8,584
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies – environmental aspects

, , , , , , & show all
Pages 914-938 | Published online: 13 Jul 2022

References

  • Aguilar-Moreno, G. S., Navarro-Cerón, E., Velázquez-Hernández, A., Hernández-Eugenio, G., Aguilar-Méndez, M. Á., & Espinosa-Solares, T. (2020). Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles. Renewable Energy, 147, 204–213. https://doi.org/10.1016/j.renene.2019.08.111
  • Akinremi, O. O., Armisen, N., Kashem, M. A., & Janzen, H. H. (2003). Evaluation of analytical methods for total phosphorus in organic amendments. Communications in Soil Science and Plant Analysis, 34(19–20), 2981. https://doi.org/10.1081/CSS-120025220
  • Al-Bataina, B. B., Young, T. M., & Ranieri, E. (2016). Effects of compost age on the release of nutrients. International Soil and Water Conservation Research, 4(3), 230–236.https://doi.org/10.1016/j.iswcr.2016.07.003
  • Amanullah, M., Sekar, S., & Muthukrish, P. (2010). Prospects and potential of poultry manure. Asian Journal of Plant Sciences, 9(4), 172–182. https://doi.org/10.3923/ajps.2010.172.182
  • Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes, 7(8), 504. https://doi.org/10.3390/pr7080504
  • Ashworth, A. J., Chastain, J. P., & Moore, J. P. (2020). Nutrient characteristics of poultry manure and litter. In H. M. Waldrip, P. H. Pagliari, & Z. He (Eds.), Animal manure: production, characteristics, environmental concerns, and management. Book Series ASA Special Publications.
  • Bavariani, M. Z., Ronaghi, A., & Ghasemi, R. (2019). Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Communications in Soil Science and Plant Analysis, 50(4), 402–411. https://doi.org/10.1080/00103624.2018.1563101
  • Bhatnagar, N., Ryan, D., Murphy, R., & Enright, A. M. (2022). A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential–Global and Irish perspective. Renewable and Sustainable Energy Reviews, 154, 111884. https://doi.org/10.1016/j.rser.2021.111884
  • Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J., & Vandecasteele, C. (2015). Electricity from poultry manure: a cleaner alternative to direct land application. Journal of Cleaner Production, 96, 467–475. PagesISSN 09596526https://doi.org/10.1016/j.jclepro.2014.04.016
  • Bittman, S., Dedina, M., Howard, C. M., Oenema, O., & Sutton, M. A. (2014). Options for ammonia mitigation: Guidance from the UNECE task force on reactive nitrogen. Centre for Ecology and Hydrology (CEH). ISBN: 978-1-906698-46-1
  • Blake, J., & Hess, J. (2014). Suitability of poultry litter ash as a feed supplement for broiler chicken. Journal of Applied Poultry Research, 23(1), 94–100. https://doi.org/10.3382/japr.2013-00836
  • Bolan, N. S., Szogi, A. A., Chuasavathi, T., Seshadri, B., Rothrock, M. J., Jr., & Panneerselvam, P. (2010). Uses and management of poultry litter. World's Poultry Science Journal, 66(4), 673–698. https://doi.org/10.1017/S0043933910000656
  • Brassard, P., Godbout, S., Palacios, J. H., Jeanne, T., Hogue, R., Dubé, P., Limousy, L., & Raghavan, V. (2018). Effect of six engineered biochars on GHG emissions from two agricultural soils: A short-term incubation study. Geoderma, 327, 73–84. https://doi.org/10.1016/j.geoderma.2018.04.022
  • Buhlmann, C. H., Mickan, B. S., Jenkins, S. N., Tait, S., Kahandawala, T. K., & Bahri, P. A. (2019). Ammonia stress on a resilient mesophilic anaerobic inoculum: Methane production, microbial community, and putative metabolic pathways. Bioresource Technology, 275, 70–77. https://doi.org/10.1016/j.biortech.2018.12.012
  • Cai, Y., Zheng, Z., Schäfer, F., Stinner, W., Yuan, X., Wang, H., Cui, Z., & Wang, X. (2021). A review about pretreatment of lignocellulosic biomass in anaerobic digestion: achievement and challenge in Germany and China. Journal of Cleaner Production, 299, 126885. https://doi.org/10.1016/j.jclepro.2021.126885
  • Charles, A., Rochette, P., Whalen, J. K., Angers, D. A., Chantigny, M. H., & Bertrand, N. (2017). Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agriculture, Ecosystems and Environment, 236, 88–98. https://doi.org/10.1016/j.agee.2016.11.021
  • Congilosi, J. L., & Aga, D. S. (2021). Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. Journal of Hazardous Materials, 405, 123634.
