinton, W. F., Jr. (2005). Characterization of man-made foreign matter and its presence in multiple size fractions from mixed waste composting. Compost Science & Utilization, 13(4), 274–280. https://doi.org/10.1080/1065657X.2005.10702251
  • Brooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade. Science Advances, 4(6), eaat0131. https://doi.org/10.1126/sciadv.aat0131
  • Canopoli, L., Coulon, F., & Wagland, S. T. (2020). Degradation of excavated polyethylene and polypropylene waste from landfill. Science of the Total Environment, 698, 134125. https://doi.org/10.1016/j.scitotenv.2019.134125
  • Canopoli, L., Fidalgo, B., Coulon, F., & Wagland, S. T. (2018). Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Management (New York, N.Y.), 76, 55–67. https://doi.org/10.1016/j.wasman.2018.03.043
  • Chen, Y., Guo, R., Li, Y.-C., Liu, H., & Zhan, T. L. (2016). A degradation model for high kitchen waste content municipal solid waste. Waste Management (New York, N.Y.), 58, 376–385. https://doi.org/10.1016/j.wasman.2016.09.005
  • European Commission. (2018). EU Plastics Strategy. https://ec.europa.eu/commission/news/eu-plastics-strategy-2018-nov-20_en
  • Cook, E., & Velis, C. A. (2021). Global review on safer end of engineered life. Royal Academy of Engineering.
  • Cossu, R. (2010). Technical evolution of landfilling. Waste Management (New York, N.Y.), 30(6), 947–948. https://doi.org/10.1016/j.wasman.2010.03.003
  • Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068–7074. https://doi.org/10.1021/acs.est.9b01517
  • De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & Santillán, L. (2020). New plastic formations in the Anthropocene. Science of the Total Environment, 2020, 142216. https://doi.org/10.1016/j.scitotenv.2020.142216
  • De la Cruz, F. B., Cheng, Q., Call, D. F., & Barlaz, M. A. (2021). Evidence of thermophilic waste decomposition at a landfill exhibiting elevated temperature regions. Waste Management, 124, 26–35. https://doi.org/10.1016/j.wasman.2021.01.014
  • Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9), 842–852. https://doi.org/10.1016/S0025-326X(02)00220-5
  • Dixon, N., & Jones, D. R. V. (2005). Engineering properties of municipal solid waste. Geotextiles and Geomembranes, 23(3), 205–233. https://doi.org/10.1016/j.geotexmem.2004.11.002
  • Echavarri-Bravo, V., Thygesen, H. H., & Aspray, T. J. (2017). Variability in physical contamination assessment of source segregated biodegradable municipal waste derived composts. Waste Management (New York, N.Y.), 59, 30–36. https://doi.org/10.1016/j.wasman.2016.10.049
  • Esteban-Altabella, J., Colomer-Mendoza, F. J., & Gallardo-Izquierdo, A. (2017). Simulation of the behavior of a refuse landfill on a laboratory scale. Journal of Environmental Management, 204(Pt 1), 144–151. https://doi.org/10.1016/j.jenvman.2017.08.045
  • European Enhanced Landfill Mining Consortium. (2018). Landfills in Europe. https://eurelco.org/2018/09/30/data-launched-on-the-landfill-situation-in-the-eu-28
  • Fadare, O. O., Wan, B., Zhao, L., & Guo, L.-H. (2020). Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere, 253, 126787. https://doi.org/10.1016/j.chemosphere.2020.126787
  • Fei, X., Fang, M., & Wang, Y. (2021). Climate change affects land-disposed waste. Nature Climate Change, 11(12), 1004–1005. https://doi.org/10.1038/s41558-021-01220-5
  • Fei, X., & Zekkos, D. (2018). Coupled experimental assessment of physico-biochemical-hydraulic characteristics of municipal solid waste undergoing degradation. Geotechnique, 68(12), 1031–1043. https://doi.org/10.1680/jgeot.16.P.253
  • Fei, X., Zekkos, D., & Raskin, L. (2015). Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste. Waste Management (New York, N.Y.), 36, 184–190. https://doi.org/10.1016/j.wasman.2014.10.027
  • Fei, X., Zekkos, D., & Raskin, L. (2016). Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments. Waste Management (New York, N.Y.), 55, 276–287. https://doi.org/10.1016/j.wasman.2015.10.015
  • Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025
  • Gewert, B., Plassmann, M. M., & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science. Processes & Impacts, 17(9), 1513–1521. https://doi.org/10.1039/c5em00207a
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • GIZ, University of Leeds, Eawag-Sandec, and Wasteaware. (2020). User Manual: Waste Flow Diagram (WFD): A rapid assessment tool for mapping waste flows and quantifying plastic leakage. Version 1.0. https://doi.org/10.5518/905
  • Golwala, H., Zhang, X., Iskander, S. M., & Smith, A. L. (2021). Solid waste: An overlooked source of microplastics to the environment. Science of the Total Environment, 769, 144581. https://doi.org/10.1016/j.scitotenv.2020.144581
  • Gomes, C., Lopes, M. L., & Oliveira, P. J. V. (2013). Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. Journal of the Air & Waste Management Association (1995), 63(11), 1352–1368. https://doi.org/10.1080/10962247.2013.813876
  • Gu, J.-D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4
  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
  • Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans, 125(1), e2018JC014719. https://doi.org/10.1029/2018JC014719
  • Hamilton, J. D., Reinert, K. H., Hagan, J. V., & Lord, W. V. (1995). Polymers as solid waste in municipal landfills. Journal of the Air & Waste Management Association (1995), 45(4), 247–251. https://doi.org/10.1080/10473289.1995.10467364
  • Hao, Z., Sun, M., Ducoste, J. J., Benson, C. H., Luettich, S., Castaldi, M. J., & Barlaz, M. A. (2017). Heat generation and accumulation in municipal solid waste landfills. Environmental Science & Technology, 51(21), 12434–12442. https://doi.org/10.1021/acs.est.7b01844
  • He, H., & Fei, X. (2020). Scaling up laboratory column testing results to predict coupled methane generation and biological settlement in full-scale municipal solid waste landfills. Waste Management (New York, N.Y.), 115, 25–35. https://doi.org/10.1016/j.wasman.2020.07.018
  • He, P., Chen, L., Shao, L., Zhang, H., & Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics? Evidence of microplastics in landfill leachate. Water Research, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
  • Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., & Tufenkji, N. (2019). Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology, 53(21), 12300–12310. https://doi.org/10.1021/acs.est.9b02540
  • Hong, J., Chen, Y., Wang, M., Ye, L., Qi, C., Yuan, H., Zheng, T., & Li, X. (2017). Intensification of municipal solid waste disposal in China. Renewable and Sustainable Energy Reviews, 69, 168–176. https://doi.org/10.1016/j.rser.2016.11.185
  • Hu, L., Fu, J., Wang, S., Xiang, Y., & Pan, X. (2021). Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity. Environmental Pollution (Barking, Essex : 1987), 269, 115905. https://doi.org/10.1016/j.envpol.2020.115905
  • Hwang, I. H., & Matsuto, T. (2008). Evaluation of carbonization as a thermal pretreatment method for landfilling by column leaching tests. Waste Management (New York, N.Y.), 28(1), 3–14. https://doi.org/10.1016/j.wasman.2006.11.007
  • Ishigaki, T., Sugano, W., Nakanishi, A., Tateda, M., Ike, M., & Fujita, M. (2004). The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere, 54(3), 225–233. https://doi.org/10.1016/S0045-6535(03)00750-1
  • Jahnke, A., Arp, H. P., Escher, B., Gewert, B., Gorokhova, E., Kühnel, D., Ogonowski, M., Potthoff, A., Rummel, C., Schmitt-Jansen, M., Toorman, E., & MacLeod, M. (2017). Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environmental Science & Technology Letters, 4(3), 85–90. https://doi.org/10.1021/acs.estlett.7b00008
  • Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25(1), 25–35. https://doi.org/10.1016/j.wasman.2004.08.009