  • Dail, H. W., He, Z., Erich, M. S., & Honeycutt, C. W. (2007). Effect of drying on phosphorus distribution in poultry manure. Communications in Soil Science and Plant Analysis, 38(13–14), 1879–1895. https://doi.org/10.1080/00103620701435639
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale Precovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
  • Deublein, D., & Steinhauser, A. (2011). Biogas from waste and renewable resources: An introduction (pp. 578). John Wiley & Sons.
  • Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland – Current state and future perspectives. Journal of Environmental Management, 264, 110327. https://doi.org/10.1016/j.jenvman.2020.110327
  • Du, T., Feng, L., & Zhen, X. (2022). Microbial community structures and antibiotic biodegradation characteristics during anaerobic digestion of chicken manure containing residual enrofloxacin. Journal of Environmental Science and Health, Part B, 57(2), 102–112. https://doi.org/10.1080/03601234.2022.2026124
  • Duan, N., Ran, X., Li, R., Kougias, P. G., Zhang, Y., Lin, C., & Liu, H. (2018). Performance evaluation of mesophilic anaerobic digestion of chicken manure with algal digestate. Energies, 11(7), 1829. https://doi.org/10.3390/en11071829
  • European Biochar Certificate. (2020a). Certification of the carbon sink potential of biochar. Ithaka Institute. Version 10E of 1st June 2020. Retrieved February 10, 2021, from http://European-biochar.org
  • European Biochar Certificate. (2020b). Certification of the carbon sink potential of biochar. Ithaka Institute. Version 10E of 1st June 2021. Retrieved February 10, 2021, from http://European-biochar.org
  • Eurostat. (2021). Slaughtering in slaughterhouses - annual data. Retrieved August 27,2021, from http://aphttp://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-056118_QID_-7A1EB2C7_UID_-3F171EB0&layout=TIME,C,X,0;GEO,L,Y,0;MEAT,L,Z,0;MEATITEM,L,Z,1;UNIT,L,Z,2;INDICATORS,C,Z,3;&zSelection=DS-056118UNIT,THS_T;DS-056118MEAT,B7000;DS-056118MEATITEM,SL;DS-056118INDICATORS,OBS_FLAG;&rankName1=MEAT_1_2_-1_2&rankName2=UNIT_1_2_-1_2&rankName3=MEATITEM_1_2_-1_2&rankName4=INDICATORS_1_2_-1_2&rankName5=TIME_1_0_0_0&rankName6=GEO_1_2_0_1&sortC=ASC_-1_FIRST&rStp=&cStp=&rDCh=&cDCh=&rDM=true&cDM=true&footnes=false&empty=false&wai=false&time_mode=ROLLING&time_most_recent=false&lang=EN&cfo=%23%23%23%2C%23%23%23.%23%23%23
  • Fahimi, A., Bilo, F., Assi, A., Dalipi, R., Federici, S., Guedes, A., Valentim, B., Olgun, H., Ye, G., Bialecka, B., Fiameni, L., Borgese, L., Cathelineau, M., Boiron, M. C., Predeanu, G., & Bontempi, E. (2020). Poultry litter ash characterization and recovery. Waste Management, 111, 10–21. https://doi.org/10.1016/j.wasman.2020.05.010
  • Faucette, L. B., Risse, L. M., Nearing, M. A., Gaskin, J. W., & West, L. T. (2004). Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil and Water Conservation, 59(4), 154–160.