  • Jain, P., Powell, J. T., Smith, J. L., Townsend, T. G., & Tolaymat, T. (2014). Life-cycle inventory and impact evaluation of mining municipal solid waste landfills. Environmental Science & Technology, 48(5), 2920–2927. https://doi.org/10.1021/es404382s
  • Jain, P., Townsend, T. G., & Johnson, P. (2013). Case study of landfill reclamation at a Florida landfill site. Waste Management (New York, N.Y.), 33(1), 109–116. https://doi.org/10.1016/j.wasman.2012.09.011
  • Jones, P. T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., & Hoekstra, N. (2013). Enhanced Landfill Mining in view of multiple resource recovery: A critical review. Journal of Cleaner Production, 55, 45–55. https://doi.org/10.1016/j.jclepro.2012.05.021
  • Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509–1630. https://doi.org/10.1080/10643389.2011.569871
  • Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Report No. 1464813299. https://openknowledge.worldbank.org/handle/10986/30317
  • Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G., & Amara, R. (2019). Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Marine Pollution Bulletin, 146, 608–618. https://doi.org/10.1016/j.marpolbul.2019.06.066
  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336. https://doi.org/10.1080/10643380290813462
  • Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., & Schöpp, W. (2017). Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 17(14), 8681–8723. https://doi.org/10.5194/acp-17-8681-2017
  • Koerner, R. M., & Soong, T. Y. (2000). Leachate in landfills: The stability issues. Geotextiles and Geomembranes, 18(5), 293–309. https://doi.org/10.1016/S0266-1144(99)00034-5
  • Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: A critical review of two decades of research. Waste Management (New York, N.Y.), 32(3), 513–520. https://doi.org/10.1016/j.wasman.2011.10.015
  • Kumar, M., Xiong, X., He, M., Tsang, D. C. W., Gupta, J., Khan, E., Harrad, S., Hou, D., Ok, Y. S., & Bolan, N. S. (2020). Microplastics as pollutants in agricultural soils. Environmental Pollution (Barking, Essex : 1987), 265(Pt A), 114980. https://doi.org/10.1016/j.envpol.2020.114980
  • Landva, A. O., Valsangkar, A. J., & Pelkey, S. G. (2000). Lateral earth pressure at rest and compressibility of municipal solid waste. Canadian Geotechnical Journal, 37(6), 1157–1165. https://doi.org/10.1139/t00-057
  • Laner, D., Fellner, J., & Brunner, P. H. (2009). Flooding of municipal solid waste landfills—An environmental hazard? The Science of the Total Environment, 407(12), 3674–3680. https://doi.org/10.1016/j.scitotenv.2009.03.006
  • Lau, W., Shiran, Y., Bailey, R., Cook, E., Stuchtey, M., Koskella, J., Velis, C., Godfrey, L., Boucher, J., Murphy, M., Thompson, R., Jankowska, E., Castillo Castillo, A., Pilditch, T., Dixon, B., Koerselman, L., Kosior, E., Favoino, E., Gutberlet, J., … Palardy, J. (2020). Evaluating scenarios toward zero plastic pollution. Science (New York, N.Y.), 369(6510), 1455–1461. https://doi.org/10.1126/science.aba9475
  • Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. (2020). The United States’ contribution of plastic waste to land and ocean. Science Advances, 6(44), eabd0288. https://doi.org/10.1126/sciadv.abd0288
  • Levis, J. W., Weisbrod, A., Van Hoof, G., & Barlaz, M. A. (2017). A review of the airborne and waterborne emissions from uncontrolled solid waste disposal sites. Critical Reviews in Environmental Science and Technology, 47(12), 1003–1041. https://doi.org/10.1080/10643389.2017.1342513
  • Liang, Y., Tan, Q., Song, Q., & Li, J. (2021). An analysis of the plastic waste trade and management in Asia. Waste Management (New York, N.Y.), 119, 242–253. https://doi.org/10.1016/j.wasman.2020.09.049
  • Liu, P., Qian, L., Wang, H., Zhan, X., Lu, K., Gu, C., & Gao, S. (2019). New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53(7), 3579–3588. https://doi.org/10.1021/acs.est.9b00493
  • López, A., García, M., Esteban-García, A. L., Cuartas, M., Molleda, A., & Lobo, A. (2018). Emissions from mechanically biologically treated waste landfills at field scale. International Journal of Environmental Science and Technology, 15(6), 1285–1300. https://doi.org/10.1007/s13762-017-1497-6
  • Lopez, C. G., Ni, A., Parrodi, J. C. H., Küppers, B., Raulf, K., & Pretz, T. (2019). Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus, 8, 5–23. https://doi.org/10.31025/2611-4135/2019.13780
  • Lu, S.-F., Feng, S.-J., Zheng, Q.-T., & Bai, Z.-B. (2020). A multi-phase, multi-component model for coupled processes in anaerobic landfills: Theory, implementation and validation. Geotechnique, 2020, 1–17. https://doi.org/10.1680/jgeot.20.P.002
  • Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159–167. https://doi.org/10.1016/j.cej.2018.11.155
  • MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from plastic pollution. Science (New York, N.Y.), 373(6550), 61–65. https://doi.org/10.1126/science.abg5433
  • Marquez, A. J. C., Cassettari Filho, P. C., Rutkowski, E. W., & de Lima Isaac, R. (2019). Landfill mining as a strategic tool towards global sustainable development. Journal of Cleaner Production, 226, 1102–1115. https://doi.org/10.1016/j.jclepro.2019.04.057
  • Masi, S., Caniani, D., Grieco, E., Lioi, D. S., & Mancini, I. M. (2014). Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Management, 34(3), 702–710. https://doi.org/10.1016/j.wasman.2013.12.013
  • Mian, M. M., Zeng, X., Nasry, A., & Al-Hamadani, S. M. Z. F. (2017). Municipal solid waste management in China: A comparative analysis. Journal of Material Cycles and Waste Management, 19(3), 1127–1135. https://doi.org/10.1007/s10163-016-0509-9
  • Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50(11), 5800–5808. https://doi.org/10.1021/acs.est.5b05416
  • Napper, I. E., & Thompson, R. C. (2019). Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environmental Science & Technology, 53(9), 4775–4783. https://doi.org/10.1021/acs.est.8b06984
  • O’Shea, F. T., Cundy, A. B., & Spencer, K. L. (2018). The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution. Marine Pollution Bulletin, 128, 446–455. https://doi.org/10.1016/j.marpolbul.2017.12.047
  • O’Kelly, B., El-Zein, A., Liu, X., Patel, A., Fei, X., Sharma, S., Mohammad, A., Goli, V. S. N. S., Wang, J. J., Li, D., Shi, Y., Xiao, L., Kuntikana, G., Shashank, B. S., Sarris, T., Hanumantha Rao, B., Mohamed, A. M., Paleologos, E., Nezhad, M. M., & Singh, D. (2021). Microplastics in soils: An environmental geotechnics perspective. Environmental Geotechnics, 8(8), 586–530. https://doi.org/10.1680/jenge.20.00179
  • Peccia, J., & Westerhoff, P. (2015). We should expect more out of our sewage sludge. Environmental Science & Technology, 49(14), 8271–8276. https://doi.org/10.1021/acs.est.5b01931
  • PlasticsEurope. (2019). Plastics - The facts 2019. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019
  • Potrykus, M., Redko, V., Głowacka, K., Piotrowicz-Cieślak, A., Szarlej, P., Janik, H., & Wolska, L. (2021). Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. The Science of the Total Environment, 758, 143649. https://doi.org/10.1016/j.scitotenv.2020.143649
  • Powell, J. T., Chertow, M. R., & Esty, D. C. (2018). Where is global waste management heading? An analysis of solid waste sector commitments from nationally-determined contributions. Waste Management (New York, N.Y.), 80, 137–143. https://doi.org/10.1016/j.wasman.2018.09.008
  • Powell, J. T., Townsend, T. G., & Zimmerman, J. B. (2016). Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nature Climate Change, 6(2), 162–165. https://doi.org/10.1038/nclimate2804
  • Puthcharoen, A., & Leungprasert, S. (2019). Determination of microplastics in soil and leachate from the Landfills. Thai Environmental Engineering Journal, 33, 39–46.