  • Ferraro, A., Massini, G., Miritana, V. M., Rosa, S., Signorini, A., & Fabbricino, M. (2020). A novel enrichment approach for anaerobic digestion of lignocellulosic biomass: Process performance enhancement through an inoculum habitat selection. Bioresource Technology, 313, 123703. https://doi.org/10.1016/j.biortech.2020.123703
  • Florin, N. H., Maddocks, A. R., Wood, S., & Harris, A. T. (2009). High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia. Waste Management, 29(4), 1399–1408. https://doi.org/10.1016/j.wasman.2008.10.002
  • Frąc, M., & Ziemiński, K. (2012). Methane fermentation process for utilization of organic waste. International Agrophysics, 26(3), 317–330. https://doi.org/10.2478/v10247-012-0045-3
  • Fuchs, W., Wang, X., Gabauer, W., Ortner, M., & Li, Z. (2018). Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China. Renewable and Sustainable Energy Reviews, 97, 186–199. https://doi.org/10.1016/j.rser.2018.08.038
  • Gallert, C., & Winter, J. (2005). Bacterial metabolism in wastewater treatment systems. In H. J. Jordening & J. Winter (Eds.), Environmental biotechnology, concepts and applications (pp.1–48). Weinheim: Wiley-VCH. https://doi.org/10.1002/3527604286.ch1
  • Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J.-P., Cardinael, R., Chen, S., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., … Zhou, F. (2021). Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology, 27(2), 237–256. https://doi.org/10.1111/gcb.15342
  • Guo, X., Liu, H., & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management (New York, N.Y.), 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003
  • Guo, M., Tongtavee, N., & Labreveux, M. (2009). Nutrient dynamics of field-weathered Delmarva poultry litter: implications for land application. Biology and Fertility of Soils, 45(8), 829–838. https://doi.org/10.1007/s00374-009-0397-4
  • Gurmessa, B., Pedretti, E. F., Cocco, S., Cardelli, V., & Corti, G. (2020). Manure anaerobic digestion effects and the role of pre-and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. The Science of the Total Environment, 721, 137532. https://doi.org/10.1016/j.scitotenv.2020.137532
  • Guštin, S., & Marinšek-Logar, R. (2011). Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the Anaerobic digestion. Process Safety and Environmental Protection, 89(1), 61–66. https://doi.org/10.1016/j.psep.2010.11.001
  • Hadroug, S., Jellali, S., Jeguirim, M., Kwapinska, M., Hamdi, H., James, J., Leahy, J. J., & Kwapinski, W. (2021). Static and dynamic investigations on leaching/retention of nutrients from raw poultry manure biochars and amended agricultural soil. Sustainability, 13(3), 1212. https://doi.org/10.3390/su13031212
  • Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112
  • Hao, X., & Benke, M. B. (2008). Nitrogen transformation and losses during composting and mitigation. Dynamic Soil, Dynamic Plant 2, (Special issue 1), 10–18.
  • Harrison, R. B. (2008). Composting and formation of humic substances. Encyclopedia of Ecology, 713–719. https://doi.org/10.1016/b978-008045405-4.00262-7
  • Hassanein, A., Lansing, S., & Tikekar, R. (2019). Impact of metal nanoparticles on biogas production from poultry litter. Bioresource Technology, 275, 200–206. https://doi.org/10.1016/j.biortech.2018.12.048
  • He, Z., Honeycutt, C. W., Cade-Menun, B. J., Senwo, Z. N., & Tazisong, I. A. (2008). Phosphorus in poultry litter and soil: Enzymatic and nuclear magnetic resonance characterization. Soil Science Society of America Journal, 72(5), 1425–1433. https://doi.org/10.2136/sssaj2007.0407
  • He, X., Hu, Q., Chen, J., Leong, W. Q., Dai, J., & Wang, C.-H. (2022). Energy and environmental risk assessments of poultry manure sustainable solution: An industrial case study in Singapore. Journal of Cleaner Production, 339, 130787. https://doi.org/10.1016/j.jclepro.2022.130787
  • He, Z., Pagliari, P. H., & Waldrip, H. M. (2016). Applied and environmental chemistry of animal manure: A review. Pedosphere, 26(6), 779–816. https://doi.org/10.1016/S1002-0160(15)60087-X
  • He, Z., Senwo, Z. N., Mankolo, R. N., & Honeycutt, C. W. (2006). Phosphorus fractions in poultry litter characterized by sequential fractionation coupled with phosphatase hydrolysis. Journal of Food, Agriculture and Environment, 4, 304–312.
  • Hergoualc’h, K., Akiyama, H., Bernoux, M., Chirinda, N., del Prado, A., Kasimir, Å., MacDonald, J. D., Ogle, S. M., Regina, K., & van der Weerden, T. J., IPCC. (2019). “Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application,” in Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Retrieved September 9, 2021, from https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf
  • Ibarrola, R., Shackley, S., & Hammond, J. (2012). Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. Waste Management (New York, NY), 32(5), 859–868. https://doi.org/10.1016/j.wasman.2011.10.005
  • Islam, M. R., Bilkis, S., Hoque, T. S., Uddin, S., Jahiruddin, M., Rahman, M. M., Siddique, A. B., Hossain, M. A., Danso Marfo, T., Danish, S., & Datta, R. (2021). Mineralization of farm manures and slurries under aerobic and anaerobic conditionsfor subsequent release of phosphorus and sulphur in soil. Sustainability, 13(15), 8605. https://doi.org/10.3390/su13158605
  • Issah, A. A., Kabera, T., & Kemausuor, F. (2020). Biogas optimisation processes and effluent quality: A review. Biomass and Bioenergy, 133, 105449. https://doi.org/10.1016/j.biombioe.2019.105449
  • Janczak, D., Malińska, K., Czekała, W., Cáceres, R., Lewicki, A., & Dach, J. (2017). Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Management (New York, NY), 66, 36–45. https://doi.org/10.1016/j.wasman.2017.04.033
  • Jędrczak, A. (2007). Biologiczne przetwarzanie odpadów. Wydawnictwo Naukowe PWN. ISBN 978-83-01-15166-9.