  • Ritzkowski, M., Heyer, K. U., & Stegmann, R. (2006). Fundamental processes and implications during in situ aeration of old landfills. Waste Management (New York, N.Y.), 26(4), 356–372. https://doi.org/10.1016/j.wasman.2005.11.009
  • Rochman, C. M. (2018). Microplastics research—From sink to source. Science (New York, N.Y.), 360(6384), 28–29. https://doi.org/10.1126/science.aar7734
  • Rong, L., Zhang, C., Jin, D., & Dai, Z. (2017). Assessment of the potential utilization of municipal solid waste from a closed irregular landfill. Journal of Cleaner Production, 142, 413–419. https://doi.org/10.1016/j.jclepro.2015.10.050
  • Rosqvist, H., & Bendz, D. (1999). An experimental evaluation of the solute transport volume in biodegraded municipal solid waste. Hydrology and Earth System Sciences, 3(3), 429–438. https://doi.org/10.5194/hess-3-429-1999
  • Ryberg, M. W., Laurent, A., & Hauschild, M. (2018). Mapping of global plastics value chain and plastics losses to the environment: With a particular focus on marine environment. UNEP. http://hdl.handle.net/20.500.11822/26745
  • Saliu, F., Montano, S., Garavaglia, M. G., Lasagni, M., Seveso, D., & Galli, P. (2018). Microplastic and charred microplastic in the Faafu Atoll, Maldives. Marine Pollution Bulletin, 136, 464–471. https://doi.org/10.1016/j.marpolbul.2018.09.023
  • Saquing, J. M., Saquing, C. D., Knappe, D. R. U., & Barlaz, M. A. (2010). Impact of plastics on fate and transport of organic contaminants in landfills. Environmental Science & Technology, 44(16), 6396–6402. https://doi.org/10.1021/es101251p
  • Sarkar, B., Dissanayake, P. D., Bolan, N. S., Dar, J. Y., Kumar, M., Haque, M. N., Mukhopadhyay, R., Ramanayaka, S., Biswas, J. K., & Tsang, D. C. W. (2021). Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environmental Research, 2021, 112179.
  • Sasaki, S., & Araki, T. (2014). Estimating the possible range of recycling rates achieved by dump waste pickers: The case of Bantar Gebang in Indonesia. Waste Management & Research, 32(6), 474–481. https://doi.org/10.1177/0734242X14535651
  • Schwarz, A. E., Ligthart, T. N., Boukris, E., & Van Harmelen, T. (2019). Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Marine Pollution Bulletin, 143, 92–100. https://doi.org/10.1016/j.marpolbul.2019.04.029
  • Sharma, K. D., & Jain, S. (2019). Overview of municipal solid waste generation, composition, and management in India. Journal of Environmental Engineering, 145(3), 04018143. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001490
  • Simoneit, B. R. T., Medeiros, P. M., & Didyk, B. M. (2005). Combustion products of plastics as indicators for refuse burning in the atmosphere. Environmental Science & Technology, 39(18), 6961–6970. https://doi.org/10.1021/es050767x
  • Singh, A., & Chandel, M. K. (2020). Effect of ageing on waste characteristics excavated from an Indian dumpsite and its potential valorisation. Process Safety and Environmental Protection, 134, 24–35. https://doi.org/10.1016/j.psep.2019.11.025
  • Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3), 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
  • Skariyachan, S., Patil, A. A., Shankar, A., Manjunath, M., Bachappanavar, N., & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149, 52–68. https://doi.org/10.1016/j.polymdegradstab.2018.01.018
  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155
  • Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, Y., & Hebe, I. (2006). Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems? Waste Management (New York, N.Y.), 26(5), 516–525. https://doi.org/10.1016/j.wasman.2005.07.021
  • Stoltz, G., Gourc, J. P., & Oxarango, L. (2010). Liquid and gas permeabilities of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology, 118(1-2), 27–42. https://doi.org/10.1016/j.jconhyd.2010.07.008
  • Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S., & Zhu, L. (2021). Plastics in the Earth system. Science (New York, N.Y.), 373(6550), 51–55. https://doi.org/10.1126/science.abb0354
  • Su, Y., Zhang, Z., Wu, D., Zhan, L., Shi, H., & Xie, B. (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164, 114968. https://doi.org/10.1016/j.watres.2019.114968