  • Jędrczak, A., Królik, D., Sądecka, Z., Myszograj, S., Suchowska-Kisielewicz, M., & Bojarski, J. (2014). Testing of co-fermentation of poultry manure and corn silage. Civil and Environmental Engineering Reports, 13(2), 31–47. https://doi.org/10.2478/ceer-2014-0013
  • Jeswani, H. K., Whiting, A., Martin, A., & Azapagic, A. (2019). Environmental and economic sustainability of poultry litter gasification for electricity and heat generation. Waste Management (New York, NY), 95, 182–191. https://doi.org/10.1016/j.wasman.2019.05.053
  • Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32, 100899. https://doi.org/10.1016/j.jwpe.2019.100899
  • Junga, R., Knauer, W., Niemiec, P., & Tańczuk, M. (2017). Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis. Renewable Energy, 111, 245–255. https://doi.org/10.1016/j.renene.2017.03.099
  • Kabelitz, T., Biniasch, O., Ammon, C., Nübel, U., Thiel, N., Janke, D., Swaminathan, S., Funk, R., Münch, S., Rösler, U., Siller, P., Amon, B., Aarnink, A. J. A., & Amon, T. (2021). Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment. The Science of the Total Environment, 780, 146652. https://doi.org/10.1016/j.scitotenv.2021.146652
  • Kacprzak, M., & Sobik-Szołtysek, J. (2022). The opoka-rock in N and P of poultry manure management according to circular economy. Journal of Environmental Management, 316(2022), 115262. https://doi.org/10.1016/j.jenvman.2022.115262
  • Kaikake, K., Sekito, T., & Dote, Y. (2009). Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash. Waste Management, 29(3), 1084–1088. https://doi.org/10.1016/j.wasman.2008.09.008
  • Kelleher, B. P., Leahy, J. J., Henihan, A. M., O'Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology – a review. Bioresource Technology, 83(1), 27–36. https://doi.org/10.1016/S0960-8524(01)00133-X
  • Khan, N., Clark, I., Sanchez-Monedero, M. A., Shea, S., Meier, S., Qi, F., Kookana, R. S., & Bolan, N. (2016). Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere, 142, 14–23. https://doi.org/10.1016/j.chemosphere.2015.05.065
  • Khanal, S. K. (2011). Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley & Sons. ISBN: 978-0-813-82346-1
  • Khoshnevisan, B., Duan, N., Tsapekos, P., Awasthi, M. K., Liu, Z., Mohammadi, A., Angelidaki, I., Tsang, D. C. W., Zhang, Z., Pan, J., Ma, L., Aghbashlo, M., Tabatabaei, M., & Liu, H. (2021). A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, 110033. https://doi.org/10.1016/j.rser.2020.110033
  • Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., & Saroj, D. (2017). Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Management (New York, NY), 60, 201–210. https://doi.org/10.1016/j.wasman.2016.10.055
  • Krawczyk, W., & Walczak, J. (2016). Redukcja emisji gazowych z kurników poprzez zastosowanie biofiltracji powietrza. Rocz. Nauk. Zoot., T, 43(2), 267–275.
  • Kreidenweis, U., Breier, J., Herrmann, C., Libra, J., & Prochnow, A. (2021). Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. Journal of Cleaner Production, 280, 124969. https://doi.org/10.1016/j.jclepro.2020.124969
  • Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Sivaraman Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. https://doi.org/10.1016/j.jece.2021.105579
  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A Review. International Journal of Environmental Research and Public Health, 16(19), 3521. https://doi.org/10.3390/ijerph16193521
  • Li, J., Cao, L., Yuan, Y., Wang, R., Wen, Y., & Man, J. (2018). Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal- wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresource Technology, 247, 794–803. https://doi.org/10.1016/j.biortech.2017.09.120
  • Lim, S. C., Knight, D. R., Moono, P., Foster, N. F., & Riley, T. V. (2020). Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. Environmental Microbiology Reports, 12(6), 672–680. https://doi.org/10.1111/1758-2229.12889
  • Lin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and thermodynamics of ammonium sorption from swine manure by natural chabazite. Separation Science and Technology, 51(2), 202–213. https://doi.org/10.1080/01496395.2015.1086379
  • Li, C., Salas, W., Zhang, R., Krauter, C., Rotz, A., & Mitloehner, F. (2012). Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutrient Cycling in Agroecosystems, 93(2), 163–200. https://doi.org/10.1007/s10705-012-9507-z
  • Liu, H., Huang, Y., Wang, H., Shen, Z., Qiao, C., Li, R., & Shen, Q. (2020). Enzymatic activities triggered by the succession of microbiota steered fiber degradation and humification during co-composting of chicken manure and rice husk. Journal of Environmental Management, 258, 110014. https://doi.org/10.1016/j.jenvman.2019.110014
  • Luyckx, L., de Leeuw, G. H. J., & Van Caneghem, J. (2020). Characterization of poultry litter ash in view of its valorization. Waste and Biomass Valorization, 11(10), 5333–5348. https://doi.org/10.1007/s12649-019-00750-6
  • Ma, J., Chen, F., Xue, S., Pan, J., Khoshnevisan, B., Yang, Y., Liu, H., & Qiu, L. (2021). Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresource Technology, 325, 124697. https://doi.org/10.1016/j.biortech.2021.124697
  • Maj, I., Kalisz, S., & Ciukaj, S. (2022). Properties of animal-origin ash - A valuable material for circular economy. Energies, 15(4), 1274. https://doi.org/10.3390/en15041274
  • Martín José, V., Miralles de Imperial, R., Calvo, R., Garcia, M. C., Leon-Cófreces, C., & Delgado, M. M. (2012). Carbon mineralisation kinetics of poultry manure in two soils. Soil Research, 50(3), 222–228. https://doi.org/10.1071/SR11170
  • Matheri, A. N., Ntuli, F., Ngila, J. C., Seodigeng, T., Zvinowanda, C., & Njenga, C. K. (2018). Quantitative characterization of carbonaceous and lignocellulosic biomass for anaerobic digestion. Renewable and Sustainable Energy Reviews, 92, 9–16. https://doi.org/10.1016/j.rser.2018.04.070
  • McDowell, R. W., Sharpley, A. N., Condron, L. M., Haygarth, P. M., & Brookes, P. C. (2011). Processes controlling soil phosphorus release to runoff and implications for agricultural management. W: Phosphorus in action. Biological processes in soil phosphorus cycling. In Pr. zbior. Red. E.K. Buenemann, A. Oberson, E. Frossard. Series: Soil Biology (Vol. 100, pp. 269–284). Springer-Verlag s.
  • Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. Int. International Journal of Environmental Research and Public Health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224
  • Mickan, B. S., Abbott, L. K., Stefanova, K., & Solaiman, Z. M. (2016). Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza, 26(6), 565–574. https://doi.org/10.1007/s00572-016-0693-4
  • Molaey, R., Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2018). Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass and Bioenergy, 108, 439–446. https://doi.org/10.1016/j.biombioe.2017.10.050
  • Morgado, R. G., Loureiro, S., & González-Alcaraz, M. N. (2018). Changes in soil ecosystem structure and functions due to soil contamination. In A. C. Duarte, A. Cachada, & T. Rocha-Santos (Eds.), Soil pollution (pp. 59–87). Academic Press. ISBN 9780128498736, https://doi.org/10.1016/B978-0-12-849873-6.00003-0
  • Morvan, T., Gogé, F., Oboyet, T., Carel, O., & Fouad, Y. (2021). A dataset of the chemical composition and near-infrared spectroscopy measurements of raw cattle, poultry and pig manure. Data in Brief, 39, 107475. https://doi.org/10.1016/j.dib.2021.107475
  • Muhammad, J., Khan, S., Lei, M., Khan, M. A., Nawab, J., Rashid, A., Ullah, S., & Khisro, S. B. (2020). Application of poultry manure in agriculture fields leads to food plant contamination with potentially toxic elements and causes health risk. Environmental Technology & Innovation, 19, 100909. https://doi.org/10.1016/j.eti.2020.100909
  • Nahm, K. H. (2003). Evaluation of the nitrogen content in poultry manure. World's Poultry Science Journal, 59(1), 77–88. https://doi.org/10.1079/WPS20030004
  • Negassa, W., & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 172(3), 305–325. https://doi.org/10.1002/jpln.200800223
  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterizaton of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.