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37. https://doi.org/10.1016/j.watres.2018.12.050
  • Sun, J., Zhu, Z.-R., Li, W.-H., Yan, X., Wang, L.-K., Zhang, L., Jin, J., Dai, X., & Ni, B.-J. (2021). Revisiting microplastics in landfill leachate: Unnoticed tiny microplastics and their fate in treatment works. Water Research, 190, 116784. https://doi.org/10.1016/j.watres.2020.116784
  • Sun, W., Sun, M., & Barlaz, M. A. (2016). Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors. Waste Management (New York, N.Y.), 53, 82–91. https://doi.org/10.1016/j.wasman.2016.01.028
  • Tansel, B. (2019). Persistence times of refractory materials in landfills: A review of rate limiting conditions by mass transfer and reaction kinetics. Journal of Environmental Management, 247, 88–103. https://doi.org/10.1016/j.jenvman.2019.06.056
  • Ter Halle, A., Ladirat, L., Gendre, X., Goudounèche, D., Pusineri, C., Routaboul, C., Tenailleau, C., Duployer, B., & Perez, E. (2016). Understanding the fragmentation pattern of marine plastic debris. Environmental Science & Technology, 50(11), 5668–5675. https://doi.org/10.1021/acs.est.6b00594
  • Teuten, E., Saquing, J., Knappe, D., Barlaz, M., Jonsson, S., Björn, A., Rowland, S., Thompson, R., Galloway, T., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M., Akkhavong, K., … Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2027–2045. https://doi.org/10.1098/rstb.2008.0284
  • Tinet, A. J., Oxarango, L., Bayard, R., Benbelkacem, H., Stoltz, G., Staub, M. J., & Gourc, J. P. (2011). Experimental and theoretical assessment of the multi-domain flow behaviour in a waste body during leachate infiltration. Waste Management (New York, N.Y.), 31(8), 1797–1806. https://doi.org/10.1016/j.wasman.2011.03.003
  • Townsend, T., Powell, J., Jain, P., Xu, Q., Tolaymat, T., & Reinhart, D. (2015). Sustainable practices for landfill design and operation. Springer.
  • United States Environmental Protection Agency. (2019). National overview: Facts and figures on materials, wastes and recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials
  • Van Passel, S., Dubois, M., Eyckmans, J., De Gheldere, S., Ang, F., Jones, P. T., & Van Acker, K. (2013). The economics of enhanced landfill mining: Private and societal performance drivers. Journal of Cleaner Production, 55, 92–102. https://doi.org/10.1016/j.jclepro.2012.03.024
  • Velis, C., & Cook, E. (2021). Mismanagement of plastic waste through open burning with emphasis on the global south: A systematic review of risks to occupational and public health. Environmental Science & Technology, 55(11), 7186–7207. https://doi.org/10.1021/acs.est.0c08536
  • Vergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: Quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107–119. https://doi.org/10.1111/jiec.12257
  • Waldschläger, K., & Schüttrumpf, H. (2020). Infiltration behaviour of microplastic particles with different densities, sizes and shapes–from glass spheres to natural sediments. Environmental Science & Technology, 54(15), 9366–9373. https://doi.org/10.1021/acs.est.0c01722
  • Wang, C., Zhao, L., Lim, M. K., Chen, W.-Q., & Sutherland, J. W. (2020). Structure of the global plastic waste trade network and the impact of China’s import Ban. Resources, Conservation and Recycling, 153, 104591. https://doi.org/10.1016/j.resconrec.2019.104591
  • Wang, L., Wu, W.-M., Bolan, N. S., Tsang, D. C. W., Li, Y., Qin, M., & Hou, D. (2021). Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 401, 123415. https://doi.org/10.1016/j.jhazmat.2020.123415
  • Wang, Y., Lu, X., & Fei, X. (2021). Property changes of conventional plastic waste mixed with municipal solid waste after 10-year degradation experiments simulating landfill conditions. Journal of Hazardous Materials Letters, 2, 100047. https://doi.org/10.1016/j.hazl.2021.100047
  • Wang, Y.-N., Sun, Y-j., Wang, L., Sun, X-j., Wu, H., Bian, R-x., & Li, J-j. (2014). N2O emission from a combined ex-situ nitrification and in-situ denitrification bioreactor landfill. Waste Management (New York, N.Y.), 34(11), 2209–2217. https://doi.org/10.1016/j.wasman.2014.06.023