  • Nusselder, S., de Graaff, L. G., Odegard, I. Y. R., Vandecasteele, C., & Croezen, H. J. (2020). Life cycle assessment and nutrient balance for five different treatment methods for poultry litter. Journal of Cleaner Production, 267, 121862. https://doi.org/10.1016/j.jclepro.2020.121862
  • Orlando, M. Q., & Borja, V. M. (2020). Pretreatment of animal manure biomass to improve biogas production: A review. Energies, 13(14), 3573. https://doi.org/10.3390/en13143573
  • Ortakci, S., Yesil, H., & Tugtas, A. E. (2019). Ammonia removal from chicken manure digestate through vapor pressure membrane contactor (VPMC) and phytoremediation. Waste Management (New York, N.Y.), 85, 186–194. https://doi.org/10.1016/j.wasman.2018.12.033
  • Othake, H., & Tsuneda, S. (2019). Phosphorus recovery and recycling. Springer Nature. https://link.springer.com/book/101007/978-981-10-8031-9
  • Pagliari, P. H., & Laboski, C. A. M. (2014). Effects of manure inorganic and enzymatically hydrolyzable phosphorus on soil test phosphorus. Soil Science Society of America Journal, 78(4), 1301–1309. https://doi.org/10.2136/sssaj2014.03.0104
  • Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., & Liu, H. (2019). Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresource Technology, 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068
  • Panwar, N. L., Pawar, A., & Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1(2), 168. https://doi.org/10.1007/s42452-019-0172-6
  • Pan, C., Zhao, Y., Zhao, L., Wu, J., Zhang, X., Xie, X., Kang, K., & Jia, L. (2021). Modified montmorillonite and illite adjusted the preference of biotic and abiotic pathways of humus formation during chicken manure composting. Bioresource Technology, 319, 124121. https://doi.org/10.1016/j.biortech.2020.124121
  • Paritosh, K., Yadav, M., Kesharwani, N., Pareek, N., Karthyikeyan, O. P., Balan, V., & Vivekanand, V. (2021). Strategies to improve solid state anaerobic bioconversion of lignocellulosic biomass an overview. Bioresource Technology, 331, 125036. https://doi.org/10.1016/j.biortech.2021.125036
  • Piash, M. I., Iwabuchi, K., & Itoh, T. (2022). Synthesizing biochar-based fertilizer with sustained phosphorus and potassium release: Co-pyrolysis of nutrient-rich chicken manure and Ca-bentonite. The Science of the Total Environment, 822, 153509. https://doi.org/10.1016/j.scitotenv.2022.153509
  • Poblete-Grant, P., Suazo-Hernández, J., Condron, L., Rumpel, C., Demanet, R., Sparkle, L., Malone, S. L., de, L. L., & Mora, M. (2020). Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile. Geoderma Regional, 21, e00271. https://doi.org/10.1016/j.geodrs.2020.e00271
  • Qi, F., Yan, Y., Lamb, D., Naidu, R., Bolan, N. S., Liu, Y., Ok, Y. S., Donne, S. W., & Semple, K. T. (2017). Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 246, 48–56. https://doi.org/10.1016/j.biortech.2017.07.033
  • Ramirez, I., Mottet, A., Carrère, H., Déléris, S., Vedrenne, F., & Steyer, J. P. (2009). Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Research, 43(14), 3479–3492. https://doi.org/10.1016/j.watres.2009.05.023
  • Rech, I., Withers, P., Jones, D., & Pavinato, P. (2018). Solubility, diffusion and crop uptake of phosphorus in three different struvites. Sustainability, 11(1), 134. https://doi.org/10.3390/su11010134
  • Reyes, Y. A., Barrera, E. L., & Cheng, K. K. (2021). A review on the prospective use of chicken manure leachate in high-rate anaerobic reactors. Journal of Environmental Chemical Engineering, 9(1), 104695. https://doi.org/10.1016/j.jece.2020.104695
  • Riaz, L., Wang, Q., Yang, Q., Li, X., & Yuan, W. (2020). Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. The Science of the Total Environment, 718, 137414. https://doi.org/10.1016/j.scitotenv.2020.137414
  • Rivera, R., Chagnes, A., Cathelineau, M., & Boiron, M.-C. (2022). Conditioning of poultry manure ash for subsequent phosphorous separation and assessment for a process design. Sustainable Materials and Technologies, 31, e00377. https://doi.org/10.1016/j.susmat.2021.e00377
  • Roberts, D. A., Cole, A. J., Whelan, A., de Nys, R., & Paul, N. A. (2017). Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Management (New York, N.Y.), 64, 133–139. https://doi.org/10.1016/j.wasman.2017.03.012
  • Ros, M., Hendriks, C. M. J., Sigurnjak, I., Robles, A., Aguilar, E., Meers, E., Michels, Z., Hajdu, J., Prado, H., Pose Guerra, D., Fangueiro., & J. P., Lesschen. (2020). Report: D.1.4 Effects of current techniques and management systems on CNP flows in Europe, project Nutri2Cycle. https://www.nutri2cycle.eu/wp-content/uploads/2020/03/D1.4-Nutri2Cycle-techniques-and-management-systems.pdf
  • Roy, E. D. (2017). Phosphorus recovery and recycling with ecological engineering: A review. Ecological Engineering, 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076
  • Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., Vijay, V., Sahay, A., Kumar, V., & Shekhar, I. (2018). Bioresource technology reports review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79–88. https://doi.org/10.1016/j.biteb.2018.01.002
  • Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136–153. https://doi.org/10.1016/j.wasman.2017.08.012
  • Sarvi, M., Hagner, M., Velmala, S., Soinne, H., Uusitalo, R., Keskinen, R., Ylivainio, K., Kaseva, J., & Kimmo Rasa, K. (2021). Bioavailability of phosphorus in granulated and pyrolyzed broiler manure. Environmental Technology & Innovation, 23, 101584. https://doi.org/10.1016/j.eti.2021.101584
  • Sathya, V., & Maheswari, M. (2017). Nutrient mineralization during the application of poultry manure. Nature Environment and Pollution Technology, 16(3), 905–909.
  • Shah, G. A., Ahmed, J., Iqbal, Z., Hassan, F. u., & Rashid, M. I. (2021). Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Scientific Reports. 11, 1–13. https://doi.org/10.1038/s41598-021-91080-y
  • Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Shahzad, S. M., Farooq, T. H., Ashraf, M., Manzoor, M. A., Altaf, M. M., & Altaf, M. A. (2021). Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production, 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019
  • Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825
  • Sharpley, A. N., Herron, S., West, C., & Daniel, T. C. (2007). Overcoming the challenges of phosphorus-based management in poultry farming. Journal of Environmental Quality, 62, 375–389.
  • Shrestha, S., Fonoll, X., Khanal, S. K., & Raskin, L. (2017). Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresource Technology, 245(Pt A), 1245–1257. https://doi.org/10.1016/j.biortech.2017.08.089
  • Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145. https://doi.org/10.1016/j.jaap.2011.11.018
  • Sönmez, O., Turan, V., & Kaya, C. (2016). The effects of sulfur, cattle, and poultry manure addition on soil phosphorus. Turkish Journal of Agriculture and Forestry, 40, 536–541. https://doi.org/10.3906/tar-1601-41
  • Soroko, M., & Strzelczyk, M. (2009). Zawartość azotu mineralnego w wodach gruntowych i powierzchniowych na obszarach narażonych gnojowicą. Woda-Środowisko-Obszary Wiejskie, 93(27), 179–186.
  • Sousa, D. Z., Alcina Pereira, M., Stams, A. J. M., Alves, M. M., & Smidt, H. (2007). Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Applied and Environmental Microbiology, 73(4), 1054–1064. https://doi.org/10.1128/AEM.01723-06
  • Srinivasan, P., Sarmah, A. K., Smernik, R., Das, O., Farid, M., & Gao, W. (2015). A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential application. The Science of the Total Environment, 512-513, 495–505. https://doi.org/10.1016/j.scitotenv.2015.01.068
  • Tańczuk, M., Junga, R., Kolasa-Więcek, A., & Niemiec, P. (2019a). Assessment of the energy potential of chicken manure in Poland. Energies, 12(7), 1244. https://doi.org/10.3390/en12071244
  • Tańczuk, M., Junga, R., Werle, S., Chabiński, M., & Ziółkowski, Ł. (2019b). Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renewable Energy, 136, 1055–1063. https://doi.org/10.1016/j.renene.2017.05.074
  • Thorman, R. E., Nicholson, F. A., Topp, C. F. E., Bell, M. J., Cardenas, L. M., Chadwick, D. R., Cloy, J. M., Misselbrook, T. H., Rees, R. M., Watson, C. J., & Williams, J. R. (2020). Towards country-specific nitrous oxide emission factors for manures applied to arable and grassland soils in the UK. Frontiers in Sustainable Food Systems, 4, 62. https://doi.org/10.3389/fsufs.2020.00062
  • Tiessen, H., Ballester, M. V., & Salcedo, I. (2011). Phosphorus and global change. W: Phosphorus in action. Biological processes in soil phosphorus cycling Series: Soil Biology. K. Red, E. Buenemann, A. Oberson, & E. Frossard (Eds.). (vol. 100, pp. 459–471). Springer-Verlag.