  • Weinstein, J. E., Crocker, B. K., & Gray, A. D. (2016). From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry, 35(7), 1632–1640. https://doi.org/10.1002/etc.3432
  • Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environmental Science & Technology, 48(16), 9523–9530. https://doi.org/10.1021/es502250z
  • Woodman, N. D., Rees-White, T. C., Stringfellow, A. M., Beaven, R. P., & Hudson, A. P. (2014). Investigating the effect of compression on solute transport through degrading municipal solid waste. Waste Management (New York, N.Y.), 34(11), 2196–2208. https://doi.org/10.1016/j.wasman.2014.06.022
  • World Bank. (2020). New country classifications by income level: 2019-2020. Retreived from https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2019-2020
  • Xu, C., Zhang, B., Gu, C., Shen, C., Yin, S., Aamir, M., & Li, F. (2020). Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials, 400, 123228. https://doi.org/10.1016/j.jhazmat.2020.123228
  • Yadav, V., Sherly, M. A., Ranjan, P., Tinoco, R. O., Boldrin, A., Damgaard, A., & Laurent, A. (2020). Framework for quantifying environmental losses of plastics from landfills. Resources, Conservation and Recycling, 161, 104914. https://doi.org/10.1016/j.resconrec.2020.104914
  • Yang, Z., Lü, F., Zhang, H., Wang, W., Shao, L., Ye, J., & He, P. (2021). Is incineration the terminator of plastics and microplastics? Journal of Hazardous Materials, 401, 123429. https://doi.org/10.1016/j.jhazmat.2020.123429
  • Zalasiewicz, J., Waters, C. N., & Williams, M. (2014). Human bioturbation, and the subterranean landscape of the Anthropocene. Anthropocene, 6, 3–9. https://doi.org/10.1016/j.ancene.2014.07.002
  • Zekkos, D., Bray, J. D., Kavazanjian, E., Jr., Matasovic, N., Rathje, E. M., Riemer, M. F., & Stokoe, K. H., II. (2006). Unit weight of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 132(10), 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250)
  • Zekkos, D., Fei, X., Grizi, A., & Athanasopoulos, G. (2017). Response of municipal solid waste to mechanical compression. Journal of Geotechnical and Geoenvironmental Engineering, 143(3), 04016101. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001608
  • Zekkos, D., Grizi, A., & Athanasopoulos, G. (2013). Experimental investigation of the effect of fibrous reinforcement on shear resistance of soil-waste mixtures. Geotechnical Testing Journal, 36(6), 20120190–20120881. https://doi.org/10.1520/GTJ20120190
  • Zekkos, D., Kavazanjian, E., Bray, J. D., Matasovic, N., & Riemer, M. F. (2010). Physical characterization of municipal solid waste for geotechnical purposes. Journal of Geotechnical and Geoenvironmental Engineering, 136(9), 1231–1241. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000326
  • Zhan, T. L. T., Xu, X. B., Chen, Y. M., Ma, X. F., & Lan, J. W. (2015). Dependence of gas collection efficiency on leachate level at wet municipal solid waste landfills and its improvement methods in China. Journal of Geotechnical and Geoenvironmental Engineering, 141. https://doi.org/10.1061/(asce)gt.1943-5606.0001271
  • Zhang, Y., Pu, S., Lv, X., Gao, Y., & Ge, L. (2020). Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400, 123110. https://doi.org/10.1016/j.jhazmat.2020.123110
  • Zhang, Z., Su, Y., Zhu, J., Shi, J., Huang, H., & Xie, B. (2021). Distribution and removal characteristics of microplastics in different processes of the leachate treatment system. Waste Management (New York, N.Y.), 120, 240–247. https://doi.org/10.1016/j.wasman.2020.11.025
  • Zhang, Z., Wang, Y., Fang, Y., Pan, X., Zhang, J., & Xu, H. (2020). Global study on slope instability modes based on 62 municipal solid waste landfills. Waste Management & Research, 38(12), 1389–1404. https://doi.org/10.1177/0734242X20953486
  • Zheng, Y., Yanful, E. K., & Bassi, A. S. (2005). A review of plastic waste biodegradation. Critical Reviews in Biotechnology, 25(4), 243–250. https://doi.org/10.1080/07388550500346359
  • Zhou, C., Fang, W., Xu, W., Cao, A., & Wang, R. (2014). Characteristics and the recovery potential of plastic wastes obtained from landfill mining. Journal of Cleaner Production, 80, 80–86. https://doi.org/10.1016/j.jclepro.2014.05.083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.