  • Toth, J. D., Dou, Z., & He, Z. (2011). Solubility of manure phosphorus characterized by selective and sequential extractions. In Z. He (Ed.), Environmental chemistry of animal manure (pp. 227–251). Nova Science Publishers
  • USDA. (2021). United States Department of Agriculture Foreign Agricultural Service July 12, 2021 Livestock and Poultry: World Markets and Trade. Retrieved August 26, 2021, from https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf
  • Vadas, P. A., Harmel, R. D., & Kleinman, P. J. A. (2007). Transformations of soil and manure phosphorus after surface application of manure to field plots. Nutrient Cycling in Agroecosystems, 77(1), 83–99. https://doi.org/10.1007/s10705-006-9047-5
  • Van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., & Scheer, C. (2010). Infuence of biochar on flux of N2O and CO2 from ferrosol. Soil Research, 48(7), 555–568. https://doi.org/10.1071/SR10004
  • Vance, C. L. (2019). [ LSU Digital commons using poultry litter ash as a fertilizer source for Bermudagrass (Cynodon dactylon) Establishment and loblolly pine (Pinus taeda) plantation ]. [LSU Doctoral Dissertations]. 5099. Louisiana State University and Agricultural and Mechanical College. From https://digitalcommons.lsu.edu/gradschool_dissertations/5099/
  • Waldrip, H., He, Z., & Erich, S. M. (2011). Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47(4), 407–418. https://www.ars.usda.gov/research/publications/publication/?seqNo115=259647 https://doi.org/10.1007/s00374-011-0546-4
  • Waldrip-Dail, H., He, Z., Erich, S. M., & Honeycutt, W. C. (2009). Soil phosphorus dynamics in response to poultry manure amendment. Soil Science, 174(4), 195–201. https://pubag.nal.usda.gov/download/30149/PDF https://doi.org/10.1097/SS.0b013e31819cd25d
  • Wang, X., Gabauer, W., Li, Z., Ortner, M., & Fuchs, W. (2018). Improving exploitation of chicken manure via two-stage anaerobic digestion with an intermediate membrane contactor to extract ammonia. Bioresource Technology, 268, 811–814. https://doi.org/10.1016/j.biortech.2018.08.027
  • Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T., & Guo, M. (2015). Phosphorus release behaviors of poultry litter biochar as a soil amendment. The Science of the Total Environment, 512-513, 454–463. https://doi.org/10.1016/j.scitotenv.2015.01.093
  • Weiler, M., & McDonnell, J. J. (2007). Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resources Research, 43(3), W03403.1–W03413.13. https://doi.org/10.1029/2006WR004867
  • Wielgosiński, G. (2016). Termiczne przekształcanie odpadów komunalnych – wybrane zagadnienia. Wydawnictwo „Nowa Energia”, Racibórz. https://nowa-energia.com.pl/wydawnictwa-ksiazkowe/
  • Wystalska, K., Malińska, K., & Barczak, M. (2021). Poultry manure derived biochars – the impact of pyrolysis temperature on selected properties and potentials for further modifications. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(1). https://doi.org/10.13044/j.sdewes.d8.0337
  • Yilmazel, Y. D., & Demirer, G. N. (2013). Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 31(8), 792–804. https://doi.org/10.1177/0734242X13492005
  • Yin, D. M., Mahboubi, A., Wainaina, S., Qiao, W., & Taherzadeh, M. J. (2021). The effect of mono-and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. Bioresource Technology, 330, 124992. https://doi.org/10.1016/j.biortech.2021.124992
  • Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136–146. https://doi.org/10.1016/j.biombioe.2017.06.024
  • Zhang, C., Clark, G. J., Patti, A. F., Bolan, N., Cheng, M., Sale, P. W. G., & Tang, C. (2015). Contrasting effects of organic amendments of phytoextraction of heavy metals in a contaminated sediment. Plant and Soil, 397(1-2), 331–345. https://doi.org/10.1007/s11104-015-2615-1
  • Zhang, T., He, X., Deng, Y., Tsang, D. C. W., Jiang, R., Becker, G. C., & Kruse, A. (2020). Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. The Science of the Total Environment, 698, 134240. https://doi.org/10.1016/j.scitotenv.2019.134240
  • Zhang, L., Loh, K. C., & Zhang, J. (2019). Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation. Chemical Engineering Journal, 372, 815–824. https://doi.org/10.1016/j.cej.2019.04.207
  • Zhu, Z., Li, L., Dong, H., & Wang, Y. (2020). Ammonia and greenhouse gas emissions of different types of livestock and poultry manure during storage. Transactions of the ASABE, 63(6), 1723–1733. https://doi.org/10.13031/trans.14079
  • Ziganshina, E. E., Belostotskiy, D. E., Ilinskaya, O. N., Boulygina, E. A., Grigoryeva, T. V., & Ziganshin, A. M. (2015). Effect of the organic loading rate increase and the presence of zeolite on microbial community composition and process stability during anaerobic digestion of chicken wastes. Microbial Ecology, 70(4), 948–960. https://doi.org/10.1007/s00248-015-0635-2